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A Systematic Approach to Material
Calibration with DEM Shear Cell < DMV

Anas Almudahka*?, Mohammad Salehian?, Stefan Pantaleev3, John Robertson?, " Digital Medicines
Daniel Markl2 INNOVATION Manufacturing
*Department of Pharmaceutics, 2 Centre for Continuous ing and Advanced Cr isatic 3Altair i

College of Pharmacy. Kuwait (CMAQ).Strathclyde Institute of Pharmacy and Biomedical Sciences Edinburgh, UK
University, Kuwait (SIPBS). University of Strathclyde, Glasgow, UK

Material properties and product quality

Discrete Element Method (DEM) is a powerful simulation
technique that treats materials as collections of individual
particles. By modeling particle interactions—like collisions
and friction—DEM reveals complex behaviors such as
flow, stress distribution, and breakage.

Material Calibration in DEM is challenging and require
rigorous iterations to estimate. It demands precise
measurement of microscopic interactions, extensive
experimentation, and careful parameter fitting to
accurately capture real-world particle behavior.

Particles approach Particles overlapand ~ Simulation of particle
with normal force (F,) ~ forces are calculated behaviour

Effect of Material Properties on DEM Behavior is
significant. Attributes like friction, cohesion, and

s oD :
elasticity define how particles interact, influencing
e_e @ Q o ) flow, stress distribution, and breakage.
1 Historical data from trial-and-error
4 experimentation A

DEM shear cell can calibrate key parameters of particle behaviour Simulation time is a detriment to DEM utility

9@ q]=ﬂ} Number of Particles and Sample Size heavily influence DEM
simulation speed. Larger models mean more calculations,

increasing computational load and extending run times.
Friction Particle Size  Morphology Density Surface area & energy Compactability &

distribution compressibility .
S What makes a representative shear cell sample

Brookfield PFT, Ametek T 10 million particles? Boundary conditions

10,000 particles?

Major principal stress

L fil yield Is]
Angle of friction 2 Minimising sample and achieving accuracy and repeatability allows for
Effective angle of internal friction -----(¢.) calibrated DEM material to be use in different downstream processes

(o)
{0

Accurate, systematic and

Calibrated outputs allow digital tablet properties estimate that repeatable

mimics real tablets performance
> 1000 faster

Time ‘
Calibration framework useable for any
Tablet wettability Drug release material size with

Optimised simulation scaling: standardising simulation time

% APl released

Smallest radius in simulation

T ( T onin )
R v+

Poisson'’s ratio

i [ l,—i Toassume 0a%ofallstressin shearing is due
Inextiainumber; L - y‘fi"‘i" f 1 I: f S‘f’l to kinetic stress (quasi-static flow regime)

Simulation timestep

Shear rate S

Representative sample investigation
Surface energy affects shear response - PSD span does not!

. . . . 0.7
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Balancing Performance and Manufacturability in

Pharmaceutical Tablets
Faisal Alsharif 12, Natalie Maclean 2, Ibrahim Khadra ', Daniel Markl 1:2

1Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow
2 Centre for Conti 1s Manuf: ing and Ad d Crystallisation (CMAC), University of Strathclyde, Glasgow

Introduction

Balancing tablet performance and manufacturability is essential in pharmaceutical formulation. Compression pressure and porosity influence tablet strength,
disintegration, and dissolution, impacting drug release and production efficiency. This study evaluates these effects in Microcrystalline Cellulose (MCC)/Mannitol and

Dicalcium Phosphate Anhydrous (DCPA) formulations to optimise tablet design.

Aim & Objectives

@ Investigate how compression pressure and porosity affect tablet performance & manufacturability.

@ Examine their impact on disintegration, tensile strength, and liquid absorption using sessile drop analysis.
(] Analyse drug release through dissolution testing.

@ Optimise formulation parameters to improve tablet quality.

Materials and Methods

Formulation Filler (1) 32% Filler(2) 32% API 30% Disintegrant 5% Lubricant 1%

MCC Mannitol Griseofulvin Croscarmellose Sodium Magnesium Stearate
Mcc DCPA (CCS) (Mgst)

Tablet characterisation
* Weight & dimensions ) @
g —1

« Tablet porosity calculation

[ d °® > °

c® . .c

° Blending °

[ °
000

« Bin blender

* 250 rpm , 25 min

True density of blends Tablet manufacture

Gas pycnometer Direct compression

9 mm round, 250 mg

Compression pressure was
adjusted to control porosity
across different formulation

Dissolution EHH!

% Sodium Dodecyl Sulfate .
(SDS) prlwater “ 0:4% SBS in water

Result & Discussion

Compressibility Compactability Tabletability
s . . .
> . + + + —+ 4
3 3
- = =
© g t ) = + z e
= > + Fe— E Fe— E Fe—
E : , + mcocm 2 + + + wcoem 2 + + wecoom
o 2 —+ ' 2 2
© 5 —+ g +
Hs . # - # -
c —— -~ -
© % = =y = = = 3 = = = = z = 3 - 5 = = = =
= Compression Pressure (MPa) Porosity (%) Compression Pressure (MPa)

« Higher compression pressure resulted in lower porosity, leading to denser tablets.

+ MCC/DCPA exhibited better compactability, achieving higher tensile strength at lower porosity compared to MCC/Mannitol.

» Compression pressure increased tablet strength in both formulations; however, MCC/Mannitol needed higher pressure to match MCC/DCPA

Disintegration Efficiency Disintegration Resistance . o
=+ ‘ & —+
- F— J - | E

p—

i Jr + o |+ t + o T 1 1
J + o { ]
+ 4 + | —_—

Disintegration Time (s)

Disintegration Time (s)
Tensile Strength (MPa)

Performance

« Higher porosity led to faster disintegration and quicker drug release.
» MCC/DCPA disintegrated faster than MCC/Mannitol, indicating better wettability.

« Stronger tablets resisted disintegration longer, balancing strength and dissolution.

Conclusi
« Balancing tablet strength, porosity, and disintegration time is crucial for optimising both performance and manufacturability.
+ MCC/DCPA exhibited better compactability and faster disintegration, while MCC I required higher compression pressure to achieve similar tensile strength.

« Higher porosity led to faster disintegration, while stronger tablets

d greater resi to br

Ongoing sessile drop and dissolution studies will provide further insights into liquid absorption and drug release.
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PharmaCrystNet: Improving the predictive capabilities of
Crystallisation Models in the Pharmaceutical Industry

D. Alvarado, F. Paterson, C. J. Brown*

CMAC, Technology and Innovation Centre, University of Strathclyde, Glasgow, UK

*cameron.brown. 100@strath.ac.uk

Introduction

Crystallisation is a crucial operation as it affects physical properties, stability, and final product performance.

Modelling of crystallisation through population balance models (PBMs) helps understand process dynamics
and the evolution of critical attributes throughout a process, such as crystal size distribution (CSD). This in

Thus, this project will develop a physics informed neural
network (PINN) that addresses the mentioned challenges by
achieving the following aims:

turn provides guidance about process conditions necessary to ensure product meets quality standards and

process has an acceptable efficiency.

However, PBMs are not widely adopted due to limitations in terms of development time, large uncertainty, k data e o oo 3. Design, test,

and required data quality. Thus, to bring about greater adoption, the following challenges must be address oo ssalION WhiohapLsanls e
1. Improve transferability between chemical systems BEINH besedionk puitbielencd) Sitelionsonses
2. Reduce experimental burden needed to collect data and parameterise models lrieetets

3. Obtain models that fit better complex mechanisms.

Methods and Results

Summary and future work

1. Selection of APIs

v A branched-tree map of drug-
like compounds was generated
via TMAP approach to
represent the chemical space
that pharmaceutically relevant
ccompounds occupy

From this chemical space map,
31 compounds were randomly
selected to be as diverse as
possible for testing of a broad
range of the possible chemical
space

<

21 solvents commonly
employed in pharmaceutical
crystallisation processes.
were selected to screen
against the 31 solutes in
solubility and kinetic studies,
giving a total of 651
experimental systems

Solutes

For APIs that were less accessible to source, the
chemical space map was employed o find near-
neighbour and more accessible substitutes that
occupy a similar region of the map

[ 3. Dataset Construction

1. Obtention of
Kinetic Parameters
and Solubility

2. Simulations varying
initial conditions

. PBM by Method
ky, b, keg,g,C*(7)  "mmmm FER Y TeTed mp

di
G =ky(C-C' M)

Initial dataset was

d
D basedon tersure T = aky (€ = CO)7
lata. This dataset
é was used for PINN du
architecture. f = 2uky (€ = C*(T)?

exploration

s _ sk, C - )9
= duaky

Solubility has been de_ L dus -
characterised FrL G —_—

for
more than 241

systems and image

ﬂ?:g::fmﬂ;?ngzze v >200K simulations for 20 systems corresponding to 9 solvents and 14
parameters solutes varying process conditions such as initial and final temperature,

cooling profile, seed mass and size.

Within the systems characterised experimentally, ~30% of solute did not

dissolve in the tested solvent, and ~25.5% systems did not nucleate.

Solubility curve could be fitted with R? > 0.95 for 41 systems

<

N

Setup crystalline Identify clear and
Produce samples experiment and cloud points using
the crystalline
profile image capture
EXPERIMENTAL

Identify experimental conditions

Record and upload

- solvent/API system solubility datato | —
- target concentrations based on internal database | S _/
previous experiments COMPUTATIONAL J ==
th solubili /
Systems with solubilities Machine learning Gy . 4
too low to measure are model trained to expressions
excluded from further
e ~ predict which o= generated from
e systems have a clear point data

solubility that is too
low to measure

4. PINN Modelling

Solute - Solvent

* MACCKeys Training Performance metrics
Encoding . MHFP Representation NMSE
ey + Molecular ey Deep Set NN
descriptors
/\\ . efc.
~OH Ho 1.594 427e3
I 0325 0097
Initial conditions 3 0.089 0.158
To, Costo 1, Mgeeg  —> "3 0.025 0.165
T ™ 0.062 0.215
// c 0.042 0.824
Cor oo a0 My e

¥ The inclusion of

Data-driven
& solute-solvent

allows
model to be more
transferable to
different systems
= : RNN (LSTM) showed
5= . m " = their capagcity to learn
Eeomete i = general patterns for
- = == different systems,
however more work is
- necessary to improve
| a 2 | \ their accuracy

<

Initial results showed that the proposed architecture (LSTM: long short-term memory
RNN) can learn to predict crystallisation outcomes across time mostly for parameters
related to length, surface, and volume.

However, the performance of the model for systems where nucleation is negligible
was poor to predict the number of particles (i), by which variations in architecture
and physics incorporation will be carried out to improve this aspect as well as the
overall accuracy

Additionally, more specific analysis will be done to establish generalisation towards
other systems not included in the training set.

The results obtained are limited to 20 systems. Thus, future work will specially focus
on obtention of solubility data for new combinations solute-solvent and the estimation
of kinetic parameters for the characterised systems for their inclusion in the training
and validation of the PINN

Engineering and
Physical Sciences
Research Council
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dm2dbpy: Putting the A in FAIR Data

John A. Armstrong, Christopher Boyle, Tabbasum Naz, Antony D. Vassileiou, Blair F. Johnston
.armstrong@strath.ac.uk

Continuous Manufacturing and Advanced Crystallisation (CMAC), Strathclyde Institute of Pharmacy & Biomedical Sciences, University of

Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, UK.

»  One of the key outcomes from DM? Platform 1 is to establish data schema and standards for
medicines manufacturing datasets following FAIR (findable, accessible, interoperable, reusable)

(Sub-/super-)process hierarchy

Physical substances — both .
arises from need to capture

purchased and manufactured

standards which was achieved through storage of data in a relational SQL database in-house multi-operational experiments
« This data storage achieves the findability, interoperability and reusability of the data but not so much Datasets generated from e.g. multiple DfObES‘ in a

the accessibility since SQL itself is quite dense, and queries can be difficult to decipher analytical experiments and reactor or each station in a
+  Having a user-friendly application programming interface (API) built in Python allows researchers to process settings DataFactory

access and use data without breaking the flow of research and in a programming language they

are more familiar with

Material (Physical

ngchemz AAND digital)

+ Python API built on top of SQLAIchemy’s Object Relational Mapper (ORM)
« Object-oriented approach:

Microsolft

\%
SQL Server

o Each table is a Python class which are linked via helper functions defining primary/foreign erer ! |
keys
* Inheritance mapping: instantiating table objects will load all dependent tables ki
« Built-in query caching and optimisation e
Instrument refers to a physical
“Plug-and-play” of different device in the lab or a rgogel
Table Name Primary and foreign CMAG projects 9 CSDF, being run
key definition g‘gm\ﬂﬁ!ab'e“'"g DF. Accountability
Measurement type refers to
the quantity being measured
Define connections to by the instrument
dependent tables
Grade —
description
Properties from « DataFactories generate a lot of data very quickly from a variety of
dependent tables instruments
« One such example is the DM? platform 2 tabletting DataFactory which
generates pre-compaction, compaction and post-compaction data
E; le: Table describing ial grade in SQLAIchemy within a matter of minutes
« Following the schema above, each instrument in the DataFactory
would be a subprocess with each run being a process and the overall
manufacturing target being the superprocess
. . - . X = Tracking the data between these interconnected tables can result in
« Package provides easier accessibility of data to users, with defined functions for CRUD (create, SQL queries 1000s of lines long but is simplified into a short Python
read, up_date, delete) opfarations script called at the end of each iteration to store data in appropriate
« Abstraction of SQL queries: and linked tables.

o Interact with DB using Python objects instead of raw SQL queries Experimental data

. . . . . Process settings written to } stored in DB
o Simplification of complex queries and DB operations E DB each iteration _ @

o Function-based query construction QL Server ’ Optimisation

parameters

+ Code readability: much nicer to read than raw SQL , Compacion written to DB
Pre-compaction ! Vol
Powder roeries
C: Create R: Read/select ..! # [ &
NIR Spectrum
Query: “Create a tablet set with 10 tablets ) , sy P Post compacion ., @@
consisting of 10% cmac-1 API, 1% cmac-2 Query: “Return all blends with 30% drug loading of £, & & mt . mf‘ " Bayesan Optmisaton
lubricant, 5% cmac-4 disintegrant and the rest griseofulvin containing 5% disintegrant.” =) ™ é £ j_— ; gﬂ';w -
cmac-3 filler.” saL: Compacton Data

Python:

Update experimental

Python:

« Python package is available upon request via the CMAC GitHub

SQL:
« Public release on PyPI with full documentation to follow
QOL: don't need to , o
know arbitrary IDs = & e Collaborators
e.g. for units or “mixtures” is then a sl o= — I welcome!
people, the CRUD Python list of Mixture d : )
functions will find objects which are = = Get in touch to
the IDs for you defined similar to the dnzcey become a
based on grade example above e A contnbgtor to
distinguishing = the project.
information e.g. mL
or person’s name
« dm2dbpy simplifies SQL queries with a Pythonic approach,
SQL: SQL:
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SHARing data to accelerate Pharmaceutical
manufacturing Efficiency across trusted Networks

CMAC: Blair Johnston, Subhaa Arumugam

CPI: Pamela Little, Martin Keane, Kamal Abu Hassan, Rab Leckie, Marvellous Mark, Mohamed Elpkash
CCDC: Andy Maloney, Matthew Lightfoot, Suzanna Ward

GDP: Rob Innes

Research Goal

Develop a Framework for Risk Assessing the Value of [

Key:

Improved or new
tools from project

Federated Learning to Improve the Fidelity of Models in

Can data be
Pharmaceutical Manufacturing and to de-risk e et s id
manufacturing
transformative (FASS) technologies in medicines outcomes? m

manufacturing data sharing, to drive predictive science [t

existing in-house
data effectively?

Challenge

and to improve manufacturing efficiency.

How do | know

Key Benefits et

« Improved collaboration between organizations How can | trust

;ha( ;haring wiI: Development of a User Interface i Ciniabereh et (it
? 'OEE demonstration to| that enables robust industrial in-
+ Faster model development and deployment = Spostaece iy [ rpiiedibay

Proof that data sharing Improves Application of Al/ML to existing Ry e AT
manufacturing models data to drive new insight for process models

Contel| s ° ° ° ° z ” . j B’
— — . . . . Establish guidelines on the
PR R S oie J dsarerkdtodive

[Sensor Data

+ Enhanced Data Privacy and Security
+ Real-Time Research Data Utilization
+ Better Predictive Modelling

Federated Learning Architecture

+ Decentralized Data Training

« Enables collaborative ML model training while preserving privacy and ensuring

regulatory compliance by not sharing raw data.

. . e
+ Federated Client-Server Architecture S
Local Training
+ Each client, hosted by different organizations, trains the model locally using private || ||
foseze]

data and shares only model updates with the central server.

: > Central Server

+ Secure Model Updates & Aggregation « @&@

+ The central server aggregates these updates and sends back the improved global N)) ,';@@ T :

. O 4 4
model to all the clients. Client 1 . P R Client 2 . P Client 3 g e
. . . . Ny N’ 1
+ Differential Privacy & Secure Computation O] ﬂ it
= W

- Sensitive data is protected from being reconstructed or inferred from model updates. %

* Heterogeneous Data Handling Local Training Local Training Local Training

+ Model training can occur on diverse data sources across different organizations.

S 4 CMAC

Tappes Density (gimh

o1v.011 tem) o) comemmm———

17y
°

<4

°

g OIv. 051 tum) ®

o / Coordination
. owosium BRI el Layor
= ¢ £ 9 ~ --

°

iS4

T S

1] Split flow data for testing

(S| FL
2 Flower L #sr
NFL % FEDML

Central Aggregator/FL |, 3
Coordinator Server

2] Create amorphous lactose monohydrate structures Secre FL Prattorm Technologies
[ = i
reducing burden for researchers [
« Stepping stone on the way to plain English querying: Python is much Oua o - 4] Model using
U Uit more language-like than SQL —CCDC 5 o Tt published
. . : . ccoc ccoc individual model
« Faster database querying: researcher spends less time getting data = cemon e s Random
into Python 3] Create Local Training Modeis: [T — computaion (SWPC) or Forrest
. B amorphous sk Chere hvios wcan. AR i, aacl ) Al model H
* Future work includes developing web-based GUIs for non- fingerprints machin caming model e o el i) i
programmers to interact with the database easily and integration 3
i ; i i o= = - - — B
with semantic technologies for smart querying. | I—
—
DM2 website I 5] Validate model and compare
LS Acknowledgment: The authors would like to thank the Digital Medicines with non-FL version
U K Research Manufacturing (DM?) Research Centre (Grant Ref: EP/V062077/1) for
. \ '”h"‘il'“g “"‘s“‘{ﬁ;kRDMz isﬁ""‘:‘“‘de" "V‘_"'e Ma:e Sr;“a"e’ '““?"al"°" ' Lactose monohydrate appears in proportio: high quantities across the majority of formulations
- o challenge at UK Research and Innovation, and partner organisations from
and Innovation Digital Medicines the medicines manufacturing sector. For more information, visit
I N N OVATI O N / Manufacturing cmac.ac.ukidm2-home
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Physical & Chemical Analysis of
Pharmaceutical Materials

Dr. Christoph Busche, Dr. Maria José Heras Ojea, MChem. Rachel Feeney, MChem. Mark McGowan
CMAC National Facility, University of Strathclyde, 99 George St, Glasgow, G1 1RD

Introduction

Analytical characterisation plays an important role throughout the pharmaceutical manufacturing pipeline, specifically for testing the active pharmaceutical ingredients, excipients, blends
and final solid dosage forms. Analytical techniques available at the CMAC National Facility include; particle sizing and morphology imaging, density measurements (bulk, tapped &
particle), thermal stability measurements, surface area & energy, impurity detection & quantification, powder flow properties, tablet hardness and dissolution testing. Our techniques have

also been used in a number of non-pharmaceutical related applications.

Infrared microscope

IR-Microscopy can be used for chemical analysis of specific areas of interest. The
example below shows it being used in forensic trace analysis, specifically gunshot
residues and for the analysis of micro-bond resin droplets on glass fibres.

Two different forms of gunpowder
residue on cotton fabric.

Original Cotton fabric.

Optical coherence tomography (OCT)

OCT is a high-resolution imaging technique using coherent light to measure depth
resolved images (up to 2mm) of scattering material.

Surface profile of
an extrudate.

Depth profile of a
multicomponent
extrudate

Cracks and “grains”
below the surface of an
extrudate

OCT can be used for the destruction free determination 3D imaging of structures in
extrudates, tablets and other scattering material. Structures including coating thickness,
cracks, domain/grain sizes

Raman coupled Morphology

This is the combination of two analytical methods: morphological analysis (shape and size
distribution) and chemical identification via Raman spectroscopy.

Raman spectroscopy can be used to identify polymorphism in a given sample.

The combination of morphological and chemical analysis can be used to “deformulate” a
given blend. (here cold medicine is used as an example)

Reference spectra of three APIs:
Paracetamol, Guaifenesin,
Phenylephrine

The components were
identified by Raman
spectroscopy and a
trend of the aspect
ratio could be seen
Starch
v
Paracetamol
\
Guaifenesin

Comparison between p—
different brands of .
cold medicine. 8 mmm
components could be "
identified using an
internal reference
library. . i
Once identified the W'm“
respective particle n

size distribution for a
chosen  component S
can be extracted.

Time of Flight Secondary lon Mass Spectroscopy (ToF-SIMS)

ToF-SIMS is a surface analysis method which uses a Bi;* primary ion beam map a surface
via mass spectra. Other ions (Ar or O,) can be used to remove surface layers to expose
deeper parts of the sample. In this example, the effect of blending on the distribution of
excipients and Mg stearate in the final tablet has been investigated (left = less blended)
(right = more blended). The ion distributions of Magnesium Stearate (green), Lactose
(blue) and Avicel (red) have been overlaid to compare distribution patterns.

Acknowledgements: Examples of Raman coupled Morphology were provided by Dr. Jo Lothian, Malvern Panalytical Ltd. Micro-bond resin droplets were provided by David Bryce,
Mechanical and Aerospace Engineering, University of Strathclyde. Gunpowder residue samples were provided by Hamad S. Rashed, Pure and Applied Chemistry, University of

Strathclyde
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Overview

Effect of simulation box size and .W DDV
shear on the structure of amorphous
hydrochlorothiazide

Michael Devlin®*, Inés Martins, Andy Maloneys, Thomas Rades®, Blair
Johnstonz2, Alastair Florence2

: " Digital Design and Manufacture

of Amorphous Pharmaceuticals

3 CMAC, Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS),
University of Strathelyde, UK

b Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
< The Cambridge Crystallographic Data Centre, United Kingdom

*Michael.s.Devlin@strath.ac.uk

* Molecular dynamics (MS) si i used increasingly to understand structure and dynamics in amorphous pharmaceutical systems

* No general guideli around si box seize for small

Y despite nt

« Effect of box size systematically studied to determine limits for consistent simulations/ properties for amorphous hydrochlorothiazide (HCTZ)

+ Learnings from box size i igation used to i

such reports for biomaterials

impact of shear on the structure of amorphous HCTZ to replicate ball milling

Effect of box size on structural properties

Implications for structural fingerprinting using pair distribution function
« PDFs calculated from structural models by
(f (@:f (@

1
Geaie(r) = ;ZZ RO )ﬁ(r - T;/] —4nrp,

+ Poor consistency of PDF < 100 molecules

+ Good agreement with experimental = 250 molecules

10 molecules 50 molecules

500 molecules

Effect of shear on structure

Impact on intra- and inter- molecular structure

Inconsistent structural properties < 100 molecules

250 molecules needed as minimum to replicate long-range intermolecular interactions

consistently

Torsion distribution ion of across

Aromatic interactions

Mean distribution of intermolecular interactions

ol s, T
E.I.Il,-dhlih- I

o "

IIIII hdddad . e M

o m

b ol

m

Shear simulations: Background and previous work
« Previous work from collaborators investigated polyamorphism in HCTZ with MD/ PDF
+ Identified torsion distribution change depending on preparation route (melt-quench vs spray
drying)
+ Unable to replicate ball milling with simulation

HeT.oc Mo @78-C)

ety | e

NiCIN2C2
s8s8o8s528¢8

200 150100 S0 0 S0 100 150 200
cicssing

Crystatin HCT

= S, A 2

[ENRAEERDA AR SRR ARCE R AT
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Impact of shear on structural properties
« Shear/ pressure induces similar structural changes as melt quenching
» Increase in flipped conformer relative to ambient simulations

« Energy barrier between ring puckering states may explain process dependence of transition

. Torsion Angle Distributions ConformationalEnergies

par

+ Change in distribution of intermolecular interactions, often involving groups involved in

conformational change

/ / / - d

Conclusions

un

Box size Effect of shear

+ Local structure in MD simulations of
amorphous HCTZ dependent on box size

« Inconsistent box packing when less than 100
molecules are used

+ Shearing results in same intramolecular
structural change as melt-quenching, possibly
explaining preparation method-dependent
properties of the amorphous form

« Long-range interactions not accounted for fully « Intermolecular contacts also significantly
until ~250 molecules in the box affected by shear/ pressure

lek
. Astrazeneca 2 CCDC & 8andoz company
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Medicines Manufacturing Innovation Centre:
research highlights from an
industry-academia-government collaboration

Deep Learning Enhanced Correlation of
Particle Descriptors to Sustainable

Pharmaceutical Manufacturing Processes
"s"t"FS'iyﬁ'clyde Hikaru G. Jolliffe!, Martin Prostredny?, Carlota Mendez Torrecillas', Ecaterina Bordos', Bilal Anmed', Maria A. Velazco-Roa,

o 1 1 2 3 i a4 i 1 . . N d . - .
Glasgow Omar El-Habbak!, Cameron Brown?, Alexandru Moldovan?, Helen Blade3, Rachael Shinebaum?, Alastair Florence Collette Tlerney1, Michael Devlin', Nicolas Cabezudo Garcia, Ebenezer Ojo, Daniel Markl'. and John Robertson'
1CMAC Future Manufacturing Hub, Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, UK s PN
AstraZeneca 2Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, UK hlkaru.jolllﬁe@strathAacAuk
C C D C 30ral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK 1 CMAC, University of Strathclyde, Glasgow.
. 4Technical Operations & Scientific Innovation, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
1. Medicines Manufacturing Innovation Centre 2. Example CDC flowsheet

« Part of the Advanced Manufacturing Innovation District
Scotland (AMIDS)

. LIW FEEDING BLENDING TABLETTING

Con!rnuousg

1. The Missing Piece? 2. Data Pipeline

Suriace Ghemistry University of Strathclyde, AstraZeneca, GSK, UKRI,

« Currently, determining the suitability of powders for product ﬁ \ MMIC project led by Centre for Process Industry (CPI),

pr - k .
development requires detailed, time-consuming = ScoffishiEniomrise, and tha Scoffish Govemment; ather

Flowabilty ( \ X partners also (Pfizer, Gericke, arma). oy (Prostredny et al, 202

i tal characterization of the bulk properties I / : | - "
Descriptors ?éé%epﬁﬁfpﬁ;s i medicines manufacturing” 22 Feodfactor oredicth 22 bend D Sareadt T
« Machine learning prediction of powder flowability based on ) | - o e P

\ l ) S;:mmg 2 FU,EQ}?QZ 3 Material properties. Decay model parameters  Blend properties RTD model parameters Blend properties. RTD model parameters

crystal properties could positively influence critical P Equipment configuration [—] [ [/—]  Equipment configuration Equipment configuration ]
Particle Size and Shape 1b Feedfactor variability prediction 2b Blender micromixing (RSD and strain 3b Tablet compression/compaction

decision-making during medicine manufacturing. Meralpropertes | ity | Matobg Wicaming s varbity  Tobltcomposion Tabet

Equipment properties [ ——] [7=] [—] Equipment configuration - Equipment configuration

2c Blender extent of lubrication

Crystal Property Modeling Parameter
Ci i i PXRD patterns to those of CSD Entry

Flowability (bulk Flow function coefficient FT4 Powder RefCodes, i for any given crystal S v > ﬁ‘ﬂ’wmm
propeny) Rheometer i | ‘ Extent of blending
Particle Size Distribution D10, D50, D90, D[3,2] QicPic Sympatec . . . . . o
o TS (i =2 B =l 3a. Loss-in-Weight (LIW) feeder modelling 3b. Machine Learning for parameter prediction
Morphology and Energy Total lattice energy, Computationally Yo Xen Yam rs Xamo Y i ¥e 4 L ; - s & «LIW screw feeders: hopper _ —Bv +Use Machine Learning to predict LIW feeder process performance (model equation parameters)
Calculations electrostatic energy, H-  acquired through CSD + + W * x; o (1Y o [ Fqn above screws. As screws turn, ff - ff"““f - ff"mxe using material properties and equipment choice as inputs.
bond energy, VdW energy Python API material is dispensed.
Surface Chemistry H-bond donor density, Computationally Xora Yom oo Yoo ¥ w x B x x . Can be measured in mass 20 100 —— 15 Frex Hex ~ impact of missing predictors
A o 5 * per
aromatic bond density, H- acquired through CSD Flatten data dimensions to 2D dataframe i ing of i to shorten dataset revolution, the feed factor (g/rev). 5 Predicied esponse with
bond acceptor density Python API Foed factor can decay as hopper B w T 10 atues L E Pl i
Surface Roughness Rugosity, RMSD, Computationally l l empties. Exact performance ---s Zom Acmey gt .
skewness, Pearson acquired through CSD | 0.5, depends on material and - . :
1 Data ing, ! . . tqym ,2 - L= [T === c <
kurtosis Python API ex;lm:t::;":i‘:h — [7S54:  Model engineering, evaluation, and equipment choice. g g
1] £ inteprettion Lter sharper decay (High ) or g <
. ) 08 40% g 4
(120 sooner, gradual decay (low B). s s
«Feed factor can also be lower or 04 20%
higher overall (ff,,,,).
3. What the Models Tell Us .
% 00 01 02 03 04 05 06 07 08 09 10
N Hopper fill fraction (-) g
Error Distribution for Different Models : Key Findings: p I ‘ Observed Observed
i - , x A
Random Forest st * Models run on the dataset of experimental + " . "
oot e ) , ) 4a. Impact of batch blending on powders 4b. Transferable equation: include a Fr'’? term
= swpervector regresor computational particle descriptors performed better
o Support Vector Regressor Test «Low-shear %
008 . .
5 than those run on experimental descriptors alone. Low-RPM @ Osp=085 = Osr=085min + (O5F=0.85,max — OsF=osmin)e """ HR Osp=0.85 = Osp=085min + (TsF=0.85max — OsF=0.85min)€ ' K = Vi/3HR W.,{n = (2) ir ; i
Zo06 0<Fr<04 @ n= T
7
0.00 + Pearson and Spearman correlations showed mgh . . < 224" \':‘:«zcerf/s'amne celutose : E:?ii «Approach also works for CQA of tensile strength, content uniformity (APl RSD), and other
. - . . +High-shear _ﬁf? Y 2 6 1%mgst o Fre532 formulations.
or correlation between flowability and certain descriptors High-RPM  § 8 s o1ier
X 0<Fr<? X E o oss Tensile strength APIRSD
00 -1.00 (total lattice energy, electrostatic energy, VdW EPS o F=038 s 7
S TSR I -0.16 0.084 0.081 -0.14 -0.65 -0.59 0.079)] e o d _ = 70 700
Error 075 . I . w?r ©3 o Fe02 35 6 .
KDE Plot of Regression Error Residuals — All Faces (dotted Unsatisfied_HB_Donors 0813 .18 -0.310.0077 : attractlon) hlghllghtlng the need of further exploratlon Fr= v % S 7F'j°33 (ft) 2 g s 35 w0
lines are test RMSEs) HB_Acceptors ML) -0.79 1022 -0.24 -0.49-0.001 050 N . . . o s § ::;;22 Eﬁ; 2 e 00 i £x
Error Distribution for Different Models 025 of descriptors to pinpoint their relevance to flowability. «Rate constant y should be formulation- € & rr-11s8 s5 4 = Collapsed it 0 5000 10000 B
012 0.34 (021 '0.052 s T (fit) S5 x Fr=0.07 bin blend x
e e o 000 dependent, and the same for all @ x Fr=0.07 bin blend 55 3 o
-0.: ). ). . . it = I
o e e * Models that were run on data representing particle conditions (one curve) 3 = g 2 o
— N . . . C 8
B surpotVico Ragasner Total Latrice Eneroy JOECIUETNE] (R0 050 descriptors of a crystal’s four faces with the highest e R W .
oo gy~ SUPPveckr Remmssor Test FMSE i3 0.0790.00720.00170.052 0.11 037 1 o075 . - 0 1000 2000 3000 4000 5000 0 500 1000 1500 2000 2500 1000 2000 3000 4000 S0 60 7000 &
~ L S S S A surface energies outperformed those run on data . VEHR VISH R Frt VIR HR Fr
50 5 § 2 ;3 E’ § %’ £ . N . (Gericke AG, n.d.; Kushner & Moore, 2010; Kushner, 2012; Kushner & Schlack, 2014) (Jolliffe et al., 2024a; Prostredny et al., 2024)
28 § 5 & 5 & representing particle descriptors of all faces or the
R I four most morphologically dominant faces, suggesting 5. Continuous blender mass holdup 6. Summary & key publications
a s 8§ =
8 H w = 3 1 H ili - e i i
00z H g a face’s surface energy has high impact on flowability. +Unexpected mass- Material A Differing behaviour Material B Int. J. Pharm. +The Medicines Manufacturing Innovation Pow. Tech.

' holdup behaviour * Centre: cutting-edge R&D centre for
il = Pearson Correlation : eir eir y 9-edg
000 . - s P 0 depending on ot e pharmaceutical manufacturing.
KDE Plot of Regression Error ResiduEa"IZ — 4 Faces with Highest Surface ] ig:;mzzon e~ *University of Strathclyde: strategic partner,
Energies (dotted lines are test RMSEs) 4 Wh at s N ext? 9 : | N a providing experimental expertise and leading
L] L] «Hypothesis — l | o research in experimental model development for
Error Distributon for Diferent Models some material . secondary processing unit operations.
i e forms inclined powder surface; when surface ke et S +Digital tools: employed to increase efficiency e LY
010 P Random Feros Tost RMSE matches outlet angle, mass holdup is increased. and research productivity. ﬁ-‘-ﬁ,-. =,
Lo XGBoost ) o =
A i Ko Tot RS ° PO AN ANANA oronal ot
008 1 i = :uppnrl Vector Regressor torizontal out
£\ === Suppor Vector Regressor Tost RMSE o o o o Tousa |- Horzonta outt ——
| —_— g ety Simiinlimiin\» v — 7. References & Acknowledgements
Foos 3 ol e eie | Sieiteiteite e —]
3 : SN « Jolliffe et al., 2024a. Int. J. Pharm., 659, 124232 Many thanks to:
i L LaN\\¢ « Jolliffe et al., 2024b. Powder Technology, 449, 120440 Richard Elkes (GSK), Gavin Reynolds (AstraZeneca), Hugh
o ] ° ° ¢ 4 4 rsledoutet + Kushner and Moore, 2010. Int J. Pharm., 399, 19-30. E'Aff‘fieg?"m;%;u"f:iﬂ;ovﬂ( s, ;ﬂ;ﬂin Luis de f.'-'?SFE
straZeneca), Bernhard Meir (Gericke), Sara Fathollahi
1 MRS RTER * Kushner, 2012. Int J. Pharm., 429, 1-11 Pharma), Anders Sparén (AstraZeneca), Leonard Schmidt
i . . . : P wpesecspeccrrt [ Inclning Non-inclining Annuar flow * Kushner and Schlack, 2014. Int. J. Pharm, 475, 147-155. (AstraZeneca), Bastiaan Dickhoff (DFE Pharma), John Mack
o 1. PXRD pattern analysis and 2. Mitigate data scarcity by using 3 MOd?I pall—tlde size i e wr @1 o i e s  mateml mateial (allmaterian Conpss Rokiup + Prostredny et al., 2024. Powder Technology, 448, 120224 (Applied Materials), Gurjit Bajwa (GSK), Deborah McElhone
N . . . conmcenvave High mass holdu CPI).
000 mapping to CSD RefCode active Ieammg and Synthetlc data dISltI'Ib'u.tIOnS InStgad of (Joliiffe et al., 2024b) Low RPM | High RPM S * Gericke AG. (CPY)
= -0 0 o ) generation individual particle

Eror structures
ot of Regression Error Residuals — 4 Mos ically characteristics . . / ° VN
KDE Plot Dfominanl FaceEs (dotted lines ar:t’:st I;MSEs) Astrazeneca 0* Ch'esl % @Pﬁze" s O n o f' Lu:j

AstraZeneca *Chiesi % @p fizer ["‘E sanofi
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An Intelligent Decision System
for the Efficient Prediction of

TBC Thermodynamic and Thermal
properties with a Successive
Deepak Kakde - CMAC, Improvement Framework

University of Strathclyde
Murray Knight — CMAC,
This poster will be available at the conference University of Strathclyde

This poster will be available at the conference
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Hydrodynamic Challenges in Discovery of a;‘g;’:l:l%g'zp;;ss“re phase of
CrySta | | isati o n : Leve ra g i n g C F D fo r Banaz Fetah," Daniel Markl,*? Cheryl Doherty,® lain D. H. Oswald,’
Pre Ci s i O n R e a Ct O r O p-ti m is a-ti O n O[> P : 1. Strathelyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK

2. EPSRC Future Manufacturing Research Hub for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, Technology and Innovation
Mitchelle Mandaza'? ", Cameron Brown'? and Jan Sefcik?

Centre, UK
IStrathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde 3. GlaxoSmithKline, Stevenage, UK
2 EPSRC Future Manufacturing Hub for Continuous Manufacturing and Advanced Crystallisation, Technology and Innovation Centre, University of Strathclyde, UK

Aim of the project
3 Department of Chemical and Process Engineering, University of Strathclyde

* mitchell h K Scar-1 ml To investigate the effect of pressure on Posaconazole through the use of X-ray diffraction to enable
mitchelle.mnemo@strath.ac.u . us to elucidate the changes to the structure as a function of applied pressure.

INTRODUCTION

Hydrodynamic factors like turbulence, micro-mixing, and ener During the tablet manufacturing process in the pharmaceutical industry, crystalline materials are subjected to various external forces, most notably pressure during the compression
diyssi at?/on affect supersaturation control. crystal sizge distributiogny * Compa re hyd erynamlc performan.ce across three reactor stage.” Hence, it is important to investigate the effects of pressure on pharmaceutical materials to identify any phase transitions that may occur or understand how elastic or plastic
P fici pe T o Cry ! systems: Crystalline, EasyMax, and OptiMax. the materials can be.? By investigation of materials under high pressure, it allows us to gain valuable insights for pharmaceutical researchers to develop more effective and stable
andApr-ot.:ess efmciency in crystalllzatlon. ) - * Evaluate velocity distribution, turbulence and shear stress using drug formulations.
* Optimising these .fa§tor3 improves reactor selection, scalability, CFD simulations. Posaconazole (POSA) is an antifungal compound used to treat infections in immunocompromised individuals. There are fourteen different polymorphs found, of which only 2 have
and overall crystalllsatlon outcomes their crystal structures reported but much less is understood about their properties.3 Of the two structurally characterised forms, the thermodynamically stable form of POSA (Form 1)
crystallises in the monoclinic space group P2, with Z = 2 whilst Form Il crystallises from the melt in the same space group P2, with Z =6. Form | is primarily used to produce oral
suspensions.*
p— METHODS
X The diamond anvil cell (DAC) is a method not widely employed across the board in studies. However, the DAC
Problem Definition - Solve ‘ ) Post Processing i = 7 9ﬁer§ signifiognt advantages such as its ability to reach pressures of up to 10 Gigapascal (10000 Megapascal) to
. ) . Modelled reactor ' identify new high-pressure phases.
P « Define solvent & —" ) geometries based . . . ) .
Fluid + Objectives R e e + Define time steps . bt . Ia‘bomm T_he DAC is essentially comp.osed of 2 opposing dl.amonds, a tungs_ten gasket an_d a samp_le chamber. _Slnce
Height . prop o Initi it nalyse | setups diamonds are electromagnetically transparent, various spectroscopic and diffraction techniques (e.g., single-
Key Parameters . Select turbulence Initial conditions Results o P 5 : N
« Build 3D Geometry mogen « Run Simulation hyd(;é‘yanyas‘mslf” x4 crystal X-ray diffraction) can be used.
L parameters: Ruby ohip.
Reynold's number “
(Re), Velocity Y
Distribution, Shear L
MStar CFD Stress and Shear , s What are some of the limitations we
i - St . - - - .
Loniee Solver . Sy Figure 1. (a) Conventional diamond anvil cell (DAC). (b) face? o
simulate flow Single crystal of POSA with ruby chips loaded in DAC. « Shading from the steel body limit the
behaviours at amount of data that we can access.
Overhead difteregt agfation - Diamond reflections and gasket rings
impeller o \Peees >/ Within the sample chamber ruby is added to measure the pressure inside can increase background noise.
ud Figure 1. Crystalline vial, 5 mL (left), EasyMax Reactor schematic, CFD Simulation Setup. the cell. Pressure transmitting medium (PTM), such as petroleum ether or
silicone oil is added to create a hydrostatic environment which enables
single crystal data to be collected. Figure 2. Single crystal X-ray diffraction image.
CFD RESULTS RESULTS
; RESULTS
03
s E’&“W" N & . On compression, we observed that Form | undergoes a phase transition between 0.17-0.25
o] @ ot smter egnec e o GPa due to a sudden change in the unit cell parameters (Table 1). Our results show that
£ * % 0 ° POSA transforms to a new high-pressure polymorph where there is a tripling of one of the
go g axes and a reduction in symmetry to P1. The number of formula units changes from Z=2 to
2 . * Lo Z=6 induced by a change in the conformation of the molecule; this form is different to Form
5os g °
& 5 d 1.
H
= . . . : oos ° (a) Figure 4. Structural overlay of Form I (blue) and high-pressure form
"l . * . 4 (orange).
A 2 Crystalli ol R e e s 200 00 &0 w0 w00 100 The overall structures are largely similar but a rotation in the end groups of the
“:g#';lédgs;nigz::ﬁgovgm Figure 6. (a) CFD-predicted sh i ifforent Acgt."j“;" {rpm] o) mental molecule can be observed, particularly the triazole ring (Figure 4). This change
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Benchmarking the Predictive Capabilities of the SAFT-y Mie EoS for
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Advanced mass transfer models to
predict liquid-liquid phase separation

Irene Moreno® 2*, David McKechniel, Leo Lue! and Javier Cardona®- 23
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Active pharmaceutical ingredients (APIs), featuring multiple Groups

functional groups, serve as an ideal benchmark for evaluating Unlike e
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or do th K ? ” Eklo Ml Mo Mice Square-well Fused
What ° 8 Active Pharmaceutical Ingredients
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potential
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Poor understanding of mixing Equation and model behaviour 24 Organic Solvents
in antisolvent crystallization

Solubility of APIs in Pure Organic Sol
Solubility of APIs in Mixed Sol
Solubility of AAs in Pure Organic Sol
+ Interface free energy (£2V2x,) Solid-Liquid-Liquid Equilibrium of API + Pure Solvents
O Margules parameter O Interface free E coef. Solid-Liquid-Liquid Equilibrium of API + Mixed Solvents

Incorporating an activity model allows to make phase separation theoretically possible; by adding Eutectic Mixtures
Antisolvent the interfacial free energy term, it is possible to model this behaviour accurately, as shown below. Octanol-Water Partition Coefficients

DXA

+ V(vxa) = V[Dag - Vxal + + Chemical potential gradient + HOW?

Maxwell-Stefan

Oiling out, unexpected
>0 LEADS TO.. polymorphs, uncontrolled
Desired Phase nucleation and growth

Industrial and Engineering Chemistry Research 2017, 56, 10856-10876,
Fluid Phase Equilibria 2016, 416, 104-19.

Molecular Physics 2016, 11, 2724-2745.
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Figure 1. Ternary phase diagram illustrating = experimental data 200 10 aof - wof l 0 0
psti S E Ill. Results & Discussion
1 w 4] ! : {_ ma. Active Pharmaceutical Ingredients | ,
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2. CHAC-KKS P hase-field model SOV VTR, olamroe-s T amrotess Y amrose-s {  Aspirin |l BenzoicAcid Paracetamol Lidocaine Ketoprofen Mefenamic Acid Ibuprofen m:
ac/at = V(M/f, cc - VUC)? He = fy c(l —H) + fB H Figure 4(a): example of steady state mixing map gathered with Fick’s law; (b-d): composition profiles at the

marked mixing map points for Fick (b) and CaHiMaS (c, d). All of them gathered with D = 1600 umz/s.
/0t = —Lity; 1y = [f — fu — (cp — Ca)fpp] H + Wiiana — 10

iy B cruls e oo

How has this model been validated? g

O Penalty coefficient for the a-p interface

O Barrier height for n double well 1 hew 2 ZK/
== |— =y w )| (
* cis composition, n is the phase variable o 3.2 I“b Soll.lblllty mn Pllre Solvents J L I“C. SI-E & SI-I-E Phase Dlagrams """""
* Double-well potential for n
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Figure 2. Effect of the interfacial free energy and thickness, and CH mobility. (a, b) A lower interfacial ™ o n "’sj@f o J"};ﬁ,——:;——‘lf’—ﬁ‘,
thickness leads to a thinner transition zone, and higher interfacial free energy leads to slower 08 < \'\y. " 24 [mol/mol)
growth, and more nucleation. The latter is governed by the KKS model, in which the probability of 06
nucleation depends only on S. Less growth means higher S at a given time, and thus more nuclei. 1+ Optimization 3 ~ IED
(c) CH mobility is related to the diffusion coefficient, with a lower value resulting in slower mass 5 - l o ]
st and s sower priegowth . 0 IV. Conclusions |
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experimental map. Right: simulated map obtained with the final D guess. Middle: interpolated simulated map.
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Data-Driven Virtual Knowledge Graph for Pharma
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1. Background 5. Base Model For Transfer Learning P e L d 2 National Physical Laboratory, Glasgow, UK
Computational fluid dynamics (CED) is the current best approach to i Va“daxu o125 2 Yalaton oz Al 03091
simulating virus deactivation, however these simulations are often el B S EWS? l{ ‘ - ‘ - { lfwm l{ ‘ lmm Introduction Early Testing using Generative Al
very computationally expensive, and can also take months to finish o T " " " o 00007 b5 —oue od . . H . o 008
equipmen;';:;::::‘s:fmlhediscomyofnewm‘e‘;‘::‘l'““e:"" i predcton, oms 2 Predcton v onm 2 il 030m Although the literature has many examples of crystallisation Although knowledge graphs are powerful tools for representing
The aim of this projectis to adequately predict the outputs of irus j—; !.2 i-—; !.2 E {a::;] { ‘ - ‘ -~ { h:: :{ lﬂ;:‘u processes and outcomes, these are difficult to sear.ch and anal.yse related data, information is tradltllonally retrieved from them using
inactivation simulations using artificial intelligence (AI), machine o : . . s 0 o . o : et . 4 because there are not many papers containing detailed the SPARQL query language. This has to be learned and is more
;ea:nl:l:, ne:;]a)l ne;w:i::cs,:n:lso on. Tl:ese predictions need to be 2 o oosars 2 romﬂ 2 = rmﬂ experimental methods with data in a structured, machine-readable difficult to work with than the database query language SQL.
aster than CFD and still reliably accurate. N oo 1 - ; B . S
Neural networks are capable of’]’:redicting fluid velocity within . { o om0 o format. The aim of this project is to create a crystallisation
desired geometries and may possess the ability in the future to bypass oo s e Figure 3 knowledge graph to describe crystallisation experiment process Large Language Models, however, can write SPARQL based on
the need to rely on CFD for, not just fluid, but for all kinds of elements along with experimental methods and data. plain English prompts and return analyses on the data within
Multiphysics simulations. Figure 3 shows the validati icti and di data for u, v, and p. The difference/error for each variable is very close to zero. This model has been gra Dh

used as a base model to use for transfer learning of other PINNs with varying geometries. MAE for u, v, and p is 0.0028, 0.0016, and 0.0012 respectively.

6. Transfer Learning Fluid Flow PINN For Square Channel

v, and p is 0.0056, 0.0041, and 0.013 respectively.

3. Target Application 7. Transfer Learning Fluid Flow PINN For Door-Knob Channel

What will this give us?

= Refined or even new approaches to crystallisation experiments, through knowledge
graph-enabled machine learning analyses

An ontology describes how concepts within a domain are related to
each other in a way which is computationally useful. For example,
a crystallisation experiment could be described as (this is a
fragment for brevity):

A Large Language Model (LLM) was provided with the graph file and prompted with some
basic information about its structure:

Validation u Validation v Validation p = Astructured dataset for training Al models to predict crystallisation outcomes. “Here's a knowledge graph in RDF/XML format. The experiment data are held as data
. Aim1: ics i i 2 01527 2 0.4970 . L . . q i i i i
Aim L: Create a physics informed neural network (PINN) with R TR TR TR TN : 01209 o = Enables generative Al models to assist in data interpretation and hypothesis property assertions, andjeachjexperiment isimade|up ofisteps which shareja)common
square-shaped obstacles using NVIDIA Modulus to use as a base “Nal vl \el Vo] Lo 0.0757 ‘ ] ‘ ] ‘ ] ‘ ] ‘ ] 00003 1 02354 R experiment UUID, which is also a data property assertion. Analyse the graph so that you
model for transfer learning. oy —0.0014 01274 0 —0.0262 B . . : - can locate all the data.”
5 10 15 20 o 5 10 15 20 = Allows researchers to easily query and retrieve crystallisation conditions, results, and
Predicti Pi Predicti . L xtracted Experiment Dat
L . . . 2 - 01527 2 red'"“m = 01269 2 e 0.4970 trends Following this initial prompt the LLM was  [SSat——
+ Aim 2: Create multiple channels with varying parameter set ups / I L o red
obstacle shapes and train new PINNs using transfer learning 1 et [ I S RANE NE N ERET R 02354 = Researchers can ask complex scientific questions in natural language asked:
with the base model. °5 3 1 s y -0.0014 0 T o 5 % o127 0 4 10 15 20 00262 = Pharmaceutical and materials science industries can use the graph for process '
" L List the solutes, solvents and
Difference u Difference v Difference p optimisation ) )
2 01136 2 00474 27 0.05165 X i X i concentrations from each experiment.
+ Aim 3: Create fluid validation data for each of the models using n {‘mm 1 {wm 1 - [Oma, = Helpsin screening and designing crystallisation processes for better drug formulation Don't show the full experiment IRI, only
COMSOL to compare with the PINN results. o P 00000 04 000000 and material synthesis. show data after the # in the IRI.”
o 5 10 15 20 o 5 10 15 2 5 10 15 20
+ Aim 4: Analyze the error between the validation and prediction data Figured4 Itwent on to examine the file, and after
i i i i an initial mis-step which it dealt with itself,
of each of the variables of interest (x-velocity, y-velocity, and Figure 4 shows the validati iction, and diffe data for u, v, and p. This model was trained using only 100,000 training steps and used the transfer | i reqﬁi red list (right, table g
pressure), to gauge accuracy of each model. learning model in Figure 2 to aid in its predictions. This model is a I 8 in Fi 8 )
g model in Figure 2 to aid in its predictions. This model is a length and obstacle number expansion of the model in Figure 2. We can notice v error - ? ;
rimmed for r ns).
etinghigher towards he outlt o the channel Th p difference s rlaivly close t ¢ro bt ot a3 accurate s the  diffrence see i Figur 3 MAE for . What are Ontologies and Knowledge Graphs? trimmed or space feasons)

The next prompt was: “Each experiment
Clear Point Temperature Data has cloud and clear points. For each

Expermentua experiment, show me the clear point
temperatures and the standard deviation
of the clear point temperatures.”

Vekody Validation u Validation v , Validation p . - It rgturned this information (left). The standard
ooz - ,\ = ,, 2 O4ges 2 01763 e Bxperiment deviations were checked by another method
840002 1 02426 1 -00016 1 0.766 = . and were correct.
faee o -0.0016 U -0.1796 o 0.001 =
::zi ¢ : ¢ : y ° ¢ m e AL Rt fesukisin The LLM was asked to provide this list again with solvents and concentrations, and to
Ao \ Predl(llon u Predlctlon v Prediction p -/ A (et U 8 3
Syt 2T 0.4868 0.1763 2 1531 e &« ' ~a order the table by solvent, which it was able to do (below).
210002 1 0.2426 / / -00016 1 0766 C q
I 110002 01796 Equipment Process Measurements Outcome
9e000 Figure 1 o 2 -ooos 07 % 2 4 6 8 0 0%
imsh1) D,ﬁe,e,,ce u Dlﬂerence v Difference p [
27 = 0.350 2 7N 77 [0 2 1.0% [consists of hasa  |with exhibits
Figure 1 shows the axial velocity of fluid flow as it moves through a 2D 1 0175 1 00663 1 0545 | o N
N . P - - A 8 # A
serpentine channel from [1]. The change in velocity is in response to 0 C S S 0.000 0 0.0000 0 0.000 [ [
forces. This si ion was using Fluent Ansys. 2 4 6 8 10 2 N ° 8 © 0 2 4 6 8 10 Steps Morphology Particle Size Polymorphism
Figure 5
The velocity of the fluid can be used to generate a virus deactivation When data are added to the concepts, the ontology becomes a knowledge graph. A
8 Figure 5 shows the validati iction, and di data for u, v, and p. This model was trained using only 100,000 training steps and used the transfer search might ask “Which EXPERIMENTS including a seeding STEP at a temperature

diagram. The PINNs in this poster is aimed at generating flow
predictions similar to the CFD results shown in Figure 1.

learning model in Figure 2 to aid in its predictions. We can see high error magnitude in this model for u, v, and p. Particularly at the narrow passages within
the channel. This was a common trend seen in other channels with narrow passages. MAE for u, v, and p is 0.041,0.026, and 0.59 respectively.

4. Base Model Specifications 8. Transfer Learning Fluid Flow PINN For Serpentine Channel

MEASUREMENT over 60 deg. C resulting in a particular MORPHOLOGY?” The knowledge
graph would answer this easily; the same query on flat data tables would be more difficult.

Since the knowledge graph contains data, and the relationships between those data, it is
more computationally useful than data on its own. Knowledge graphs are therefore well-
suited to storing data for machine learning applications.

Conclusion

Although this session was promising, due to the probabilistic nature of LLM responses, on
some other tests it was not always able to interpret the knowledge graph correctly.
Further work will be to use better initial prompts to steer the LLM down the correct
interpretation pathway. Graph plotting is also possible within the LLM and will be tested.

Validation u Validation v Validation p
5 — S— — — S~ 0.1484 s 0.1447 1.051
I\'\I\I\I\Iq {uvczzs 2stzszszszs‘ {00009 2; y 2;2; laszs
e i’ o’ S’ S’ o o, . q
I T R S TR T Populating the Knowledge Graph Architecture
Prediction u 01488 Predl(t:cn v 02447 Prediction p .
B N e VeV oV aVa : s Y 5 - s S . 0 . . . .
"Tole ' [ ' $¢8¢ ‘ {Mm 28282 )2 / : ‘ {Mm m Eom AIthoggh there is a wep lbased user interface Afor |lnputt|ng The knowledge graph is the Ueer ol
Figure 2 o I L o083 o S 01428 04 ~0.001 experimental data, it is anticipated that most data will be ingested cornerstone of the project; s Tools
e 7 T erencer 0 T erencep via the Application Programmers’ Interface (API) the entire application is built
The base model in Figure 2 was trained using 5,000 interior points, 64 Difference u 01270 Difference v - Difference p g g . .
inlet and outlet points, 2,000 boundary points, 10 integral continuity 5 I ‘ : ;I oosss ® C Lo ° ¢ 02140 around it.
lines, and 500,000 training steps. ) o 1S WAN d o 4 oo o (}7 » 00000 The API will accept exported data by
The integral continuity lines are placed the chan by 2 0000 T 5 10 15 20 5 5 10 15 20 25 lab equipment, automatically * The knowledge graph
nel to specify the average velocity at each vertical line. Figure 6 em:rmg ;11 into the khnoyv\edge graph is at the core;
The standard distance function is colored blue to red, indicating VOIS ESREERET S R " -
interior points closest and furthest from the channel boundaries. Figure 6 shows the validati iction, and di data for u, v, and p. This model was trained using only 100,000 training steps and used the transfer intervention. . e knowledge graph compl etely
learning model in Figure 2 to aid in its predictions. We can see higher error in u and v towards the channel outlet. For p, we see the opposite. This channel o controls the user interface — to Knowledge Graph
closely resembles the channel seen in Figure 1 except the inlet and outlet locations differ. MAE for u, v, and p is 0.012, 0.019, and 0.25 respectively. Using this automated approach, change the Ul we simply change

9. Future Work (3D Coil Simulation) 10. References

of ing 3D fluid si

Figure 7 shows a 3D CFI generated using COMSOL (CFD software). Exploring the
using NVIDIA Modulus would be

Dsign, Construction, and Optimization of a Novel, Modular, and Scalable ion Chamber for C
Inactivation, October 2016

the aim is to import data from
existing sources (such as CMAC'’s
Data Factory, which collects and
Integrates large volumes of
managed data from sources
including laboratory experiments,
production lines, and

simulation models) to rapidly

the knowledge graph;

+ Anindustry-standard REST API abstracts users from the knowledge graph file;

+ The user interface communicates with the knowledge graph via the API to fetch the
crystallisation experiment framework and to send back researcher contributions;

+  The APl allows automated contributions, enabling any future front ends or tools.

suitable for future work. The geometry would appear like the CFI in Mpodular Coiled Flow Inverter with Narrow Resi Time Distribution for Process and ion, February 15 grow the available dataset.
Figure 7. 2019
3 Design of a novel continuous flow reactor for low pH viral inactivation, 13 November 2017
Once such fluid predictions have been si ina3D CFIL, ing the 4C Cooling Cr ization in a Coiled Flow Inverter Crystallizer Design, C ization, and Hurdles,
possibilities of applying virus inactivation kinetics to the velocity particles to 29 August 2021 AC kn OWIed gements an d cont a ct N ext steps
generate a graph of virus inactivation in 3D would be an appropriate future step. 5 MINIATURIZED TUBULAR COOLING CRYSTALLIZER WITH SOLID-LIQUID FLOW FOR PROCESS DEVELOPMENT, June
10-13,2018 We would like to acknowledge NPL (EPSRC ICASE), and University of Strathclyde (EPSRC +  Further work with the LLM on natural language analyses
DTP REA) for funding, and would like to thank Amal Osman for sample solubility data. «  Data from more sources, both real-time and whole experiment
3 - ° 4 1 «  Continue engagement with industry and academics
o o o ) ) - h f ’
o g Phzer @ qo n o fl akeda uch ith.ac.uk, BlueSky: @cryogenicx.bsky.social «  Incorporate other pre-existing ontologies e.g. for unit conversion
AstraZeneca ¥Chiesi & ﬁ e < 7c o
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Computer-aided Design of Optimal Solvent Blends
for Crystallisation of Mefenamic Acid (MA)

Gaurav Seth, Saman Naseri Boroujeni, Amparo Galindo, George
Jackson, Claire S. Adjiman*

Department of Chemical Engineering, The Sargent Centre for Process Systems Engineering, Imperial College London, South Kensington Campus,

London SW7 2AZ, United Kingdom

\ Introduction Aim
Antisolvent_ a fg;r&t:l[a);e computer-aided mixture/blend design
P ‘ : SOIUb_'I'ty + Identify optimal solvent mixtures, process
e —) = || ) © / =) °* APlyield temperatures and mixture composition
. ﬁvy-ﬁ\ Solvent + API + Solvent + Minimize the Process E-factor or PEF (g waste/g
A " EFFICIENCY consumption S
80% of small molecule ‘(':vr}((’stlalllsat‘liqn - h Solvent(s) choice, 0 Use SAFT y - Mie group contribution method —
pharmaceuticals — solid m;nz¥agf:rir:; pharma  process conditions predicting thermodynamic properties within
crystals optimisation framework.
System and key performance indicators (KPlIs)
X512 =0 s1- solvent For it" component, i € {s1, 52, API}, and j* stream, j € {1,2,3,4} :
R, X22=1 D s52- anti-solvent
Xaprz =0 *  Molar mass of components — MW;
Xo11 ) @ +  Mass of i*" component in j** stream - w; ; = MW;Fjx; ;
F, Ty 5 & F “;CT“ . + Mass of API crystallized - wSp; = MWp,F3
Xap1,1 xs1,4
Gp— s24 KPls:
@D Crystallizer XAp1,4
0 @ + SEF (g solvents waste/g crystals produced) - SEF = (Wgy 4 +Ws;4)/WSp;
X513 =
X523 =0 'API crystals + PEF (g material waste/g crystals produced) - (Wgy 4 + Wsz4 + Wapra)/Wip;
Xap13 =1 F3,Ty - ) .
’ *  Crystallisati Id, Y, = 100
Fig: Process diagram rysiallisation yie e = Wip1/Wap1,1) *
Process model and design constraints
Mass balance: Solvent assignment constraints: Process constraints:
Fix511 = FaXs14 _ _ )1, if the solvent is assigned to s1 or s2 Solid liquid equilibrium for streams 1 & 4:
Fixsp1 + F2 = FyXgp4 ik = o, otherwise Xaprj j = €X] il ( - l) j € {14}
Fyxapra = FaXapra + F3 Z Viix = 1,ii = {s1,52} AP1jYAPLj PI7R T T J ’
Xs11 F Xs21 + Xaprp =1 & ik = ’ Yar1,j — activity coefficient of APl in j** stream
Xs1,4 + Xs24 + Xapra =1 g Constraints on temperatures:
. (b b
Propylbenzene - Yie <1, vk €N Ty< min(TY = To, T — To)
ii€{s1,s2} Ty < T4b — Ty
Relating the solvents to functi 1 : *
ating the solvents to functional groups Tysa = Mr(1— yo) + yaT%
iy = Z Yii kM1, VL€ Ng _ )1, if antisolvent is used in stream 2
Npropylbenzene,aCH = 4 KENs Ya = 0, otherwise

NpropylbenzeneaccH, = 1 |Ng — set of candidate solvents
Nyropylbenzene,CHy, = 1 Ny — set of functional groups
Nyropylbenzene,CHy = 1 ny; — number of functional group [ in solvent k

T —bubble temperature of stream 1
stz* — bubble temperature pure solvent s2
My — alarge value

Note :- Stability of ternary mixtures for stream 1 and stream 2 is confirmed using gSAFT within gPROMS

Optimization problem Results

Decision Variables: API - Mefenamic Acid (MA)
_ T Set of candidate solvents (N) - Water, 1-2-Propanediol, Acetic acid, Isobutyl acetate,
X=[iix Ya F1 F2 X521 T1 T4l
Al . Isopropyl acetate, 2-methyl-1-Propanol, Butyl acetate, ethanol, 1-butanol, 1-pentanol,
Optimization problem (MINLP):
Acetone, Ethyl acetate

mxin PEF Stream table
S.No. s1,s2 s1(g/sec) s2(g/sec) PEF Y. (%) T, (K) Ty (K) YVa

subject to : Mass Balance (g/g)
Design Constraints 1 1,2-Propanediol  340.14 9.86 35 99.88 400 290.15 0

0<x45:=1 water
SEF 2 3.5 2 1-pentanol 350 - 35 99.75 39861  290.15 0
0 < F;< 50 mol/sec -

0 < F,= 50y, mol/sec - |Process constraints 3 Butanol 34918 082 351 9948 38392 29015 0

290.15 < T; < 400K

Isobutyl acetate
290.15 < T, <400K

<2100 Fixed API production 4 Isobutyl acetate  322.56 2744 354 9583  377.71 29015 0
Wapr = g/sec L . Ethyl acetate
Y. =209 Minimum yield
Conclusions Ongoing/Future work
. . N . . Xs15,Xs2 5, X,
Results suggest the use of cooling crystallization to Solvent recycling . e . Fsus Yoz Xaris
minimize the solvent consumption. « Effect of adding impurities 2 anii-solvent, fier
* Multiple high-performance solutions generated by - Additional design criteria — energy balance, crystal ;S' 1 - . *
52,1 51,4
including integer cuts in MINLP. shape, particle size distribution Xap1a Gp— Crystalize| X4
. . . . . References: API crystals XaAP1,4 N
Using high inlet temperature — high yield. 1. Wang, J. and Lakerveld, R., 2018. Integrated solvent and process design for continuous X526
crystallization and solvent recycling using PC-SAFT. AIChE Journal, 64(4), pp.1205-1216. F3 x
2. Watson, O.L., Jonuzaj, S., McGinty, J., Sefcik, J., Galindo, A., Jackson, G. and Adjiman, C.S., APL6

2021. Computer aided design of solvent blends for hybrid cooling and antisolvent crystallization
of active pharmaceutical ingredients. Organic Process Research & Development, 25(5),
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Discovery and Applications of a Novel Solid-state Arrangement:
Water Bridge Salt Form

Saadia Tanveer,"2 David Remick,? Paul Meenan,* Marianne Langston,® Anton Peterson,’ Martin R. Ward,® Chantal Mustoe,®
lain D.H. Oswald, Alastair J. Florence,2
Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK. 2EPSRC Future Hub for Manufacturing and Advanced Crystallisation,
Technology and Innovation Centre, University of Strathclyde, Glasgow, UK. 3Synthetic Molecule Design & Development (SMDD), Eli Lilly and Company, Indianapolis, IN
46285, USA. “Drug Product Design, Pfizer Inc. Groton CT 06340, USA. SPharmaceutics Research — Analytical Development, Takeda Pharmaceuticals International Co.,
Cambridge, MA 02139, USA. °National Facility, CMAC, University of Strathclyde Glasgow, UK

Introduction Results and Discussion
Salt formation is a common technique to modify the properties and enhance the solubility and
bioavailability of an Active Pharmaceutical Ingredient (API). However, salts tend to convert back to their
free (unionised) form under certain conditions via a reaction known as salt disproportionation.

Disproportionation behaviour of miconazole MCZ hemitrydrate (150¢)
mesylate dihydrate (water bridge salt) at varying

pH conditions

Theoretical pH,,,, of MM DH (SWB) is 2.3

The phase change was detected by a sudden

decrease in the Raman peak area for the salt

(@1268) and a sharp increase in the free

base peak area (@1506) at a pH of 3.97.

Additionally, a sudden drop in pH was

observed during the transition. The solid was

assessed by PXRD and validated the change

to the miconazole hemihydrate.

MM DH disproportionation at 3.97 indicates x

an enhanced stability compared with normal Time (Hour)

salt behaviour e R oo
function of time. At pH 3.97 there is a sharp change in pH and the

Raman bands of the two solids

Disproportionation behaviour of miconazole chloride dihydrate salt MCZ CI DH (non-water bridge)

Industry Challenge: Disproportionation poses significant challenges for the pharmaceutical industry by
impacting stability and solubility of drug formulations

Disproportionation Reaction

Raman intensity (Normalzied peak area)

. . L . FREE BASE
Salt disproportionation is an acid-base H > pHmax

reaction involving a proton exchange process
under certain conditions and changes the
chemical composition of API. Salt form stability
is indicated by maximum solubility pH (pHmax)

It disproportionation occurs

Log S (ugimi)

S
PHynax = PKo +l0g =

o
. . . Figure 1: pH solubility profile of a weakly basic compound [2]
Aim & Objectives

+ The pHmax of MCZ CI DH (non SWB) is calculated as 3.77

« This project aims to build a fundamental understanding of the salt “water bridge” structure, its propensity
to form, stability, and structure-property relationships
« To design and apply a disproportionation monitoring workflow and test the stability behaviour of salt

+ The onset of disproportionation is at ~pH 3.46, which corresponds well to the calculated pHmax.
« The solid form precipitated during this disproportionation reaction is also miconazole hemihydrate

—m—pH

~— Raman MCZ free base (1506)
hydrates with and without bridging water motif between the API and counter ions

Potential Benefits

« The study provides insights into the pH-dependent stability of miconazole salts, highlights the potential
benefits of the water-bridging structure present in MM DH as a contributing factor to its sustained stability

Solid state forms

Normalized peak area

Case study: Miconazole Mesylate Dihydrate (MM DH)

It has been reported that the rate and extent of salt disproportionation
for Miconazole Mesylate (MM) salt (amorphous AMO, anhydrous AH,
dihydrate DH) in the presence of excipient is significantly different, and Time:(Hour)

MM DH was resistant to disproportionation over the time studied [1] Figure 6: Peak area of Raman characteristic peaks for miconazole (1506 cm™) and MCZ CI DH (1268 cm™) as a function of time and pH (A)
and as a function of pH with PXRD results indicating phase composition (B)
-

il

Water bridge salt hydrate

A“water-bridge salt hydrate” is a salt where counter ions (such as

miconazole and mesylate) are linked indirectly via water molecules

forming hydrogen bond bridges. This structural arrangement relies on  Figure 2: Miconazole mesylate
water molecules to mediate the interactions between the cation and dt‘(’;‘::_':ﬂ%gi‘::e)::fg"gg y
anion, stabilizing the salt hydrate.

Nucleation behaviour of MCZ free
base and influence of water bridging
between counterions
+ The impact of seeding was tested via
two experiments depicted in Figure 7
« Via either method there is no impact -
of seeding on nucleation of the MCZ n Sold-siale sictur
free base the product remained as
MM DH after 48 hours as revealed by
Pawley refinement of XRD data

Extended stabilty in MM D}
(SWB) system beyond pHmax

Disproportionation monitoring Workflow

Aworkflow has been developed to monitor the disproportionation process using alkalimetric titration of an
aqueous salt solution by adding aliquots of NaOH. In-situ Raman spectroscopy and continuous pH
monitoring are employed to detect the phase change, and the results are validated using PXRD and HPLC

| Theoreti Disproportionation xtract 1mL,
solubility {-»1 TCETE e monitoring every 2H
profile H workflow

Solubility

DataFactories &
= = TR E Model-driven Experiments

ith solvent Equilibrate,

combination : Alkalimetric titration unti slurry, 1H

phase change detected

Compare the thearetical and experimentally . Experimental + Figure 7: (A) Schematic diagram of the experimental workflow. In-situ monitoring of the characteristic peak for miconazole (1506 cm*) and
pHmax values to analyse "‘e_e""a"‘f: stability o xperimental MM DH DH (1268 cm™) and pH as a function of time for: (B); Seeding at constant pH (C); and seeding at variable pH (D). Pawley refinement
water bridge/non-water bridge salt hydrates pHmax of a product after 48H (seed addition at constant pH, (E) or (seed addition and varying pH, using the unit cell parameters from MM DH

I~ N . - (WUFJEP).
Figure 3: Schematic diagram of the disproportionation monitoring workflow ( )

MM DH N vater “ Mm:;m, ion h Mesylate ion The developed workflow has been applied to miconazole salts and distinct changes in disproportionation
Disproportionated Ao behaviour are observed between MM DH and MCZ CI DH despite having the same API molecule.
pH > pHmax NoOH@5) The different counter ions have introduced a difference in the connectivity between the ions and the water
sar>es molecules. We believe a water-bridging motif in MM DH salt contributes to enhanced stability. A larger
pool of observations will enable a more robust set of guidelines to be developed so that salt “water bridge”
Prsaiviziatl 1 ) forms can be a valid solid form for drug delivery.
,‘f’.;‘;s'a;:; g [ Sodium mesylate Charge distribution analysis will be performed to identify the impact of structural motifs in the known water
heminydrate Disproportonation product bridge salt system with enhanced stability.
Comparison will be made between the known water bridge system and traditional hydrates to develop a
workflow for pharmaceutical compounds using crystallographic data and physicochemical properties.

Conclusion & Future Work

(Miconazole
Hemihydrate)recrystalli
sed

Figure 4: Schematic diagram of the disproportionation monitoring for the MM DH system
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Self-driving Tableting DataFactory to Accelerate Process Development
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Machine-Learning for Mechanistic Model Identification
Can Symbolic Regression Outperform Standard models?

TAaron Bjarnason (presenting), 'Thomas Pickles (contributor),

“Medelpharm TCameron Brown (academic supervisor), 'Alastair Florence (academic supervisor)
*DEC Grayg) TUniversity of Strathclyde
Introduction to DM2 Platform Il
. e . Symbolic Regression Experimental Setup
Drug loading .
Process ion to support model-based i i Process settings

Choice of excipient Symbolic regression (SR) is a powerful machine learning technique The crystallization experiments were conducted using an automated

with the ability to autonomously discover mathematical expressions platform controlled remotely via LabOS, ensuring precise and

Gomm)
Rapidiformuisticlbevel; andiRrecessiOptmisation RapidNanEcu g ir;(é @ describing complex systems. Unlike traditional regression, which fits reproducible process conditions. This system enabled automated

New Drug Material Properties D;gital Fo?l:]at_ior;_and — Tableting daFa to predefined rv.wodels, SR searches. an ez<pansive equation space control of temperéture, sti(rring,‘and QQsing, aIIowing for high.—
Candidate pocess OptimisalQl DataFactory to identify compact, interpretable relationships. throughput experimentation with minimal manual intervention.

Increased process efficiency and less waste of time material

S
Material characterisation: Real-time quality
+ Particle size/shape
- True density

+ Bulk density Multi-objective, constrained

°® /
*e
AR visualisation [ )
i i Experimental
CCDC Particle CRfmicaton High experimental load Time —
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Hybrid i f model . . . .
ybrid system of models Solution concentration was measured using High-Performance

Liquid Chromatography (HPLC), providing accurate, time-resolved
—) quantification of the solute during crystallization. This allowed for the
monitoring of supersaturation levels, which are critical for
understanding crystal growth kinetics.
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properties « Excipient conc. * Main compaction pressure Rapid supply of tablets
Initial process condition « Dwell time with optimised attributes
+ Compaction pressure This makes it particularly valuable for scientific applications, where the To characterize particle size, a BlazeMetrics probe was employed to
The Microscale Tablet Manufacturing System precise underlying mathematics are unknown. measure chord length dlstrlb‘utlons (CLD) in real tlmfa The CLD data
were later analyzed to determine the volume mean diameter, y,;

Data Collection

4 o T By leveraging PySR, a high-performance symbolic regression tool in serving as a key parameter for modeling
/’\/ B szzgﬂf: optimisation to meet the target as soon as % Python, we uncover crystal growth expressions directly from crystal growth.
— <é\mv/§5 2. 's‘:;l::;;;::a;icr:isssag:rr;:;ﬁ:zexploretheowraﬁng a experimental data. This data-driven approach enhances predictive This integrated setup provided
— 3. Rapid manufacturing and storage of tablets ) accuracy while maintaining physical interpretability, offering a novel high-quality kinetic data, essential for

alternative to conventional empirical and semi-empirical
models in crystallisation process development.

for developing accurate
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they may not fully capture complex crystallisation behaviour uAnliigsn& Select
data of

time -
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offers a potential solution. By discovering explicit
mathematical expressions directly from
experimental measurements, we may begin

Self-Driven Experiments
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A Workflow for the Automation of Pharmaceutical
Salt Selection and Screening Process
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Variables selected
outside workflow

Automated Cooling Crystallisation in the
Crystallisation Screening DataFactory

Christopher Boyle*, Parandeep Sandhu, Sahil Salekar, Javier Cardona, Blair Johnston
CMAC, University of Strathclyde, Glasgow, UK. *christopher.boyle.101@strath.ac.uk

M Ot | Vatl on Small scale crystallisation
The Technobis Crystalline is
Efficient high throughput solvent screening used to perform  cooling
Leveraging robots and state of the art machine crystallisation experiments.
learning to explore solvent space for API.

Bespoke experiment control
Our custom software interfaces with our data architecture
while enabling flexible control based on state machines.

Data rich measurements
Array of 6 crystalline platforms
each with temperature control,
transmissivity probes, and on-
line imaging.

Crystallisation Classification System

Model API-solvent interactions to predict key
parameters like solubility, particle shape, oiling
out, and agglomeration.
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/ Experimental Work

Crystallise

Nvidia Jetson efficiently runs deep
learning analysis with just 50W.

Solubility

Solubility & MSZW. Clear point gives
solubility; add in cloud point and we can
estimate metastable zone width. This is
estimated by temperature cycling.

25: Carry Salt

3: Decision ‘Through CSDF to

 Chosen salt fo
Solvent Based on
formation (from Ranked List and

model) - from model)

15% Is the
Solubility of the.

14: Addition of

Dosing
| Vials are
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automated
platform:
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see his poster for more detail!
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Sample tracking
QR codes are
generated
automatically and
printed on vials.

Figure 1: Initial Workflow for an Automated Salt Selection Process

Analyse Image features &
classes are used to
predict particle

dissolution.

Image Segmentation

Training data composed of
* et images annotated to identify
particles using CVAT [1].

Table 1: Suitable Counterions and Compared Solubilities of Amantadine

Counterion  Methane Toluene Camphor
sulfonic sulfonic sulfonic Malic Acid
Solvent Acid Acid Acid

1-BuOH

Succinic Formic - q
Acid Citric Acid

Lactic Acid Acid

Yes

1-PrOH

FAIR Data
Data are stored

2-BuOH

Is dissolved?

o 2-ProH

[ 1 2 3 4 6

Time [hrs) 2-MeTHF

databases, 2,2,4-

l"- ’ in relational
s =

ready for further

Intuitive (non-ML) models predict clear/cloud
given by looking for changes in features.

Trimethylpen
tane

H . . . Acet
analysis. Machine Learning (ML) methods combine ;Z;:e --
features for greater accuracy & generalisation.
Cyclohexane
Method RMSE (°C
. 9( ) Images segmented by YOLOVS [2]. LU
. Trained model attains mAP of 66.9%. Dimethyl
147 Carbonate
.. 20.9 Measure EtOH
Optimise = :
RandomForest 11 16.7 Dosing « Crystallisation EtOAc _
NN* 48 « Images Heptane
- -  Vial filling
s CNN 9.0 %‘\ * Temperature & MeOH
RNN** 6.8 R Transmissivity MeOAc
Seq2Seq** 6.0 Methyl Ethyl

exp.
workflow

OPTUNARA

“validated on whole dataset **validated on representative subset

Kinetics o
Particle size & count are ..

Particle Size Distributions
Obtained from batches of

Ca

Experiment
Planning

Data Analysis

* Kinetic Param.

* Solubility

Ketone

Methyl
Isobutyl
Ketone
Methyl
Propyl
Ketone
Propyl
Acetate

A . £ * Bayesian
tracked over time to estimate . L ) f tati Optimisation b Crystal habit
Smart experimentation growth rate and nucleation §« o images lor a representative g —
Efficient design space exploration using rate or can be passed on to “+| -* indication of particle size D Calcuiated Caloulated
Bayesian optimisation: quickly find population balance models. B ° o and shape. Soubiity Data sgﬂlﬁfn@'igo Lowar Adzgff::'e“/'éau
J e nce . i Diameter () : L i L Formati Formati
gptlma(;_solven:hand proctetss pe;rameters Figure 2: Crystallisation Screening DataFactory (CSDF) Workflow - Uniiely ey "
epending on the current target.
Target specific growth rates, particle References & Acknowledgements " CMAC
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Data Uncertainty within the Small-Scale
Crystallisation Screening DataFactory (CSDF)

Amal Osman™2, Connor Clark"2, Christopher Boyle'-?, Martin Prostredny’2, Chantal Mustoe'-2, Murray

I Robertson™2, Michael Chrubasik®, Paul Duncan?, Blair Johnston'-?, Alastair Florence-?
1. Strathclyde Institute of Pharm: nd Biomedical Scien , University of Strathclyde, Gl w, UK
e | omy NPLE] o8 M A S
INNOVATION v VESNEIS™  National Physical Laboratory o o0uote nstivte 3. National Physical Laboratory, Glasgow, UK
Introduction - DataFactory Goals and {fiffil Methods o Current and future data
A 0 epeas
Objectives O capabilities
o [ X . A Measure Y Generation of various crystallization parameter data
Self-driving labs'o'ﬁer Resulting in Dosing * Crystallisation / including
* Increased efficiency * Accelerated research & development « Vial filling A : 'T:;ie;mre e « Solubility « Crystal morphology
« Enhanced safety . Improveq data collection ¥\ Transmissivity « Kinetics « Crystalforms
* Improved accuracy + Costsavings R An example of a dataset produced by the CSDF is
* Increased equipment + Improved environmental sustainability shown in Figure 2 . _ »
ilisation igure 2: A solubility
uti _ matrix of the top 10

+

o -

Automation Robotics Machine  Crystallisation

Classification SayBE

Database

. [ :
Learning Results B Figure 1: The crystallisation screening
Datafactory (CSDF) automated workflow

investigated APIs

started. * indicates

@ vt Experiment Data Analysis r investigated during a
{§} _ .l N Planning « Solubility - = period of three months.
I C ..t « Bayesian « Kinetic Param. Blank: experiments not
= Crystallisation Optimisation _ Crystalhabit H — that the compound did

tnucleate therefore
multiple experiments
were required to generate
triplicate data.

Why focus on data uncertainty?

Measurement Materials Method

Allows for better understanding of accuracy and precision

Results and Discussion

Three areas of uncertainties within the Crystalline were examined —
heating rates, confidence in solubility data and temperature
validation.

[[wew ] [ vt | ==
Improves
oyt Catirotion o -
| [etoimten | * Predictive power and validity of models
[, [ [_somoino + Decision making
[ coletaton | [Csworer | [T} « Transparency and trust in data
[ contommation [ [ reciin
[ suooter [ [yt Problem .
o N | “_|@ Research Aims
* Understand capabilities &
[ rempermre [t [ mser limitations of the CSDF in
[T T}/ [omiw producing reliable and consistent
(== | = E crystallisation data
atmosphere ‘movement rystalline V2

* Investigate data uncertainty
produced within the CSDF & its
propagation

* Quantify the possible overall
confidence level of the data
produced by the CSDF

Operator
knowledge

Programming/Cod
ing

[Other ¢.9. Raman]
etc

Image analysis.

Favironment Manpower Machine

Figure 3: Known sources of measurement uncertainty seen within the CSDF

Results and Discussion (continued)

Figure 6: Solubility plots demonstrating the variability of clear points for three different API/Solvent combinations based on recent lab data, CMAC existing
data and literature data ("2 . Dotted lines represent exponential fits.

Figure 6 shows how various factors could affect the accuracy of solubility data such as type of Crystalline
used, experiments carried out by different researchers and possible variation in data analysis.

A suggestion to improve the confidence in solubility data was to develop a crystalline troubleshooting
workflow. This proposed preliminary workflow was designed to recommend best next experiments based

on results during a solubility experiment as shown below in Figure 7.
Clear point
increases per cycle

possible
evaporation

Clear point
decreases per
cycle

Clear point
Inconsistent over
all cycles

First clear point is
an outlier

different particle
size compared to
Initial material

encrustation/crow
ning/solute above
the solvent line

Form change /
Solvate

D R

Figure 7: Proposed y workflow on next best based on solubility experiment outcomes. Colour codes refer to possible automation
capabilities as follows: green = automatable now, amber = could be automatable, burgundy = manual intervention required

,;% Heating Ratei

Figure 4: Solubility plots demonstrating the variability of clear points for three different
concentrations of salicylic acid in ethanol at various heating rates (0.2°C, 0.3°C, 0.4°C, 0.5°C,
0.75°C, 1°C and 1.25 °C per min). * denotes the heating rate (0.5°C) used by previous
DataFactory researchers®®

Figure 4 shows how a range of heating rates between 0.2 -
1.25°C leads to a variation in results of up to +/- 5°C. This
highlights how heating rates can influence accuracy of
experimental measurements. This trend has been reported in
Cashmore et al®. Further research is required to optimize the

heating profile to get clear points as quickly but as accurately
as possible by varying the rates within one experiment.

&Temperature Validation

External thermocouples were used to investigate the efficiency
of the crystalline’s temperature controls in various solvents
and how solvent volume has an impact on results.

Figure 5: Deviation results of temperature results recorded by the crystalline and the

thermocouple depending on solvent volume. Results were based on final temperature hold

which was 10°C below the corresponding solvent boiling point
Figure 5 shows how volume of solvent can affect the efficiency
of the crystalline’s ability to heat solvents. In most cases,
when working with 2-5mls of solvent, there is a temperature
error margin of up to +/-2°C recorded by the crystalline. This
reflects the working volumes highly recommended by
Technobis. One exception was water where an error margin
was seen to be up to +/-5°C. Further investigations will be
carried out to understand the extent of the uncertainty when
working with water as a solvent.
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storage-induced changes can

From Powder to Tablet: Predicting Moisture Sorption
and Understanding Physical Stability Changes
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potentially affecting drug release.

*+ How do the intrinsic

properties of particles
and their interactions
in bulk powder and
compacts influence
the tablets physical

stability under 1094]

storage? and to what
extent can these
effects be predicted?

1

107

Length scales (m)
L

1005

Single
particle

Drug

Powder
compact

product

Ensuring the physical stability of immediate-release tablets is crucial
to maintain their quality and performance during storage, where the
lead to altered tablet properties,

Raw Material
Characterisation

Tablets

Manufacturing

* Moisture sorption (DVS

Tablets
Characterisation

109 103 10
Time scales of stability rate processes (h)

Tablets
Performance

and modelling).
Swelling (Morphologi 4).

Direct compression.
5 placebo Formulations.
4 porosities.

Moisture Sorption.
Weight and swelling)
Porosity (modelling)
Hardness

Disintegration time
Liquid absorption and
swelling (sessile drop)

[

Dispersion of

5]

RH-controlled

powder on dishes storage jar

@1[

CCS(3%,8%)

Testing
pre- and
PoSt Mgst (1%)
storage at
e\ CC-CCS-Mgst.
atsHmg Lactose(48%)

points
MCC-CCs-Mgst-Lac

Experimental set-up and the
sequential development of tablet
sets.

Length-scale
7N

‘ Using DVS to link powder and

tablet moisture behaviour

Time-scale

Real storage

Scaling DVS data to real storage
tablet data

* DVS powder data predicts tablet moisture content at a given » Ascaling factor from DVS and real storage data enables

RH, independent of porosity with possible overestimation at
high RH. Sorption rate constant depends on porosity but not
RH, enabling tablet sorption rate estimation from powder.

A (B)os-
© NCC tablets ® NCC tablets
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uncertain.

long-term storage predictions. Scaling was unaffected by
porosity or formulation, though formulation impact remains

« Variabilities in model prediction due to averaging multiple —

tablets at each time point and differences in initial weights.

(B)

-
Reasonable use
of materials

Mass (mg)

(Hundreds of grams
to few milligrams)
— 10%

o ®
22% [@
29%

Cost reduction

Moisture-induced mass increase for MCC and MCC-CCS (8%)
tablets at different porosities. Model predictions (lines)
derived from one measurement of DVS powder data and

Effect of (A) RH and (B) porosity on moisture content and sorption rate.
(C) MCC and (D) MCC-CCS powder correlated with tablet moisture uptake.

‘ Effect of formulat

ion on storage-

induced physical instability

* Excipients and
porosity both
influenced changes
in tablet mass and
volume during
storage.

« All tablets showed a
significant reduction
in tensile strength
within the first day
of storage.

z
5
a

13

Tablot porosity (%)

The average relative change in tablets mass, volume and

MCC-CCS (3%)  MCC-CCS-MgSt _ MCC-CCS-MgSt-Lac

HL...JJ

e Time (days)

Time (days)

experimental data (points).

Time saving
(Several days or
weeks to few hours)

The addition of magnesium stearate and lactose slowed

disintegration, with a more pronounced effect attributed to

B over time.

MCC-CCS(3%)

MgSt, rather than other excipients.

MCC-CCS-MgSt

Sessile drop measurements indicated reduced wettability after
20 storage, leading to lower liquid uptake and a decreased swelling

MCC-CCS-MgSt-Lac

HA
|

Disintegration time (s)
5

-+ 10%
- 17%

22%
. 29%

tensile strength after storage at 50°C/75% RH.

AstraZeneca

CANS

Storage time (Days)

é Pﬁzer

Disintegration time of tablets before and after storage at 50°C/75% RH.

Investigating the behaviour of magnesium stearate (MgSt) after storage by analysing potential surface redistribution using Raman spectroscopy.
Extending DVS studies to improve the scaling factor model by identifying the parameters affecting it (Formulation and storage conditions variations).
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Comparative Analysis of Antisolvent Crystallisation
Screening: Determination of Solubility and Kinetic data
through Small-scale Crystallisation Experiments
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2 EPSRC Future Manufacturing Research Hub for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, United Kingdom 2
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A

— CSDF Workflow
2@‘ Introduction
: - ) ) ) Measure r\g
« Antisolvent crystallisation is one of the approaches used in pharmaceutical manufacturing to ervstatisation 3 /
* Crystallisation
enhance drug purity and yield. [1] ) + Images
« Understanding solvent-API interactions during antisolvent crystallisation is key to optimising the s * Temperature &

\ ™ '
process. By adjusting solvent composition and mixing rates, crystallisation outcomes and product | e

properties can be controlled.
. The experiments will compare temperature cycling for pre-mixed samples with isothermal
antisolvent addition, evaluating their effects on crystallisation behavior, including crystal size, -

morphology. and vield Experiment Data Analysis
: pnolegy, i yield. - o ) ) Planning « Salubility
« This study provides key solubility and kinetic data for various API-solvent-antisolvent systems + Bayesian « Kingtic Param.
using the CMAC Crystallisation Screening DataFactory (CSDF). Optimisation » Crystal habit é

3 Methodology

Sample Preparation

Time vs Temperature

Crystalline Equipment

I | on Tare 272 mg »

Approach 1 —
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Monitoring of
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crystallisation
N o I
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Time (min)
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| I Detector
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. Continuous Antisolvent Addition
API + Solvent Push block Syringe 10— Continuous Addition
= 1 Control variables
Capillary || §
R Additionrate g - o B
Approach2 Vil[| . Ny g g
° Initial and final - g2
0 o2
; 7 3 T : o volume & E ]
Time (min) - ah
Crystalline showed nucleation trends, while XRPD confirmed phase and o - =
polymorphism. Addition mode

- g

4 > k 1
A 8T LT
- o . Y 3

£)  Holding time

v b lgsd om
¥ - DI, k . g Heating/cooling rate
P P L AP
e 4 2 o
| L o 9 B N | o 2
| " - End Temperature T g
a0 3 b\" e 2 T3
§ " oy g2
& - ¢ (]
= @ E L Agitation rate g @
N =
Nucleation & growth rate from Crystalline images XRPD for crystal form -°;

Cap type

Number of cycles

@ Future Work

« Begin experimentation with the following API-solvent-antisolvent systems:
- Glycine-Water-Ethanol
- Paracetamol-Ethanol-Water
« Simultaneously study diffusive mixing in antisolvent crystallisation through microfluidic
experiments.
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1. Introduction
« Recycling the mother liquor in crystallisation operation increases the product

yield but also leads to impurity buildup.

« This study investigates the effect of different process topologies on the yield and
impurity profile in the mother liquor in crystallization of paracetamol in the
presence of two impurities (acetanilide & metacetamol) and methanol as solvent.

2. Mother Liquor Recycling (Batch Experiment)

+ A simple material balance model was prepared with to obtain the impurity profile

and yield for various recycle fractions.

“sol,in
*APLin
¥IMP,in

Min

M, = Mass of stream j

¥ij = Mass fraction of component i in stream j

sol = solvent (here methanol)
API = Paracetamol

IMP = Total impurity (metacetamol & acetanilide)

R = Recydle fraction
First

— *sol,1
Subsequent M1 ZapIA
cycles XIMP1

where,

MinxAPlin = Mrec*API rec + M1#API,1
Min¥sol,in = Mrec #sol rec * M1%sol,1
MinxIMP,in = M12IMP,1

A

; %
Tery|  Mout /

yau > MapP|
- FILTER *sol,ml
CRYSTALLISER M N
'ml *API,ml
*IMP.m|
Mrec = R-Mmi SRrRZ
\R/ > Mwaste

Mg = RMy M

Component Mass (g)
Miy Zooiin 60

My, Zapiin 30

My, Zipin = My s 1.2

My 204 24

M xpp, 4 18.05
Ty 25°C

Product mass (M, OR M)

.

12 o . ..
0] ® 3o 88 0 o0
B 8
2 6
s
4 o Predicted Yield
2 @ Actual Yield
0
o 2 4 s 8 10

Cycle Number (n)

12

* Mother liquor recycling experiment was
carried out at 0.6 recycle fraction of
mother liquor for the verification of the
model in EasyMax 100 reactor.

Mother Liguor Mass (M,,,OR M,)

® o o 0 00 0 0 0

 Predicted
© Actual

Mass (g)

.
LY

o .
0 e o
66 +

o 2 4 6 8 10 1

Cycle Number (n)

» Product yields were close to the predicted values. As no washing step was
carried out, impurities found in the product were significant.

Impurity in product (M 2,y,.)
250

200
150 .
100 | o

50

Impurity content (mg)

0+

0 2 4 6 8 10
Cycle Number (n)

40 Impurity in mother liquor(M, %yp.)

—Predicted

Total impurity (g)
5

o Actual

12 3 4 5 6 7 8 9 101
Cycle Number

« The model predicted the total impurity content would level off after 10 cycles.

« The impurity in the mother liquor lost was calculated and added to get an the
actual impurity content in the mother liquor.

« The difference between the actual and predicted values is due to the
assumption in the model that all the impurities are present in the mother liquor
and none in the product crystals themselves.

3. Mother Liquor Recycling (Rotavap Experiment)

M; = Mass of stream j

,j = Mass fraction of component i in stream j

sol = solvent (here methanol)
API = Paracetamol

IMP = Total impurity (metacetamol & acetanilide)

. M
Mrec % —Jé Toa=n

R = Recycle fraction

where,
ZAPl,in/ #sol,in = *APl rec/ ¥sol rec

“sol,in
*APLin
*IMP,in

CRYSTALLISER

Msol« T

Myaste< @

DISTILLATION
“*sol,ml

FILTER ZAPIAPI = 1

* A material balance model was prepared where the recycle stream was
concentrated back up to the initial starting concentration and a fraction of it was

recycled to the crystalliser.
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5 6
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« Experiments were carried out starting from the steady |Component Mass (g)
state impurity concentration. A rotary evaporator was M %solin 60
used to concentrate the mother liquor back up to the |M;, zapiin 30
starting concentration and recycle a fraction of it back [M,, xe;, 15
to the crystalliser. T, 10°C

Impurity in mother iquor (M, e

A mother liquor recycling approach to recover API
and solvent in cooling crystallisation

[Of 8 R B
yusuf.khan@strath.ac.uk
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350 .
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« The impurity profile does not build-up since we
started from steady state impurity profile for 0.6
recycle fraction.

« The distillate collected is pure solvent and can
be reused as a wash solvent.

20 . . .
z 0 . M
S 140
2
E 70
0
0 1 2 3 4 5 6

Product number

« The impurity found in product is significant as

7 we did not carry out a washing step.

4. Mother Liquor Recycling (Genevac Experiment)

« Experiments were carried out using
a genevac evaporator. The recycle
operation consists of 3 steps:-

1. in which the mother liquor was

concentrated further to crystallise

Fresh Starting
feed material
(Shin)  (SMO)

& @ 0 10°c
1 RO >Product (P)
N >® >

Mother Liguor (F)

COOLING CRYSTALLISATION AND
FILTRATION

Crystalliser Filter

API, stopping just before impurities
crystallise, SIZ:{‘I’Q(

2. the mother liquor was decanted off vaguum EVAPORATIVE
as waste and the cake was CRYSTALLISATION
washed, “<®-

3. the recovered APl was recycled Sovend  Geneval- Vessel
back by dissolving it using the Y o
recovered solvent. retained

 The fresh feed from cycle 2 was Genevac recovered 2074t

added such that the input to the solvent @ DECANTING &
crystalliser matches the initial APl |Recycle ey HATHMG
and solvent amount. Qecanting

* Impurity amount in fresh feed was ¥ > Waste

kept the same for it to build-up.

« In this topology, API can be lost as MeoH wesh—t@—

waste through stream 7 & 11. Loss SIOLUTION
of API can be further reduced by . ,®)’!““‘"9 & + Waste
using a cold wash and by decanting —
the liquid off at higher temperature. it &
API Concentration - API Concentration -
400 Stream 11 (Wash Liquor) 1200 Stream 7 (Decant waste)
% z;g ° L N ge.z 1000 °
< 20 ° £ w0 e o °
3 200 o ° g 60 °
§ 150 % 400 ° °
£ 100 g
(SR S 200
0 0
0 2 4 6 8 0 1 2 3 4 5 6 7 8

Cycle Number

Cycle Number

« Since the decanting was done manually and the time between evaporation and decanting
operation was not always the same, the API concentration in decanted waste is not

consistent.

* The impurity in the mother liquor does not build-up despite feeding the same amount in
each cycle. The product obtained is more pure than the previous experiments.
« With further optimizations in the decanting and washing operations, higher yield and purity

can be achieved in this topology.

Impurity Concentration -

Product Purity (by mass)

1
Stream 4 (Mother Liquor) L. e §
12
s 1 . 0995
E s 8 A | z e e
< < 099
2 6 &
£ o
s 4 o © Run - A Metacetamol 0.985
g @ Run - A Acetanilide
) 2
3
0+ 098 + T T T "
o 1 2 3 4 5 6 7 8 0 2 4 6 8

Cycle Number

Cycle number

4. Conclusion & Future Work

« Mother liquor recycle reduces the solvent waste and increase the yield in APl manufacturing.
« Future work will include extending the models to include impurity incorporation during crystal

growth.

« The use of other equipment such as membranes for recycle stream concentration and solvent

recovery will be investigated.

References: QR on top.
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Multi-Route Data Factory for Amorphous Solid Dispersion:
From Amorphous Solid Dispersions to Oral Solid Dosage Forms
Abdelazeez Mohamednour 1 ,Ecaterina Bordos1, Daniel Markl1, John Robertson1,

Future Manufacturing Hub for Continuous Manufacturing and Advance
Crystallisation, Technology and Innovation Centre,

Motivation Simulating Nucleation = Seeding Method University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
- ) ' Nucleation is difficult to observe experimentally AL » Acrystal seed is simulated in solution at
> Nucleation is vital for many industrial  due to the time and physical scale of the b different supersaturations
processes. process. Computational simulation, can provide 4 ) )
insight into the initial formation and dynamics of  The critical temperature is determined ending | ravmetic | ot el cooling | milling ownstrean _
> The majority of crystallisation takes the nuclei. 240K 260K  within the range where at its lowest, . ]
place via heterogenous nucleation, there is melting and its highest, there is ﬁ - . .
where the nucleus forms at an Nevertheless, due to the rare nature of still growth of the seed* To transform Amorphous Solid Solubility Enhancement: Oral solid dosage
i . N . . . : : . # forms produced from ASDs are expected to exhibit
interface. nucleation, direct simulations of nucleation o000 Dispersions(ASDs) produced via Hot Melt ————— Y [ significant solubility improvements compared to
becomes unfeasible on account of long - - 0K e B Proe Extrusion (HME) to Oral Solid Dosage Bxruder liesy {’c‘q ' their crystalline counterparts due to the
a a a . B i . A\
> This can be undesirable, causing computation time. _%E  nentregue, Forms(OSDFs). By the following methods: i il w, s amorphous nature of the APl and the inclusion of
fouling in vessels, or in other cases 4000 Co S 4 —AF* - to Convert ASDs into tablets through Direct h hilic pol H h ific i
nucleants are added to induce TeEEs], CRlEnREae i thod N J = pftZexp (——) . . s G ydrophilic polymers. However, the specific impact
! ) nstead, enhanced sampling metnoas e.qg. e 1 kpT Compression. . of the OSDF manufacturing route is yet to be
nucleation or produce a desired metadynamics® are used. Though rigorous, \\\ Tore™ - to Encapsulate ASD powders or granules = determined.
polymorph. they are computationally expensive. A_seeding 2o 1 [ —AF* 3 into Capsule. Dissolution of 3DP tablet (Ellipse 18x10,5F2.4, Infll 44%)
© Aareater understanding of method was developed as an alzternatlve, less o ] > v 3T - to Develop ASD-based 3D-printed tablets 200mg dose i PO4 buffer pHS.5
g gof expensive, approximate method?. b = for personalized drug delivery and controlled w00
heterogeneous nucleation will release A
provide valuable insight into how to There are few examples of heterogeneous . ' o : - B prins
better enhance or inhibit nucleation. nucleation simulations, particularly from + The reliability of the seeding method is limited by how the Down stream processing 3 SOPCM-42.5PVA
[ution® phase of each particle is determined. ] 7-5Sorbitol ELL 44%
solution®. ’ = ——S50PCM-Affinisol ELL 44%
(a) Hand cut and premilled (HCF) 2 E
. [ V4 (& .'-.‘: A “ H ——50PCM-4SPVA-55 CYL
Interfacial Concentration Enhancement Effect Physical Stability of ASDs. e L4
T I Ny — The figures below show the density profiles from the simulation of glycine at a solution-air and - Risk of crystallization or phase separation. REE | perser @ming / 0 S0 100 150 200 250 300 350

time (mins)

solution-oil interface, carried out by McKechnie®. Process optimization & Selecting the Right
Route.

—&f

R

experimentally where a hydrophobic surface is present.

. . . . . O, N .
. ) . . It was found that there was an |pcrea_sed_ conceptratlon of glycine at the tridecane interface. Performance of the Final Dosage Form. Ny —— .4-.|mpact of form.u|a't|0n and length scale (100%
When a PTFE?®, or tridecane® surface was introduced, This was thought to be due to dispersion interactions. 'S infill versus 44% infil from 3DP dose forms
- - ) - compare the performance of the produced a I~ )
glycine nuclei were found to preferentially m - 5o oS T e tablets. capsules of the 3D printed tablets a 2N
form at the interface rather than in the ) -é g ! ] 9' effects, the next stage is to , cap p . ] A direct head-to-head comparison between 3D
bulk solution. 0% PTFE @ _g 08 . " %Wt 4 o084 % " investiéate the crystal phase 1- Proposed manufacturing routes for the printed tablets, capsules and direct compression
. . Stlrrerf 32 o6  Tisecane % ater 1.1 :% Water 1 by: HME extrudate. tablets will be performed to assess release
;r:smv;z::r:;rlle;setlzteq, d_ue to tl?e hﬁldéopht:)_rlc na}ure Io o E 2 % | _’% « Planting a crystal seed in Production of ASDs via Hot Melt Extrusio (A) Tableting: profile and immediate release compliance.
, as glycine is a polar, hydrophilic molecule. = @ %, ] ,% J1 104 _.% ] / ) ) ) ) .
Similar effects have also been observed experimentally — 3 i | % the bulk solution. API and polymer blends will be processed Direct compression of the milled The impact of the OSDF manufacturing route on
for urea. 02 - / - 02 - :% ) + Planting a seed on a through a HME system to produce stable extrudate to forms tablets. the ability to sustain the API in the amorphous
i~ 7 Cveine ] 4 Clycine surface. amorphous extrudates (B) Capsule Filling: form and inhibit its crystallisation during
To investigate the cause of this effect, the interaction A 5 J A X o * Comparing stability. . dissolution will be assessed.
between glycine solution with air, and an oil interface z (am) 2 (am) -Why HME? Pelletized granules are encapsulated . . -
imulated . The addition of additional excipients, such as
were simulated. -Solvent free. under controlled conditions to ensure - . )
niform dosing and ontimized surfactants and disintegrants, will be considered
Urea Model Future Work - Molecular Uniformity :elease g pHmiz to enhance dissolution rates by improving
o i ) . ) ) o - solubility and bioavailability enhancement. ' wetting and  disintegration in  aqueous
Specialised modelling software is continuously improving, and migrating to new software can be (C) 3D Printing: environments
challenging. Previous urea simulations” were carried out in LAMMPS, which although versatile, Urea Seed Solubility Study

simulation time can be long, making it necessary to transfer to a more efficient software.
One Urea Molecule

By linking HME with 3D Printer

DESIGN

: Characterization of Feedstocks
HOT-MELT EXTRUSION PROCESS m
T E Change in downstream equipment after the
A fog) - AL Y

|

&
i&

dosage forms (OSDFs) to ensure their suitability | 5-Photograph (top) and SEM micrograph

Energy (kJ/mol)  LAMMPS GROMACS % 3
" Bond 302.99 302.99 3 extruder barrel results in differently shaped and
Angle 0.10 0.10 n sized feedstock materials for milling
VFI E' The i_nitial energy values from :::::::’r::r 32'32 32'32 g Test Seed ;
\ the S|mulat|on_ of one urea Lennard J -0'60 -0'60 O  stability Determine Shape + - , -
molecule are in excellent ennard Jones : : © Size 3
agreement between software Coulomb) R95] RIE201 = boshBE rrom
: 2 v« DY l)) ouTPUT AS DESIGNED 30 PRINTING
Solution Properties c A S, - )
— A ) €—— 2P i 2 S — e L
Density Radial Distribution Function ~3;35)J 8 ot § JJ:‘J) 2-Schematic of a combined Hot-Melt Extrusion (HME) (A3 A po
-8 b and FDM 3D printing into a single continuous process ‘ ‘, B
1 — ) = o e ‘ e
w308 | f | | ’ | 0l 1 I 10 ) ’
"““_I' H\M lm\ “IV' 'v l']" l\" m ,“:'M,’,I\ : . () Introduce a - —
8 Surface « characterization and testing different oral solid e ©
‘€
>
n

£ 1000 gy | ’ | The RDF shows the — 3 . L R .
'\‘Mln ‘.h ‘, w 'llh",\ H | |.Lr “f H’“m fluid structure is well e 005 for pharmaceutical applications. (bottom) of different feedstocks for milling. From
i 1 N ™ Y . R I
B ’ l 1. |l ! || '| ] 02 replicated between A > s + Solid-State Characterization. left to right: HCF,PE, CRF.
980 { software. L / e
& ——
) 1000 2000 3000 4000 5000 6000 7000 8000 0 2 4 6 8 10 o C S d
Time (ps) r(A) ompare sSee P i
Sp o 3-Filament free Hot Melt Extrusion 3D
Average (kg/m?) L: 1008.95 + 0.088, G: 1008.94 + 0.162 tability printer
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Automated Scale-Up Crystallisation DataFactory for
Model-Based Pharmaceutical Process Development:
A Bayesian Case Study
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Liquid
absorption

70% of all pharmaceutical small molecule candidates fall into BCS class Il due to
poor aqueous solubility. Amorphous Solid Dispersions (ASDs) are a drug delivery
system for enhancing the of such poorly water-soluble drugs 1]

Our paper

al
Transition

Motivation
. ] A Understanding the mechanisms that influence ASD dissolution is key to drug
product performance evaluation. Predictive tools based on these mechanisms oo
| ntrOd u Ctl on J H a rd ware will enable quality by digital design and right first-time manufacturing “ Frosen ictive ASD
o
J R ]
oo o
The pharmaceutical industry is x Dissolution
o ut . .
h!! challenged by rising costs and inflexible E Autosampler unit The objective of this work is to utilize OCT and UV-vis spectroscopy to monitor L 7
. i B ASD dissolution to analyse structural changes that occur during this process and _remperamve of
global supply chains whilst needing fast LabOS™ relate these to dissolution performance. v e
. esting
delivery of new drugs to market. control PC ‘\“ ?m WP2
i N man
The complexities of crystallisation pose -1 HPLC 7
LT . I
@b a problem to automation in handling B Methods Precpitation
cee s - . = Optical Coherence Tomography (OCT) is a contact free, non destructlve imaging —
differing compositions, mixing behaviours technique based on low- terferometry (2], U o0
and phySiCal propenies determine concentration using Beer's law as it relates to UV absorbance.
T Model-based design of experiment Bhllla"ze Probe
2 . . - icrosco
& &y integrates mathematical models to optimise ( PY)
experimental planning.
@ Scale-up data is critical for translating Ping Optical Coherence Tomography Data
laboratory results to industrial applications. e o
v PP Transf t . B (0T allows the collection of high- ) i )
ransfer system . ] lk g
, a Sample ) quality images that penetrate beneath during dissolution
" sample. These scans the surface of an object. Images show
| ). glile, S the structural changes through a cross- Solution
E LA b) Side 6-vessel view ) Crys! Vessel d) Other Vessels Optical ";\mbezvealed section of the sample. These images
- Window e reveal numerous unresolved structures
] Custom - designed 2D Scan 3D Scan and structural changes during Ellaey
C a S e St U d y Flow Cell dissolution that require elucidation.
J e However,_clearly defined absorption T Glass
sEn o g T OCT and swelling layers allow for the
ol =] monitoring of these processes using
NH, ~ iy L [ OCT. Sub layers that appear to form
2 within the gel layer of the extrudate Possible Crystalline or
j\ | R Wo rkﬂ ow _ = could provide evidence of Ao
o N/ox{ ° g | L a unconventional dissolution "
\—S AT J Pe;lf:gic :ﬁg&%«;&}:; | mechanisms. )R )
Nz o banphsia
changes
) i — pH 5.0 NaAce W F> dissolution changes
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. . 3 e a) Automated =
Defined bounds for each variable: Objective ] . h
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o
ooling rate (0.1 to 0.5 “C/min) Sharcispacs oo oL Enios wore Erosion of sample surface material s
SS (1 2to1 _5) F = 2 observed with monitored using a trained YOLO single .
c) Experiment design 1) Experiment Number OCT during convolutional neural network image
Seed mass (1 to 5%) ! 12501 B[ESCllition to segmentation model, which identifies and 5w
- . d. d structural delineates sample areas in OCT images. <
Sampling Method: - a‘acg:’::nsfr';‘?on o s This enables precise tracking of the fo
. : : : liquid X sample area. Given the extrudate’'s large H
Five-point Latin hypercube sampling (LHS) y t‘enfvtpjrahtur:: gulll“formmgaf;; aepact ratio) St ARSI i,
) particle size e and swelling, nearly constant, allowing area to serve as £
. T . . 1 a proxy for volume and, via density, mass. b
Bayesian optimisation: Gaussian process model o i Future modeling will fit erosion rates to
: ' 4 dissolution rat balat
with expected improvement acquisition type. o framee R
20%DL

X0 = Dy(Yield) + Dx(Ryrowen) + Dx (R puun) = DxRuuc) + Dx(R3,,,.)

T j X
iy : i
s /
Experimental p]an* | ]
2 2 d) Reaction procedure (LabOS) j - u
Improvements: = 7—_LT Raw e
7% improvement over the best LHS result seed slurry
46% improvement over the LHS average FocinG ats

107% improvement over the worst LHS result

Ritonavir - Soluplus, 10% - Drug Loadlng Ritonavir - Soluplus, 20% - Drug Loading

,{Future Work}

A Python notebook capable of initalising a design space, constructing data-driven and
mechanistic models, predicting next optimal experiments and discriminating between models.

,.[ Papers of Interest

1. Automated self-optimization of continuous crystallization
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) extrudate occurs over amuch longer period. blocking transmission. seen dissolving at the right side of the image,
of Experiments. (2024). LAPSE:2024.1542 even while the surface layer remains attached!
05 oo
P . 3. Self-Driving Laboratories for Chemistry and Materials i o PoCT
. . g ia 03 g load Increases, the rate of clissolution
Initialising the design space K 9 i i Y s o o s0898 Clcroanes in ganarall Foweteriitis Re TR Pl
Science, Chemical Reviews 2024 124 (16), 9633-9732 3 EXEE drug loadings up to 14% by increased oo
3 o030 concentrations due to higher drug loading.
N . . . .. . © 9 g He ver, above this threshold di luti

00 ewaoll e i 4. Comparative Study on Adaptive Bayesian Optimization " L8 s inareatingty Inhibted. Oneet of disselitionlin

T p£5p 8 ) o - 85 oo i1l system above tis reshou is delayed by

e Check out our for Batch Cooling Crystallization for Slow and Fast Kinetic . . . an e g, i o 20% 33

o el > . e loxing tking Upuards of an o 1 o

3 00 9. This delayed dissolution appears to

Paran_Discrete("Antisolvent Fiow Rate 610 showcase Regimes, Cryst. Growth Des. 2024, 24, 3, 12451253 dgssco lsalving, This delayed dissoluton SpEatt
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Conclusion

Optical Coherence Tomography (OCT) identifies the key mechanisms of ASD

n Ok
A AstraZeneca
: UNI\’?RSITY a Sandoz company CCDC m

Amorphous

dissolution as the exposure of a bulk gel layer to the medium. The formation of a
robust surface layer upon contact with medium appears to inhibit dissolution.

AstraZeneca
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Introduction

Crystallisation Screening DataFactory ~

‘Pi MediFor

Industry 5.0 Medicines
Manufacturing Research Hub

Martin Prostredny, Christopher Boyle, Murray Robertson, Sahil Salekar, Parandeep Sandhu,
Amal Osman, Connor Clark, Farha Kamaal, Fraser Paterson, Cameron Brown, Javier Cardona,
Blair Johnston, Jan Sefcik, John Robertson, Helen Feilden, Alastair Florence

CMAC, University of Strathclyde, Glasgow, UK

Embedded in Platform 1 of the EPSRC MediForge Hub, this cyber-physical system provides a material-sparing, self-optimised,
high-throughput sustainable process enabling data integration with models as part of the crystallisation classification system
(CCS) model toolbox. Aligned with the industrially relevant RAMI 4.0 framework, the architecture will enable up to 36,000
experiments annually through an autonomous workflow for solvent selection and model-driven experimental design.

This is aligned with Industry 5.0 through:
+ Sustainability — 60% material usage reduction target with impact on energy use and waste generation

* Resilience - FAIR data management and robust cybersecurity of data fabric, transferable and scalable technology adaption
* Human-centricity — up to 90% reduction of repetitive tasks freeing researchers for creative tasks, intelligent decision support

\P4. Adapt

Morphology

Amorphous

Solvate
formation

Iotematonat fourat of Pharmacestics.
035,669, 25018

Agglomeration

|
*t’/ Solubility

Crystallisability

Flow function

CSDF vial journey and capabilities

=

Vial labelling
Automated QR-code vial
labelling using a Leibinger
IQJET printer

Vial dosing

Automated dosing of solids
and liquids into the vials using
Chemspeed FLEX
POWDERDOSE

£ cMaC PR
".""O R

EEaraEa
2]

Lo = )aley

o

Crystallisation experiments

Autonomous operation of six Crystalline instruments,
including 48 independent reactors, is achieved using a
bespoke, in-house-built software solution, enabling
experiment queuing, ensuring FAIR data generation, and
direct integration with the CMAC data fabric

& CWAC

/ Post-experiment\ 4
vial imaging

Identification of fouling,
encrustation, crowning,

I Object

Online image analysis

droplets), particle size and shape data

Automated detection of cloud & clear points, multi-label
classification (crystal shape, agglomeration, bubbles,

Rapid online analysis of solid form using Raman spectroscopy
directly after crystallisation experiments prior to isolation using a
Tornado HyperFlux PRO Raman with Hudson So4 probe head

Filtration to obtain
powder for subsequent
analysis (e.g. X-Ray)

et

High-throughput X-Ray
diffraction analysis of

Bruker D8 ENDEAVOR

solid form using the : ‘:)“"“‘ il

and other effects after Prosent 0 c
crystallization experiments

N i?
N Xty P

5 4 HE Vet e

! 1 Unidentiied e i, T

\_ 2NN
. /e . . . .
Raman spectroscopy analysis Sample isolation X-Ray diffraction
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during storage or after ingestion

« Amorphous solid dispersions (ASD) offer a viable
approach to enhance the physical stability of an
amorphous system since they may restrict
molecular mobility and reduce the
thermodynamic driving force for
crystallisation for an API.

« This project leverages automation to
create a large stability database,
improving predictive tools for material
-sparing ASD stability assessment.

Well classes

Empty Bulk
N N
A
Stable L L Limi

« Sample stability distinguished using classifiers above

« Image analysis model has been trained using 8000
annotated images

« Each well is imaged every 2 hours to capture:

| K 0.2 RORBUIK 0o Bulk 0.0 TITMK:L:H TE 0871
., « | &3 & *
lobel O Surface 0 91face 0.9

e 0.91 0.88.0.871

fice 0.91.0,881
ol )
“Surface 0,901
I SurfoSurface 0,00 0901

]
¥hSurface 0.91.0,911

« Amorphous active pharmaceutical ingredients (API) may offer improved
pharmacokinetic performance over poorly soluble crystalline API.

« However, they may exhibit poor chemical and physical stability through a higher free
energy state. This may lead to subsequent crystallisation

D

Dispense

~

To characterise ASD stability,
polarised light imaging is
used to detect birefringence
within individual samples.
Samples autonomously
monitored to report the onset
of crystallisation and monitor
subsequent growth rates in-

situ. D
Well mAP50
classes | (Accuracy)

Empty well|  0.956
Surface 0.833
Bulk 0.872
Dust 0.925

Validation of model using a
pre-split dataset following
80:20

Automated Manual sample e

transfer J s,

%, sample prep ¢ \

analysis and reporting W

samples for stability testing

report this as a csv to a database

Successfully implemented an automated workflow to prepare over 15000 ASD
» Image analysis can detect the onset of crystallisation for ASDs and subsequently
Continue implementing workflow to obtain stability data for over 50 API

Generation of a machine learning model from experimental results to predict the
stability of ASDs and extract governing factors in amorphous stability

)

[1] — Taresco et al, Rapid Nanogram Scale Screening Method of Microarrays to Evaluate Drug-Polymer
Blends Using High-Throughput Printing Technology, Mol Pharm, 14, 2079-2087 (2017)

[2] — Eerdenbrugh et al, Small scale screening to determine the ability of different polymers to inhibit drug
crystallization upon rapid solvent evaporation, Mol Pharm, 7, 1328-1337, (2010)

of Amorphous P
\_Strathclyde and CMAC Tier 1 membership

This work was supported by the Engineering and Physical Science Research Council as part of Digital Design and
i DDMAP (Grant Ref: EP/W003295/1), EPSRC DTP REA scheme, University of

_
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Universityof &> =

Engineering and
Physical Sciences
Research Council

Glasgow

Strathclyde GHENT
UNIVERSITY

&

AstraZeneca

* Build an end-to-end automated workflow which enables a high throughput

Automation of amorphous solid
dispersions physical stability
prediction

A

\

\ DDA

T\" Digital Design and Manufacture
N of Amorphous Pharmaceuticals

Lewis Ross, Michael Devlin, John Robertson Alastair Florence
CMAC & Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS)

screening of ASD stability

-

Storage

Continuous
image
analysis

Continuous image analysis and
ASD stability reporting

« Autonomous high throughput screening
) workflow utilising an automated dosage platform

J;L ° Image analysis to autonomously

50

capture and report sample stability

* Machine learning model
for prediction of ASD
stability

+ Automated workflow: higher
throughput and 24/7 operation

+ FAIR database principles enhance
data integrity

+ Consistency and traceable samples
throughput entire workflow

« Ensures reproducibility

+ Limits human error and exposure to
hazardous chemicals or repetitive
manual tasks

Polymer + API solutions prepared

- 1

= - T = T -
| I 1 1 | 1 "
| | ] | 1 1 using DMSO
I ! 1 | 1 |
: : : i : ! : Samples dosed onto a 96-well plate
| 40°CI75 % RH | | 30°C/30% RH | | 90°CI0%RH |
Storage time: Storage time: Storage time: i
L 3 monthe : :_ 3 monthe. : :. e the : Only 60 pg of material used

Per oven there are:
+ 12 API mixed with 5 polymers at 8 DL's

52 samples per oven (we have 3 oven conditions)

* 50APIs at 3 varied stability conditions

+ 12,300 samples

+ Imaged once every 2 hours = millions of data points...
Currently running three full ovens:

= 3456 samples continuously monitored

= 41472 data points per day

When samples remain amorphous,
there is no effect on the polarised

light since the material is isotropic.
This is a stable amorphous system

Once a sample crystallises, it is
anisotropic and causes the
polarised light to ‘spiit, enabling us
o visibly see light through the

sample /

StableASDdrugIoading:‘ o [ i

5 [« [ = [ o[ » =]l

Polymer

Pure API|Soluplus| PVP K30

Plasdone | Affinisol
5-630 15LV

API

40 °C/ 75 %RH
30 °C/ 30 %RH
40 °C/ 0 %RH
40 °C/ 75 %RH
30 °C/ 30 %RH
40 °C/ 0 %RH
40 °C/ 75 %RH
30 °C/ 30 %RH
40 °C/ 0 %RH
40 °C/ 75 %RH
30 °C/ 30 %RH
40 °C/ 0 %RH
40 °C/ 75 %RH
30 °C/ 30 %RH
40 °C/ 0 %RH

Carbamazepine

Naproxen

Hydrochlorothiazide

Griseofulvin

Felbinac

Paracetamol

Celecoxib

Felodipine

Ritonavir

Indomethacin

Industry compound

Piroxicam

Phenacetin

Flufenamicacid

Mefenamic acid

Flurbiprofen

Ketoconazole

Spirolactone
Loratidine

Probenecid

Nifedipine

Glibenclamide

N

Glipizide
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A Digital Formulator and Self-Driving Tableting DataFactory:
Hybrid Modelling and Process Optimisation

Mohammad Salehian’, Faisal Abbas’, Jonathan Goldie’, Jonathan Moores’, Daniel Markl
“Centre for Continuous Manufacturing and Advanced Crystallisation, University of Strathclyde, Glasgow, UK

Rapid Formulation Development and Process Optimisation Rapid Manufacturing

Problem Statement New Drug : Digital F ! Experimental
. . . Candidate J Agents
We aim to rapidly develop the formulation
and process parameters of a new drug - ; Hybri dels. Empirical models
candidate with new Active Pharmaceutical
i i i . Physics-informed
Ingredle.nt (API). using the raw material | Baybeian optimisdion
properties, predictive models, and process
P . - . . Optimised formulation Process refinement and
optimisation algorithms coupled with the : : + Excipient selection validation
automated tab|eting DataFactory - Excipient concentration + Main compaction pressure Rapid supply of tablets
) Initial process condition + Pre compaction pressure with optimised attributes
+ Main compaction pressure + Dwell time

Digital Formulator and In-Silico Formulation Optimisation Self-Driving Tableting DataFactory
Identify optimal formulation that maximise flowability while meeting porosity A self-optimising tableting and testing system driven by physics-informed or multi-
and tensile strength targets output Bayesian optimisation engines

Material-to-Product Hybrid System of Models S ExPerlmental Agents (Process Optimisers)

-

Multi-output Bayesnan Optimisation

N
C:

Process conditions {g}
+ Compaction pressure

Hypemube Sampling

Physics-based models
Data-driven Bayesian Optimisation

Multi-Label Classification of : .
Crystallisation Outcomes for the '

. . . Strathclyde
Crystallisation Screening DataFactory fiifl Glasgow

Parandeep Sandhu'?,Christopher Boyle!?,Christos Tachtatzis? and Javier Cardona'2*

1EPSRC Future Manufacturing Research Hub for Contil ing and Ads d Cr isation (CMAC), UK. ? i of Pharmacy & Bit i i (SIPBS), University of UK.
2 Department of Electronic and Electrical i Uni ity of hclyds UK. 4Department of Chemical and Process i ing, Uni ity of hclyd UK.
{Crystallisation Screening DataFactory [ Technobis Crystalline V2

- L Measure
0 The Technobis Crystalline has the following features:
e Crystallisation
D051ng « Images Transmissivity: Measures light transmission to detect
crystallisation by identifying light interruptions. 100% when
¢ Temperature & the solution is clear; decreases as crystals form.

« Vial fillin,
¢ ‘//“\ Transmissivity

Camera Imaging: Captures real-time images frequently
from which crystallisation outcomes can be observed.

Experiment =t
Planning .Data Analysis Ei

¢+ Solubil
* Bayesian ! olubility
Optimisation b;

g
Detector

* Kinetic Param.

Q
-
~ 5
{é} Blend attribut rotc:lelss . o e - Multi-Output Gaussian Process o e Crystal habit
{O} « Particle size distribution models Objectives Decision Parameters -
Mixture * Particle shape distribution Decision Parameters - Min Elastc Recovery B0 - Main Compression Prossure o]
> models |4 g:::g Tablet attributes g GlCouR et e  Torge Tongts Srangth - DwerTine o 3 - Cooling Crystallisation in Crystalline
. * Porosity
: Eﬁi;:;"sw « Tensile Strength g- e 1100 v‘s
N
~ 60 a o
Active 80 2 ]
CSD-Particle informatics Pre-Compaction Post Compaction g Pharmaceutical < |
* Mechanical and chemical Formulation o o N ingredient: 2 5
properties of crystalline particles: « API Concentration Dosing and Jan 5 - \ Nicotinamide 60 S
« Particle shape « CSD particle properties blending ; _&gLJAutt?matet‘i hardness, < 2 40| Solvent: 2 s
« Surface analyses station P ﬂ welgmt‘e‘i‘t’i’r‘-eg"smns g. g Methyl ethyl Ketone lao E 1
@
In-Silico Optimisation ! 8 § 20 20 §
! 2 ° 20 §
- ! = )
" {é} + Maximum Flowability | J
s Optimisation algorith MLLLEC LU | s / Y&%\/ 1 . 0 Metastabl (Cloud Point)
aafll © Excipient selection ptimisation algorithm h — . . ) - - - . . etastable zone (Cloud Poin
« Excipient conc. <™ Genetic Algorithm (Global search) < S ! \ﬁﬁ , | Aur— $ Solubility (Clear Point) 0 i 2 3 4 5 Kinetics
. i | Robotic arm v = N
Compaction pressure + Porosity > 15% ! Weighing Micro NIR sessile drop - Time (hours) Crystallisation Outcomes
« Tensile Strength > 2 MPa | balance s;orage Bm measurements [7))
_ Y, oxes [ .
Methodology |
H . - - - -
Key Innovations and Developments: @Physics-informed Data-Driven Modelling S ———— N
8 g data is systematically divided for training and validation
° Material-to-Product Modellin [[ Taerty saeh Ficompeeion e s J] Physics-guided data balancing ] W purposes.
-to- formulation H Pt H : <
using blend s emgicalmodels porameters T .
g g blend ID: pica modet ot using empirical models : By employing K-fold cr we can determine the
Hybrid (data-driven and mechanistic) system of mixture and process models to iy 3 optimal thresholds for each label, enabling the model to achieve
i i i isati . Orignatdata —] Remove Trainftest 5
redict blend and tablet properties from raw material characterisation data - 2 the best p metrics for
‘. - outliers split
X b1 " J Our model classifies images based on the confidence score for
i TestAPls greyei: | \ | E'é’:‘i"::d each label.
‘1 - y
fo P J a
8 & VO ot H snecrod ‘}—[ e ] [ ik ]<—[ Train APl ]<— — < When a label's confidence score exceeds a predefined
£ H . . ] a , the image is that label, allowing it to have
§ S . = . T l 2 multiple classifications.
fx £ H - £
H g Sove empirical Fcompaction Tdentiy cach S
X Bulk density L |z [ ] H G H {omudation ] 8
' — ey " e T et e s ook by e Tapped denciy G - E e o
750 () 5 Input Image  moid Label Model
,5%.:), ﬁ@' - " Physics-Informed Neural Networks (PINNs) with customised £ - Ao T'"e""'d Outputs
" architecture and loss function with empirical compaction models. Ve . Unidentified | il ({S] - Objact
‘Raw material + Formuation ‘Blond propertos e IS o Agglomerated g Too floating o Present
-—— A s . = : corcenivios I e 000, 27~
owrs peozzeesttoonmentroi i) 3 - N -
o0 » It 3 * - oawas e R It
| g g H . . Shape: (1) Shape: ) hope: (2) esults
Zoa g . ® e 5 - -
g / o .8 > s s Crystallisation Outcomes - - E'g”gfzteld
£ & - o Dropout 05) Oropout 05) N 100 rystal
::: ::‘ R ~ Clear point Cloud point - ’
P e :i::“::::”‘.‘:‘,‘“‘ ool | - - . Covonet e 560 (Transmissivity) 80 8 e
. I R S S TTh ® = BatehNom BatenNom < b "
Aspect Ratio () ° % G lameter um) FFC ()True FFC (-)True Drocoit05) Do) o Clear point I 0 z ..
Bense®) 540 (Image 3 -~ .
. . . . . = E - Classifier) 8
© Physics-Informed Bayesian (Process) Optimisation ] 5 i 0
£, £
. . o < 20 © . e
Up to 60% save in experimental load by = | 1 E Labels Precision Recall F1-Score
incorporating physics-based empirical models I 1 0 Object Present 99% 98% 98%
into Bayesian process optimisation. ~ uFo Block Crystal 0% 84% 87% i
Too concentrated . Multi-Label
Dexamethasone Va||dat|°n Case: " Droplets 2 Needle Crystal 98% 99% 98% Classifier Metrics
z H Bubbles Yes 3 o, o o
tEemm | [ =y g, ot 3 Plate Crystal %%  98%  98% |. wosel
- b H H Elongated crystal & Elongated Crystal 95% 94% 95% assessed using
Loml . 3 i, Platelet crystal No g ~25,000 images
il ) i 3 Needle-tike crystal i Agglomerated 97% 96% 97% not used in
) . E, Block cystal ' Bubbles 92%  85%  88% training
Object present
‘ Time [hrs] Droplets 99% 99% 99%
o » &> » b 1 2 3 . s . 1 2 H L $ . o 0.05 010 015 020 025 030 4 ime rs:
oo ) s et et eosured porosty () “Weasured Tensile Srength (WPa) : Too Concentrated 95% 96% 95%
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Innovative Approaches to Near-InfraRed Partial Least Squares Calibration:
1) Microscale Blending DataFactory and 2) Digital NIR Spectroscopy

ATsioutsios* 12, F.Abbas??, J.Goldie!, M.Salehian2 ,B.Johnston'2, D. Markl2
Centre for C ing and Ad dCr (CMAC) ), Uni ity of hclyd:
2Strathclyde Institute of Pharmacy and Bi dical (SIPBS), L ity of Strathclyde
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Keywords Challenges in NIR PLS
calibration

Innovation e 1.
Workload
Iil Intensive blend prep, NIR,

’ Sustainability and HPLC tasks 2.  Train Random Forest ML to predict Blend NIR

e Material Usage spectra from Raw Material NIR spectra, providing a
@ Efficiency

%2 High material demand for robust alternative to PLS model calibration.
Automated Robotic-Assisted Microscale Blending coupled with NIRS

Aims

Develop PLS models for API conc. prediction using  FsY«illd
a robotic microscale blending process coupled with NIRS
for sustainable calibration.

selpn)s ainjesadwa)

a|qeLeA 1o} 1eysoAio yym paddinba yjog

ﬁ e Automation

Aiaisuas 1saybiy sepinoid

uonesiajoeieyd soiedoueN o
- (SOWD 11l uojoyd) Joyoelep ABojouyos) seje] «

Ajjigels 0y ainyonuis snoydiowe uj sabueyo ajeloy
AydeibojjeysAio ainssaid ybiH

ainjonu)s snoydiowe Jo sishjeuy .
indybnouy) Aep Jad sejdwes sidipniy

UO1199]|02 BIEp 4(dd-X IO} JusWINJISul pajesIpaq

UonoBIIp [BISAID o|puIg

powders and solvents

uoneulwIL}ap uoneInBiyuod snjosqe

pue ainjonJ)s aunnol o} payins Ajjeapl wejsAs ny .

(s921n0S O\ pUB ‘ND) SIS}BWONRIYIP Z »

00035 12.26% PCMin LAC

1243% PCMin LAC
11.93% PCM in LAC
16.21% PCMin LAC

Automated Robotic-Assisted

d NIR PLS Calibration for API conc. prediction
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Measure weight of o 9 g 25.76% PCM in LAC
powders Blending Process NIR 8 E H  JamsecunuG
Spectra & 2 I T arronmine
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S = S Q
(] Q500 gFIQMNAL o s 2 g
Real Time Process Average of n . = 00000 o 8. 9-9.- g (.C_)I OBp o o g [V = - <
v NIRS s NIR Spectra Effective Sampling Size o 235c5=22 g = < 3 >
NIR PLS T 2353332852 |3 3 = Q
Calibrated PLS model available? g est X g O35 2 383s = <
P NIR PLS K-Fold Qg = | @ [3) Q
NIR PLS Calibration ) ) Blends tested were prepared 3 - @ o T 20 9 - o =
Qualitative Anal Quantitative Analysis oss Validation using the Turbula T2GE blender g ® < O a ; g l_ .8 o % (e} = O
(Pca) (PLs) w 528 o008 =821 7] (%) : G
89285358390 0 x A m
3 Evaluate Model Metrics 2 S 3 (] Q@ [ = (o] L
» o » ® @ - - a N = 0O
Blend Homogeneity, (RMSE-CV, RMSEP) 78 Q.28 3 ~20 @ [C >
> = Sg@o3xgE= =] < QS 2 emp
; =%0 oD =3 S o = 0
Yes / No 20 Sxo07335 0 c > X 2 mmn
. . no=2®S525= =09 Q
oo ' $3852Z25 S o1 Q O
P H H 2002 Prag C<D —Z>3 a0 — ol
Optimise g . g H v = = I x 0 = i [ K] : :
LS 885885 <3
% = g >0 _QQ >3 D > @ m
» 150 Q7 3 (g Z «Q Q o <
. B . . s = Q@ > — q
PLS: Pa.rt|.al Least Squares g\. Robotic arm Automated NS . RMISEP = 1.32 RMISEP = 117 S t% %) «Q = :2
PC : Principal Component I R2=0.95 - ol 4 R2=0.93 - 100 3 Q@ a &{ Q * m
MBSD: Moving Block Standard Deviation Database  — process Flow e e e S S m o
= 8 . . . S
e AR A TSRS P § Y L < o P
Digital NIR Spectrometer Workflow ) » 0% |2 42
8 g 2 32 = @
—
ML1: Spect Predict . i Test Data: IND @ e 28 | 9o 5 ]
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Is it possible to autonomously
generate an optimal 3D printing design
of a tablet structure that meets dose
requirements and enables the control
over the drug release profile?

Generative Design of 3D Printed Tablet Structures
to Control Dose and Drug Release Performance
Patrycja Bartkowiak'?', Alastair Florence'-2, and Daniel Markl'2 .

1 Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, University of Strathclyde.
2 Centre for Continuous Manufacturing and Advanced Cr i i
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OBJECTIVES

/‘Il]?) Control over drug release profile.

o

Personalised dosage to meet
patient needs.

,/ﬁ:‘? " Rapid optimisation process

@)@ for responsive medicines

manufacturing

Develop a mathematical model to optimise the structural design of tablets made via fused deposition modelling (FDM) 3D printing. The 3D design is self-optimised to achieve desired
weight and ensure mechanical integrity. This approach is capable of autonomously adjusting design parameters to meet specified drug loading and maximise surface area for enhanced
release performance. The approach is validated for various design and benchmarked against a standard design. Future steps include the development of a self-optimising 3D printing
platform and expansion of the work to various materials, including new APIs, to showcase its versatility in pharmaceutical manufacturing.

Model-Driven
Structural
Design of the Tablet
Wathematical model - Gyroid
sinCe - 2nf) cos(y + 2n)

+ sinz « 2mf) cos(x - 2nf)
+sin(y « 2nf) cos(z - 2mf)

Structural
Optimisation|

Analyse Adjust Model
calculation of the Automatically
volume to meet the

specifications

Gravimetric, Dimensional Analysis

& Dissolution testing

(a)

Specific surface area (m™)
IS

optimise model
parameters

SPECIFICATIONS

Define Dosage Form
s
e « Weight / dose
« Size
« Surfacearea

Selection of material
« 80% Polyvinyl alcohol (PVA)
« 10% Acetaminophen (APAP)

' * 10% D-sorbitol
Blending & extrusion

+ Determining formulation of
ot
TEST |
~lil

DESIGN

filament

diameter

Selection of the process.
parameters
« Printing speed
* Nozzle diameter and
temperature
 Extrusion width / layer height

FDM 3D printing

(b) * Computational resource and long time needed to
generate the virtual tablet structure - further
optimization of procedure required.

100 mg
150 mg
200 mg
250 mg

T
0.4
Frequency (Hz)

T 1 T
1 2 3 4

Solid coefficient (-)

Figure 1. Specific surface area (SSA) calculated of the digital design controlled by the model parameters
(frequency, solid coefficient) of the Gyroid for four different tablet weights. (a) SSA with a frequency range of
0.3 - 0.5 Hz at constant solid coefficient of 1. (b) SSA with a solid coefficient range of O - 3 at constant

frequency
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-
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Figure 2. Variation in the diameters of the 3D printed tablets (n=10) with (a) different frequency and (b) solid
coefficient. The error bars are present but too small to be perceptible.
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Figure 3. Percentage deviation of intended weight for four different tablet weight. (a) Frequency range of 0.3-0.5 Hz at a
constant solid coefficient of 1 s. (b) Solid coefficient range of 0-2 at constant frequency of 0.5 Hz.

« Obtaining filament with 1.75 mm
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Figure 4. Release profiles of 250 mg 3D printed tablets (n=6) with variable model parameters: (a, c)
frequency and (b, d) solid coefficient. (c) and (d) focus on the drug release in the first 60 minutes to
highlight differences between the different Gyroid structures.
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Figure 5. Visualising structural changes of 3D printed 250 mg tablets in response to change in
frequency model parameter: (a-c) tablet design renderings, (d-f) microscope images, (g-i) CT images.
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Figure 6. Visualising structural changes of 3D printed 250 mg tablets in response to change in
frequency model parameter: (a-c) tablet design renderings, (d-f) microscope images, (g-i) CT images.

The model parameters
(frequency and solid
coefficient of the Gyroid)

enable precise control of the

structure.

Next steps:
J Use Bayesian optimization to \
identify optimal process
parameters that achieve target
weight and specific surface area i
while minimizing sample
variability.
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Conc. RSO (%)

——300rpm, 1008 g/mintotal flow

——500rpm, 5g/min total flow.

600rpm, 3.33 g/min total flow

Time (5)

Mixing time 3s — Induction time 3min
Platform suitable for acid base crystallisation

effect of pH on no of particles

ANTI - SOLVENT CRYSTALLIZATION

Requlred parice sie

ACID BASE CRYSTALLIZATION

PH CONTROLLED CRYSTALLIZATION

Advancing Particle Engineering and Process Optimization
through Digital Workflows

Primary Processing Team
CMAC National Facility

H o
H or 1m0 OBJECTIVES — THROUGHPUT AND FINAL PARTICLE SIZE
T s § CONTROL VARIABLE - PH
H . oo & FEEDBACK CONTROL ~NO OF PARTICLES (FBRM)
Fo sty . £ PROCESS - 4 STAGE PH CONTROLLED CRYSTALLIZATION Q_Y“m/‘i'"/l’ol-
I s o L e o
a0 S
002 2000 N
o .
) 22 24 26 28 3 32 * Final process/model refinement
o * Desgn space assessment/
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Model validation
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o * spherical crystallization
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Time )
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Inline analysis - cross vall

oH

idation using offline analysis

required
CQA’s

* COAs (Size, shape, polyform, CSD),

« Vield/ Impurity

« End-to-end continuous with
enhanced through
put/consistency

+ Process Robustness \

OEVELOPNE,
& r

e
M)
Wordlows implementaton
Sl scal sreenings
rocessoumdries
asesment

03

* Process and process
model development
Equipment selection

Solvent selection — small scale

Old solvent system

© Broad sized agglomerates

{ Massive fouling and encrustation

New solvent system
Well defined particies

Undesired shape

+ Residence time- roughly an hour
residence time. Ok for plug flow
crystaliiser.

+ Solid Loading can handle <20wt%
(here we had 14-19)

+ Throughput and yield ~good

+ Size distribution - uniform (might be
ess agglomeration)

+ Residencetime - Can handle range of
residence.

+ Solid handling - can handle 30-40 wi%

» Particle suspension - good

« Throughput and yield - ok

« The flexibilty of operation (easy to
add more number of stages and sizes
of vessels etc)

+ Easysetup

« Residence time achievable

+ Throughput and yield - ok

« Might getbetter control o fouling at
additional pointsf unning at igher
shear

Cooling crystalisation workflow

‘Obective: achieve target partice sie
of>10microns

Challenge: current process shows wide size
distribution and fouiing

Solution: revisit solvent system and use of
continuous precpitation to achieve desired particle
attributes

: Achieve Consistent product, robust

process and yield maximization

 current process shows batch to batch

variabilty and wider ize distribution

Solution: Continuous Process using Taylor cuvette:
flow to achieve uniform mixing, consistent product
with easy scaleup.

‘Obiective: Feasibilty for continuous processto.
achieve Process yield < 85%,required particle size:
distribution and robust process

Challenge : current batch process unable to meet
target of required size distrbution

Solution: A continuous crystalzaton process
using predictive and mechanistic model to
optimize process.

Plug Flow
Crystallizer

MSMPR

Laminar

/ Solubity precictons

Y

Solvent-crystali

Time
Mechanistic modsl for crystalisation

F=Teo e

\ @-r—:'\

/

CMAC - Transforming Medicines Development & Manufacture

« Partilo suspension - Density
difference between solute and solvent

+ Terminal velocity ~ to keep particles
suspended (based on a single particle)

+ Solid deposition velocity (taking nto
account solids loading)

+ Localised Fouling at acid addition
point

+ Control of supersaturation- better
with an increased number of stages

+ Secondary nucleation - can be higher
50 the model needs tweaking with

+ Particle size - achievable with wider
PSD (might generate agglomerated

+ Transfer line blockage can bea
drawback

+ Mixing conditions for a turbulent region
can be harsh for achieving required PSD

 Particle suspension might be  problem
ifrunning atlow shear

+ Achieving below zero can be  challenge
whil running in turbulent region

Dosired shape

Ce—
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Targeted size distribution
Improved flow properties
Robust process with consistent

Primary Processing Team product

CMAC National Facili

Product with desired
ty yield/purity/composition/stability
ent fil dryin

mprovement

Spherical Agglomeration

Separation and Drying

+ Mature agglomerates are collected via
fitration.

+ The final drying step ensures the removalof
residual solvents,resulting n astabl, ree-
flowing agglomerate

Maturation and sph
agglomerate form:

* Layering involves gradual particle

agglomerates into larger units,
occurring under high shear or excess BL

Growth and consolidation
+ Agglomerates grow through collsion and
merging, with particles adhering to form larger

« The bridging liquid redistributes, smoothing
the surface and enhancing sphericty.

Objectives
+ improved flow properties
+ Improved bulk density

deposition on agelomerates, leading to * Improved fltration . Fine o
controlled growth under low shear. performance iquid (0L)
+ Coalescence is the fusion of « Tunable particie size * The particls remain suspended as

Robust and consistent
process
Robus

Solvent screening

Dispersing Liquid (DL) combination must be chosen, with BL
being immiscible with

Binder-to-solvent ratio (BSR)
I spherical agglomeration, the BSR controls
agglomerate

+ Size,

« Shape, and

« Strength.

The BSR range i estimated through smalkscale tests
using vials and a vortex mixer.

Dispersion of Fine particles
« Fine powder s dispersed in a ispersing

individual entities.
s
t agglomerates

Bridging liquid (BL) addition

+ A small amount o BLis pumped through
fine tubing into the reactor containing
dispersed particies in DL

- Tubing diameter control droplet &
agglomeratesize

+ BLselectively wets fine partices, promoting

Wetting and Nucleation
Fine parices begin to adhere,
forming smallcusters (nuclei that
act as the core for agelomerate
growth.

Mean size at 0.5 bar

Sample BSR Mixing (rpm) o) Bulk Density (g.mL*)
Raw Material - - s 017

s1 26 12000 35 046

s2 26 8000 8 032

53 27 16000 163 031

s 27 16000 145 032

Flow rate Index

R stability Index
2
N @1
Romstersl 51 2 s s RawMaterial S 2 s st
* Needle like API » Plate like API » Fibrous needle-like API| |+ Platelike API
* BL Heptane * BL Ethyl acetate * BL cyclohexane * BLToluene
* DL Acetonitrile * DL Water '+ DL Acetonitrile * DL Water
* BSR26 * BSR28 * BSR350 * BSR19
* HSWM 8000 rpm * HSWM 15000 rpm * HSWM 15000 rpm + HSWM 12000 rpm
* D50 286 um * D50150 um + D50 234 um * D50327 um

£
a2
32
>
:

ILVHIWOTDOV
AVORIHdS

Conclusions:

h

the form of spherical

8 ployed for th
of f APL h improve ‘amorphous API through the
inclusion of polymers, all while fi ters to maintain has ibution, flow,
and residual solvent content within the desired ranges.
Spherical through ofa processing of material
particles in addition to improving and drying durations.

work

The use of digital workflows for process optimization enables the lowering in carbon footprint as a result of the reduction in experimental

solid disp via co-pi

Process Boundaries

Super saturation

Equipment/Process

Process selection
Platform selection

black box/baysian
Proof of concept/validation

Residual antisolvent
removel/drying

Anti-solvent for amorphous precipitation

APIconcentration : 270-420mg.
Precipitation temp: 0-10

Super saturation : 30-80

Flowratio: 1:3

Immediate precipitation as amorphous

APl concentration : 230-420mg
Precipitation temp: 0-10

‘Super saturation : 20-50

Flowratio: 1:3

Noimmediate precipitation - crystalline product

Anti-solvent and API-Polymer composition

Recentige

Precipitates as Amorphous
Slurry stable below 12C- turn |
crystalline above 12C L
Free flowing slurry

Effect of super saturation on amorphous precipitation
70-30 DMSO:PA
280mg/ml
precipitates as amorphous.

60-40 DMSO:1PA 215me/mi Slurry stable at 18C
Free flowing slurry

Iy SS - 60-70

Gum for Feed to

Exploring process boundaries to meet CQA targets

i 50 Design Space: Resicence Trme, R5M, and Fiow Rats
Iy

SS - 80-90

85-15 DMSO:IPA 410mg/mi
precipitates as amorphous
slurry stable below 15C

Measure s Staticminer [
Mode of operation batch Continuous Continuous
Volumes 100ml-3L (tested) As small as 3ml to 100m| 1L (can go to 1000L)
20150 20300
A5 compositon atthe end sox 3% (cango even lower) 3% (can o even Lower)
Sheer rate S* 100-300 2000-6000 10000-30000
Fartide siee ionnes and 2040 micron Tunable artices 10-50 microns
‘Amorphous precipitation
Flow Function N Goc 3
Process B0 Coefficent (FFC)
Batch process <
Cross mixer ‘AB7780-54 868
Laminar reactor
AB7944 811
AB0261 7.60
AC5308 815

Amorphous Solid Dispersion
Process optimization Using BayBE

sTep2
Search space
Flow ratio: 1510/
RPM -700-1300 | / |
Residence time: |

suggested (1 ‘mm rm|

experiment | A

STEP1
Define Objective
Yield - Max

Bulk density - Max

Composition - Match

I
930 min -
S ™ - = | ST
= | perform suggested
vy experiment
— = /" sdd objective
STEP4 e i ' Jues f
- = values from
I
perform next [/ | experiment

Find Optimum o

ASD showed same composition as feed solution

° T for API/Polymer
CMAC - Transforming Medicines Development & Manufacture
Pﬁphl Shortlisted for an Excellence in Pharma Award:
Find out more about our capabilities: Email: national-facility@cmac.ac.uk Web: www.cmac.ac.uk Linked In: cmac-centre ana e, Contract Services and Outsourcing category at
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Breaking the crystal lattice:
navigating the development of stable
amorphous drug products via the
API-polymer solubility challenge
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Advancing UV Calibration and
Control Strategies for Real-Time
Supersaturation Management in

Crystallisation

Self-optimisation of dynamic
heterogeneous catalytic systems

Humera Siddique - CMAC, Soya Dohi — University of Leeds

University of Strathclyde

This poster will be available at the conference

This poster will be available at the conference
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SCALING UP AGITATED FILTER DRYERS: THE EFFECTS
OF AGITATION ON AGGLOMERATION RATES

Suruthi Gnanenthiran', Pari Rao?, Christopher Hewitt?, Kate Pitt! & Rachel Smith'

1. School of Chemical, Materials and Biological Engineering, University of Sheffield, UK 2. Chemical Devels ., hnoll & Devel , Ope

s, AstraZeneca, Macclesfield, UK

INTRODUCTION

POSTER COLLECTION

Lewis MacQueen*, Kenneth Smith, Humera Siddique, Michael Devlin, John Robertson,
Alastair Florence

Co-Processing of Amorphous Solid
Dispersions via Co-precipitation with
Continuous Taylor-Couette Flow Reactor

A”4 DDA

' Digital Design and Manufacture
of Amorphous Pharmaceuticals

CMAG, Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS)
*lewis.macqueen@strath.ac.uk

( Y4
Agitated filter dryers (AFDs) are commonly used in the pharmaceutical industry for efficient filtration and drying. The agitation improves heat and mass What is the Laminar Platform? Minimum suspension
. . . . . . . . . . . . y The Laminar Platform is a horizontal, jacketed, 300mL, Taylor-Couette flow reactor (TCR). An inner rotor spins to create different Mini . _— P S—
transfer, resulting in better product uniformity and shorter drying times.! Ideally, materials are dried without altering any properties achieved during inimum Suspension Experiments were conducted using @ fwo
modes of Taylor-Couette flow. These modes influence different particle formations and morphologies. . part method, where, a visual confirmation method was utilised
crystallisation to preserve drug performance behaviour. However, intense agitated drying conditions can result in undesired particle agglomeration, leading Bz 55 ASl W roor fisojfollowed byalqantitativelanalysi:
Water Toraidal « Aslurry density of 5 wt% lactose in EtOH at 0.809 g/cm? was
. e . - e . Jadket
to manufacturing challenges such as out-of-specification products, additional milling, and extended cycle times. selected based on visual contrast, higher densities did not give
the contrast needed to confirm full suspension
= Pase + S + A5t + Alower slurry density of 2 wt% was used to quantify the effect
MOTIVATION ATERIA AND METHO of net flow rate on particle suspension to allow better
e S5in = solvent + solute firmat frect
Space in = confirmation on effects
H H H : H H 3 ASj, = Antisolvent
Drying in AFDs is a dynamic process where heating and agitation of the wet PSL GFD 010 AFD Wiy = water in * Quantitative analysis using an FBRM probe to measure particle
53imey Woue = water out f RPM: 190 RPM 0, flowrate2wt% 190 RPM 75g/min 2 wt% lactose
: : : : : son 1 Pout + Sout + ASoue = Precipitate out + Solvent out + 1 L EE L & /e glming
cake can result in the formation of solid bridges leading to agglomeration. g oAt J] -t wes concvie tht trom visul confrmation tht 150 e actosein n
. . . . the lower limit for full suspension of 5 wt% lactose
Previous work implemented a mechanistic approach to isolate the effects of A . . : oy e
P PP : Aims - Characterisation of the Laminar Platform s s R g e A By (e
£ Py 1
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Introduction

DD /AP

" Digital Design and Manufacture
of Amorphous Pharmaceuticals

extrusion for volatiles produced from heat and mechanical shear

« This study explores the use of SIFT-MS in the analysis of volatile compounds produced in the manufacture of amorphous pharmaceuticals via hot-melt extrusion

« The large library of compounds within the SIFT-MS has allowed for the identification of these potential impurities

« Showcasing the SIFT-MS technique as an identification and quantification tool coupled with both Thermogravimetric Analysis for volatiles produced from temperature and with hot-melt

« This workflow has shown clear differences between both polymers despite their aligning chemical structure when comparing their volatile behavior and potential degradation products

«  To demonstrate the integration of SIFT-MS with TGA and HME for the analysis of volatiles produced from the heating and shearing of polymers
«  To use this setup to analyse the chemical differences between two chemically identical polymers but from different manufacturers

Figure 3: Schematic showing the combination of the SIFT to an Extruder with sampling over the veat port
adapted from Bordos et al, 2019

Experimental Setup

« Figure 3 highlights experimental setup for HME-SIFT-MS where the sampling is done over the final

furnace using inert gas and through the exhaust into the SIFT-MS

« Figure 2 highlights experimental setup for TGA-SIFT-MS where volatiles are purged from the TGA

Selected-ion-flow-tube Mass Spectrome

MULTIPLE
REAGENT IONS

SIFT-MS uses soft chemical ionization of fragments in volatile compounds and rapid
detection to distinguish between analytes. No sample preparation required, and

equipment is fully mobile. Real-time, high-throughput analysis with extensive compound

library compiled using reaction rate constants of reagent ion peaks.

Reagent lon Selection Analyte lonization Analyte Quantitation

MICROWAVE QUADRUPOLE QUADRUPOLE PARTICLE
A MASS FILTER J SAVPLE INLET MASS FILTER MULTIPLIER
»
» —
CARRIER GAS INLET
H,0° O, Select one iR X p i
r o Re ok endPe i N =y P o=y P1
NO* OH R'orR or Rk Rk
0, NoO, R+ AKp 4N
o NO. Reagent  Analte  Product  Neutral ¥ = insirument catibation factor

Figure 3: Operational Schematic of SIFT-MS adapted with permission from Syft Technologies

PURE REAGENT ULTRA-SOFT SAMPLE MASS
ION DELIVERY IONIZATION SPECTROMET!

« Three Mass Spectra are collected for the reagent ions H;0*, NO* and O,". All plots shown here are NO*

« Volatiles are fully controlled by conditions in this setup - high temperatures means more volatiles

barrel vent port of the extruder

——140°C
170°C

Normalized Offset Intensity/ a.u

T T T T T T T T
50 100 150 200 250 300 350 400

The clear differences could be
attributed to various chemical
reactions between the volatiles

210°c * By comparing results grouped by
40 220°C temperature we can confirm clear
differences between the volatile

profile of the subject material

« Analysis using the polymer Soluplus during extrusion completed at various temperatures to analyze the volatile profile using SIFT-MS

10 T T
« PCAanalysis further confirms the
054 e ] differences between the increasing
i temperatures
- . ¥
g 00 3 + This information can further be
g used to potentially narrow down
570 s the operating window for the
a v e . processing of these materials
. L.
—104 ¢ 20
.o
-15 T T T T
-15 -1.0 -05 0.0 05 10

PC1 (50.5%)

manufacturer

25

Case Study Analysis

« Clear differences seen in both the volatile profile and the concentration of the compounds.

« This setup is used to analyze two chemically identical polymers with the only difference being the

« PCAused to show differences in extrusion data

« Clear differences seen in both the volatile profile and the concentration of the compounds.
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Introduction R
Synchrotron X-ray phase contrast imaging (XPCI) allows rapid microscopic imaging of multiphase systems with low absorption contrast
between the components, such as organic crystals in solvents. This permits time-resolved studies of the structural evolution of dynamic

systems. This technique has been applied to both crystal growth, using 2D radiographic imaging (which will be extended to 3D in the future),
end to filtration processes, using time-resolved 3D tomography scans.

r

J\_

( Crystal Growth Radiography

Current industrial standards for monitoring crystallisations |

are limited in the information that is gained, eg:

« FBRM and Laser Light Scattering: only give 1D length
information

* Microscopy Probes: Only give 2D information and can be
difficult to process.

XPCI has the following advantages over standard techniques:

M u lti Ro utes to Am 0 rp h 0 us SO li d - Easier background correction due to parallel rays, so no

crystals are out of focus.

Crystal Lengths Distribution

° ° ° » Phase contrast also can reveal other phase behaviour
° (anti-solvent mixing, oiling out, etc.)
D IS p e rS I 0 n S b S p ray D ryl n g VS H Ot * Can be paired with other X-ray modalities, such as
° diffraction, for more information
M e lt Ext ru S I O n * Has the potential to extract time-resolved 3D information,
building a more complete picture of the process and
therefore influencing more accurate models.

= Major Length
= Minor Length

A bespoke object detection algorithm has been created to
automatically segment crystals from the background. Figure 1. Screenshots of frame from the video processing pipeline. A: Raw video frame. B:

° Thick inf ti b tracted . the P . Background corrected frame. C: Binary threshold frame. D: Contour labelled frame. E: Example
CO lette TI e rn e — C MAC . Ickness In o_rm"_i lon may bé exiractéd using € Faganin of figure extracted from frame, major (blue) and minor (green) lengths with labelled averages.
9 filter as shown in figure 2 (1).
3 A
University of Strathclyde

E) o 0 &
Distance (puets)

Th i S p 0 Ste r Wi l l b e ava i la b l e at t h e C 0 n fe re n C e \_ T Figure 2. XP(;I imag;;s o; ;{e; S;;here:‘aken&from reference 1 with associated pixel intensity graphs plot:ed along yellow line. )
Filtration Tomography h

Synchrotron based X-ray phase contrast
tomography has been used to visualise the
filtration, washing and drying of pharmaceutical
solids. 3D scans are taken in less than a minute
meaning that they can be taken throughout each
step, allowing us to build a 4D picture of the
whole process.
Paracetamol (granular and micronized) and
8 metacetamol (needle-like) were used for different
> sizes and morphology examples, and the

Crystals

s 4
<4 ' e filtration conditions were investigated, such as:
v ﬁl‘ 9 flow-rate, drying-rate and stopping points.
24!
i el Phase contrast allows for each phase to be
'}“ ReT elle. segmented and analysed individually in 3D, and
Pore %% / Whole ) Gas through time. Data on the following can be
extracted:
Network Crystals A ) L ) X
Figure 3. Examples of each phase in a single scan, segmented with Avizo. + Particle shape and size distributions in 3D
3 .90 Pre .S * Phase variation with height
y y * Where liquid, and therefore impurities, is
retained

* How the pore network changes

With a better understanding of the filtration,
washing, and drying process efforts can be made
Figure 4. Z-slice of granular paracetamol filtration, washing and drying through time. Liquid phase highlighted in blue. to implement more efficient processing. )

1. Paganin, D., Mayo, S., Gureyey, T., Miller, P. and Wilkins, S. 2002. Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. Journal of Microscopy. 206(1), pp.33-40.
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Introduction

Pharmaceutical oral solid dosage forms (OSDFs) are the most
common drug delivery systems. However, there is a significant gap in
the literature with regards to their physical stability particularly
understanding the changes in drug release kinetics.

Aims & Objectives @
This project aims to study the physical stability of OSDFs, with a focus

on exploring the impact of porosity and filler ratio on the performance-
controlling disintegration mechanisms of immediate release tablets.

With & without
storage

@t Exploring complex formulations with different:
» Porosities
* MCC/mannitol filler ratios

Potential Benefits @

& Ensuring product quality @ Optimising formulation processes

& Predicting drug shelf-life € Time and cost reduction to
market

Tablet Characterisation Q

Directly compressed tablets were manufactured using a compaction
simulator and characterised after 7 days.

Tablet Manufacture (&

f = Dimensions = i

o ko S | I (thickness & B i \ o
diameter) B B
Breaking force Disintegration time
Weight ?
| Contact Angle

Zﬁ—'- B ml::: Image Data Moc:;:; F:;ting

Light source Camera Processing Extraction a

d Advanced C MAC), University of Strathclyde. Technology and Innovation Centre, Glasgow, UK.

30ral Product De Technology & D Operations, AstraZeneca, Macclesfield, UK.

“Oral Product De Technology & D rati Sweden.
s Analytical R&D, Small Molecules, Pfizer, San

i u
©Drug Product Design, Pfizer Belgium, Zaventem. Belgium.

Materials and Methods

Formulations manufactured with these different
filler combinations

T Filler 1: Filler 2:
5 Placebo blends ii Bona fler | Flerz:

* Varying filler ratios 1 100 0
* 5% w/w Disintegrant (CCS) 2 75 25
* 1% w/w Lubricant (MgSt) 3 50 50
. - 4 25 75
At different targeted porosities 5 0 100

*+ 10,15, 20,25%

McC - microcrystalline cellulose
€CS - croscarmellose sodium MgSt - Magnesium Stearate

Analysis
Sessile drop experiment 4

RIS

Impact of varying porosity

Tablet porosity notably influences both liquid absorption and
swelling behaviour, highlighting the role of porosity in facilitating
fluid penetration. Higher porosity resulted in faster liquid uptake
and swelling initiation in all formulations.

Impact of varying mannitol filler concentration

Increasing the mannitol filler concentration in a formulation alters its
performance-controlling mechanism, particularly beyond a 50:50%
MCC/mannitol filler ratio.

Tablets with higher mannitol filler concentrations resulted in slower

v
v

&

»
8

»

3

od
.

Swelling start time, 0 (s)

W N -

T
10

°

T
20

30
Porosity (%)

Initial Swelling Rate, /A4

» For tablets of the same porosity, higher mannitol concentrations
resulted in the slowest swelling.

MCC:Mannitol 50:50%

MCC:Mannitol 25:75%
Mannitol 100%

Linear 0 25 50 75 100
relationships Mannitol Concentration (%)

L] 10 20 30 40
Porosity (%)

Swelling start time and initial swelling rate plotted against individual tablet porosities. Swelling
parameters determined and extracted using the modified Schott model.

Next Steps

What is fundamentally changing in the tablet?

Accelerated Stability + At what stage does the mechanism switch over?
Studies carried out to « Can you have more than one type of mechanism, and if
explore:

s0, which is the performance-controlling one?
How does storage impact the mechanisms?

¥ * Mannitol 100%

Effect of mannitol concentration on the
average swelling extent after infinite time.

Future 10 develop and validate long-term
physical stability models - how do the
physical tablet properties change in

©]

_ o MCC 100% v MCCMannitel 25.75% swelling rates and lower swelling extent, and a weaker correlation
Tos £ 15 * NooMamiel TEZS < Mamniol 100 between disintegration and porosity, suggesting a shift in
5 o4 oo i disintegration mechanism.
8° T e S
5 Y BT 10 s % g At
208 . 'I:v o o E SOV 2 2 3 | Eos § j P MCC 100%
3 02 e £q S 4 3 o MCC 100% .
£ ¥ tEos WX e i,
= o1 -&v,y" £a ¢ Note: dotted line represents £ 03 LA 1)
] I3 S 3 perfect linearity (m=1). [ v MCC:Mannitol 25:75% = MGC:Mannitol 75:25%1
£, E 202 « Mannitol 100% 4
S 007 T T T 1T 3 0.0+ T T T 1 £ 0. . 5 -
0 10 20 30 40 a 10 20 30 a0 H a e
i () N @ 0. < 8 -
Porosity (%) Porosity (%) s o1 v % . MCC: Mannitol 50:50%
= L o 4
Rate of liquid absorption and linearity of the absorption process plotted against individual tablet E00 © 25 50 75 100 E "
porosities. Liquid absorption parameters determined and extracted using the power law model. Mannitol Concentration (%) 5
2
L . . . . . - MCC:Mannitol 25:75%
* The initial swelling rate increases more significantly with Effect of mannitol concentration on the initial
. . . . . . n i 52
increasing porosity for formulations with higher MCC concentrations sizelline felis @i i isldlEs =
H 15
than mannitol. to . e 100% ' Mannitol 100%
XE = MCC:Mannitol 75:25% 2
o 9 10 { 4 MCC:Mannitel 50:50%
o 10 MCC 100% £E I v MCC:Mannitol 25.75% ° a0
MCC:Mannitol 75:25% 8

15 20 25

* MCC100% tablets showed the Porosity (%)
greatest swelling extent, while
mannitol 100% tablets had the least.

tablets at different mannitol
concentrations and porosities

time?

Disintegration times and heat map for

Disintegration Time (min)

lujain.al-obaidly@strath.ac.uk
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Innovative Nanoparticle Production
Hakam Alaqabani, Jade Forrester, and Yvonne Perrie
CMAC National Facility, University of Strathclyde

Introduction
Our research team focuses on the advanced development and manufacture of targeted drug delivery systems, including lipid nanoparticles
(LNPs), polymer-lipid hybrid systems, and liposomes. By leveraging scalable microfluidic technologies, we are able to optimize and produce
formulations with precise control over critical quality attributes, ensuring both consistency and scalability from bench-scale to GMP
production. In addition, we provide comprehensive analytical characterization using a variety of techniques to assess particle size, surface
charge, chemical composition, and structural integrity. Our team also conducts in-depth biological and in vivo evaluations to assess cellular
. uptake, toxicity, and the efficacy of drug delivery, as well as tracking via advanced imaging systems.

Drug Discovery De\(/:;:::::-nle nt Approved Drug

4

Lab Capabilities

Liposomes Solid Lipid Nanoparticles Polymers

E;Vanced Formulation Development: Polymer-LNPs-Liposome

« ¢ Designing Drug Delivery Systems (DDS) for Targeted & Sustained Release

+ ¢ Development of nanoparticles loaded with drugs, DNA, siRNA, mRNA, proteins, peptides, and small
molecules
»

« ¢ Scalable mi idic mixing from bench le to GMP pr
&

&L

Low Cost — Low Volume

Formulation Peptides  SiRNAMRNA  DNA  Small Molecule Drugs

&
>

Characterization !Comprehensive Analytical Characterization

« ¢ Particle Attributes

— +Size & Surface Charge: ELS (Electrophoretic Light Scattering), DLS (Dynamic Light
Scattering), NTA (Nanoparticle Tracking Analysis), DSC (Differential Scanning Calorimetry).
+ ¢ Spectr pic & C phic T
*Chemical Characterization: UV-Vis, FTIR, HPLC, Mass Spectrometry, Fluorescence
Spectroscopy, gel electrophoresis , Gas Chromatography

« ¢ Structural & Stability Analysis

*Morphology & Composition: Cryo-TEM, SEM, Xenocs Small Angle X-ray Scattering
(SAXS)

+Stability & Quality Control: Freeze Drying, pH Monitoring, Long-Term Stability Testing

Purification & F
Release Production Attributes

« ¢ Stability Testing: Freeze drying, pH monitoring,
T temperature cycling, and long-term stability studies
+ « Purification Techniques: Dialysis, Tangential Flow
Filtration (TFF), and Spin Columns
« ¢ Drug Release Kinetics: Controlled release studies
using the USP 4 SOTAX apparatus

m -
In vitro and in vivo

Biological
« Biological & In Vivo E
« ¢ Cellular Studies
« Viability, Toxicity, Uptake across various cell lines
— « Intracellular Trafficking via Confocal Fluorescence Microscopy
« Antibody Studies using Flow Cytometry
+ ¢ InVivo Imaging & Tracking
« Bioluminescence & Fluorescence Imaging (IVIS & GX Systems)
— ”iesearch development . .
Applications « For ion Parameter Optimizati Enhancing 1 ¥
i

stability, bioavailability, and ‘controlled release
+ Vaccine Development: In vitro and in vivo studies for
immunogenicity and efficacy
« Anti-Cancer Investigations: Targeted drug delivery
and therapeutic efficacy assessments
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Autonomous Physical Stability Model Development

Maria Chang' Lee Ashworth®, James Mann®, Faisal Abbas', Daniel Mark["*

1Centre for Continuous ing and Ad: d Cr ion (CMAC), University of Strathclyde, Glasgow UK
Institute of & Bi ical Sciences, University of Strathclyde, Glasgow, UK
3Global Product Development, Pharmaceutical Technology & D Of i AstraZeneca, UK
Project Aims Data Output

Self-Driving Tablet

H
I
& §
—— eight(mg) —— weight(mg) [ weight(mg)

[ Thickness (mm) [ Thickness (mm) [~ Thickness (mm)
Compaction * Diameter (mm) [~ Diameter (mm)

R . Diameter (mm)
Simulator Actual Compaction Actual Compaction L . Actual Compaction
Pressure (Mpa) Pressure (MPa) Pressure (Mpa)
“Hardness (N) +Image capture
Tensile Strengih
(pa)

Tablet Tester

Connecting systems to enable accelerated development of
performance and stability models for pharmaceutical tablets

Analysis.

(MPa)

Ayngeyoedwon

Tensile Strength

Percentage Dissolved

Compressability

1

Compression = Porosity (%)

Pressure (WPa)

A4 “Time (min)
~~

Combining the Dissolution Modelling Predication with e Compression Pressire
Stability Prediction that can then be used iteratively. e

Self-Driving Laboratory

Design Optimal
Experiments

Sessile Drop

<1 Data Transformation

doug slisses

Automation and

) Robotics
Formulation e m—
LSt Metnees ] & Manufacture i
Storage

@ )
pw l X USP 2

Advanced data u Experimentation @—————— Stability Chamber =\
analysis Tablet Weight lisislslslsleN| Fully Automated
s s T Fuly Automated hy Rufinst |
Stability Model Dissolution St
Predicted Dissolution Stability orage ¥

Enabling Big

Experiment Objective

Investigating the impact of disintegrant level on dissolution performance enabled by self-driving tablet manufacture and automated dissolution

A d T bletil 9 B o i “. imi i 1.
00:57:27
Tablet Dimensions
Weight (mg) 250 Shape Flat, Round g Self-Driving Tablet Manufacture (Analysis, Break, Sessile Drop:
= 01:57:57
Diameter (mm) 9 Porosity 10%, 15% & 20% 2
E TTI Fully Automated Dissolution:
%wlw = 04:45:00
Tablet Component (<]
F1 F2 F3 w ) . . )
5 ( \ Total Experiment Time (Tablet Manufacture + Dissolution):
APl Ibuprofen 50 10 10 10 o ¥/ 07hr 40min 24 sec
) Mi talli
Filler 1 'Cg::{ymi:eme 435 42 405 Number of Tablets per formulation:
84
Filler 2 Lactose 43.5 42 40.5
Disintegrant Croscamellose Sodium 2 5 8 Total Experiment Time: (3 Total Experiment Time
Lubricant Magnesium Stearate 1 1 1 Formulations x 3 Porosities) y/(Manually Operated at CMAC):

23 hr 01 min 12 sec 2 days 1 hr

Note:

Define Meta Data Workflow

v

!-Dsshumve !-NnnrDsstmwve
Compaction | | Feed Die | Tablet | | Automated
Simulator Manufacture Tablet Tester [~

Dissolution Tester ~——Sample Carousel

Increase experiment design

)

Mobile Robot

@
@

f

Robotic arm 1

'S

Dissolution Prediction Models

Robotic arm 2

Oﬂ Automated

< ]
§ :I = —  Physical step in process Further A D s
g - Capabilities
- e é; : ---> Data extraction
£
. L R
Engineering and
Physical Sciences
offcs ,30m. Research Council
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MRNA-LNP Vaccines; A Case Study
Jade Forrester, Hakam Alagabani and Yvonne Perrie
CMAC National Facility, University of Strathclyde

Introduction

At continuous manufacturing, we specialise in precision nanoparticle formulation, encompassing lipids, solid lipid, polymeric
nanoparticles, and nano emulsions. Utilising a wide variety of microfluidic technologies, we formulate these nanoparticles with
unprecedented accuracy and scalability. In parallel, we explore the exciting potential of messenger RNA (mRNA) vaccines. This
study highlights pivotal data on the CQAs and in vitro and in vivo efficacy and behaviour of mMRNA vaccine formulations.

L

Materials and Methods

In this study, the impact of structure on potency was investigated by formulating a range of mMRNA-LNP vaccines with varied
ionizable and PEGylated lipids. All formulations were manufactured using a microfluidic mixer (NanoAssemblr® Benchtop from
Cytiva) and standard critical quality attributes were analysed including particle size, polydispersity, zeta potential and mRNA
encapsulation and recovery. The mRNA-LNP vaccines were also evaluated in both in vitro (HEK-293) assays as well as
preclinical in vivo studies (BALB/c mice).

f a) lonisable/cationic lipids b) Pegylated lipids SM102 ALC-0315 MC3 DODAP DOTAP

SM-102 ALC-0315 DLin-MC3-DMA DODAP DOTAP ALC-0159 DMG-PEG2k DSPE-PEG2k
(Mc3) \
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Cationic/Tonizable lipids Day Diameter (nm) PDIL Zeta potential (mV) EE (%) Mass balance (%)
5M-102 0 649 £ 5.3 0.04 £ 0.03 -1.0+09 97 =1 85+ 16
7 679+ 6.8 0.03 £ 0.01 -1.5+09 960 84+ 14
ALC-0315 1] 55.2+05 011 £ 0.02 -21+1.1 93+ 2 93+11
7 563+ 1.0 012 +0.02 -37+23 95 +1 100+1
MC3 0 608 £ 1.3 0.11 £ 0.02 -l6+ 16 932 93 £ 5
7 606 £ 2.0 0.10 £ 0.02 —-22+05 93 +1 93+ 6
DODAP 0 69.0 = 28 0.04 £ 0.02 -14+13 91 =1 97 £ 6
7 66.1 £ 7.5 0.06 + 0.02 -14+1.0 By £ 2 94 + 2
DOTAP 0 498 £ 59 0.24 £ 0.04 24+19 99 =0 89+ 10
7 68.7 £ 10.9 0.29 + 0.03 48+12 99 +1 87+ 8
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Challenging the Concept of Strain Rate
Sensitivity: Feedframe Dynamics Drive Tensile
Strength Reduction in High-Speed Tabletting

Musab Osman'z, Daniel Markl'z, Gavin Reynoldss,
Catherine Yates:, Pratik P. Upadhyay+ and John Robertson':

1Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
2CMAC Future Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
30ral Product Development, Pharmaceutical Technology and Development, AstraZeneca, Macclesfield, SK10 2NA, UK
4Oral Product Development, Pharmaceutical Technology and Development, AstraZeneca, Gothenburg, Sweden

INTRODUCTION

This study challenges the assumption that tensile
strength (TS) reduction in high-speed tableting
stems from strain rate sensitivity (SRS). Instead, we
demonstrate that feedframe paddle rotation
|| weakens interparticle bonding by increasing
1] 7 For over 45 years, the reduction in tensile s(reng(h - lubrication extent, reducing TS.
during high-speed tabletting has been attributed to
| strain rate sensitivity. Material strength was thought to
decrease as compression speed increased. This was
explained by the idea that faster compression reduced
plastic flow in speed-sensitive materials, such as
microcrystalline cellulose and starch.

Strain rate sensitivity

m Slow speed

@m = @ X 35/min W X 350/min per 1 die

RESU LTS

Is scaling up 5|mply increasing tablet output (e.g. dwell time 15 ms?
. (® ‘®

CONCLUSION

Dwell time does not affect the tensile strength of
the studied materials, except for DCPA, which shows

20

% % ’ g n a slight increase at high speed.
R H A i H = Dwell time does not impact the tensile strength of
Y o RS ) = Lac and DCPA, regardless of lubrication levels.

For MCC, a slight decrease in tensile strength is
observed at 2% and 4% lubrication, and for starch at

RO, 1% and 2%. However, these changes are minor and
7 + 7 ) 5 fall within the standard error range.
H o £1 % z
£ “, % R £ = Feed frame paddle rotation weakens the tensile
ﬁ N “ : strength of lubricated materials.
H *o. i &
R ]

3 = Thus; what has traditionally been attributed to
A N strain rate sensitivity in tablet manufacturing is, in

fact, a lubrication problem caused by increased
feedframe paddle rotational speeds.

3 o1 02 o3 53 om0  oss | os0 | oss
Porosity [-] Porosity (-]

Fig.1. Effect of Dwell Time on Tensile Strength of Pure Materials: MCC,
Starch, Lactose, and DCPA

= Feed frame-induced tensile strength reduction in
binary mixtures is governed by the sensitivity of
their individual components to feedframe speed

Dwell time = the time during which compaction
force is more or equal to 90% of its peak value
rpm = feeder rotation per minute

5 oo All LNP formulations exhibited similar DCPA= Dlbsicalolan s chyous
2§ 20608 . . . . MCC = Microcrystalline cellulose
§§ s | CQ AS, includi ng part|c|e sizes <100 Starch = Partally Progelatinised Maze Starch pton pteteFoadrame;
B R nm, low PDI (<0.2), near-neutral zeta @} - ACKNOWLEDGEMENT
st i i ; = W2 What is actually happening during Scaling up ?
g 306408 | pOtentIall and hlgh encapSUIatlon dframe rotation speed is d—up to 100 RPM or more—to ensure consistent die filling at high tabletting speeds » The authors would like to acknowledge the contributions of CMAC
EE == 2 effICIenCy (>90%). HOWGVG r, the i @ . o & I & National Facility Team for their technical support. MO would also like to
;:: : ] ) ) } potency Of these LN PS’ as measu red gx ‘.; g, % f‘; é, thank EPSRC and AstraZeneca, Macclesfield, UK for funding.
@ TR 051 . . . . s £, & ® £
ST ' by in vitro mRNA expression and in AN : ‘ : REFERENCES
= e D , vivo expression following - EEEEEL S ’ e S , ,
A || e . S . [ocrs ) N [EET | wcorse | O emmon antbicsins, Ssso i v s, S o i o e 215
intramuscular injection in mice varied (e el » i gy Binery mixtures e ! ot st T Gy o 5115 B
significantly. LNPs formulated with d ) (51 1.2 Moot et of Gamprssion e ad Prssur o e Physical Characlrc o
. . . g' '.X , ‘,y g Maltodextrin Tablets,” vol. 9045, p. 10, 2008, doi: 10.3109/03639049809082362
Rof SM-102  exhibited the  highest i) e A\ ¥
eference: . . . Sy . I o
Binici, B., Rattray, Z, Zinger, A., & Perrie, Y. (2025). expression in vitro, whilst in vivo SM- L i 2 -
Exploring the impact of commonly used ionizable and 102 and ALC-0315 LNPs showed [wee ) | seren | 9323 Joccsaen) Sl <5 Osman :
pegylated lipids on mRNA-LNPs: A combined in vitro significantly higher mRNA expression o, s or 55 pasiespasn Tre ST Lo Fiy It o Fsne Sped ST gt of oy W 1 XMl ... oo o
and preclinical perspective. Journal of controlled than DLin-MC3-DMA. DODAP and -
ici i ’ uNiveRsiTY or ;. “The
release : official journal of the Controlled Release _ DOTAP LNPs. Il s asvazenccs AChiesi Lz, ~&rfeer [,,,E © st :f:m mpeidcolge W] g ‘@: e gﬁﬁ
Society, 377, 162-173. i
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Developing Workflows to Drive Autonomous
Experimentation
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1. The EPSRC Future Manufacturing Research Hub in Continuous Manufacturing and Advanced Crystallisation, University of Strathclyde, Glasgow
www.cmac.ac.uk
murray.robertson@strath.ac.uk

2. Set QTPP,
Sustainability &
1. Collate & Calculate Manufacturing Objectives
Introduction — QbDD Workflows API Prior Knowledge

* Quality by Digital Design (QbDD) is a framework to QTPP and
accelerate medicines development and enable
regulatory innovation for new medicines approvals. Collation of known data objectives set to

- It exploits emerging capabilities in industrial digital and data that can be enable process,
technologies and accelerates the identification and exploration predicted manufacturability
of more robust design spaces. and sustainability

+ The QbDD Workflows help guide implementation of the QbDD targgts Wh”S,t . . .
framework. assuring quality List of possible process options
identified and ranked with

preferred process option
selected for further investigation

systems-level

3. Select Conceptual
Process Options

From QbD to QbDD

Empirical
Knowledge Space

%
890 sublectmatterexperts

F
IR
I
ps _‘:':“h:“.‘ Experimentation

4. Identify Modelling
e R mm s — Approach

o wE B il = : T
e f{;\ " Available model option(s) identified and ranked
g@é T T for each unit operation and equipment option

ation, gt teins 3ndautomation

Figure 1: From QbD to QbDD: The transition from QbD to QbDD with reference to
its effect on the knowledge space and the use of an existing data fabric to inform 5. Model
experimentation and CPSs at each stage of development (as L © e_
part of self-driving DataFactories) to enable a range of Call.bratlon &
benefits. o . - Refinement
7. Initial Quality Risk Models parameterised for
Assessment each unit operation using
Quality risk assessment done 6. !VIOdeI . sc;l;cdec;v;r;eggﬁgrtr;]eer:‘ts.
for highest priority process ~ Driven Design evaluated Ssin model
option(s) with provisional Development 9

< . predictions vs process
CMAs and CPPs identified  for Product & objectives. Process options

Process then ranked, and preferred
8. Confirm CQA, CMA, options identified

CPP & Design Space Model parameters r‘eﬁned,
process models validated,
for Process

non-modelled phenomena
Practically operable design space that could affect the process
optimised against process objectives, investigated, and process
and CPPs that must be controlled to operating constraints
deliver required CMAs identified identified

identified for that unit operation

9. Model Driven Control Business Process Modeling Notation (BPMN)

I Strategy & Risk Assessment « Business Process Modeling Notation (BPMN) is a visual modeling
| language for business analysis applications and specifying process
: workflows
Ac:::zglnfgnatt’e‘?r%;gse ?:g:i::::‘ge r::;es « BPMN is an open standard notation for graphical flowcharts
analyses are able to run within the Lo Used.to define process workdlows. .
. b 8 « Intuitive and simple graphics allow the models to be easily
operating space_and dell\!er material of understood by all stakeholders
required quality - users, analysts, software developers, and data architects
« Bridges the communication gap between process design and
implementation
10. Operate Process

Material produced and tested to
determine if material meets 12. Product + Camunda provides a workflow engine that helps automate
relevant CQAs and/or CMAs. Lifecycle business processes by defining workflows using BPMN
Process and model performance 11. Product Management / + It supports both human and system tasks, making it versatile
evaluated Performance continuous for various use cases.

Analysis Improvement + Asynchronous Communication:  Microservices
communicate via a central message or event bus
Final drug product material  QbDD principles for product g, Kaﬂfa)' This allows for temporal dec‘?um'ng and
analysed to determine if lifecycle management and reduces direct dependencies between services
material meets QTPPs and continuous improvement + Point-to-Point Communication: )
model performance evaluated ~established (not covered in Microservices interact  directly ~using
(not covered in this paper) this paper) request/response mechanisms, often through
REST APIs. This approach is simpler but can
lead to tighter coupling
Crystallisation Research Hub EP/P006965/1 « Work Distribution by Workflow Engine: The workflow
engine can manage the distribution of tasks across
microservices, ensuring that each service performs its

" RESEARCH HoB designated role within the overall process

AstraZeneca{% *¥Chiesi “%ZY @P fizer sanofi ["'E

Camunda Workflow Automation

Figure 2: Workflow stages and outputs.
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Common Tablet Defects
m Material picked up by the logo

Capping / top portion

Detachment of the top portion

[Laminaton
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Understanding Punch Sticking in

Pharmaceutical

Tablet Compression

Ishwari Wale®?, John Robertson?, Aditya Bharadwaj Singaraju3, Daniel Mark|2

IStrathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK

2Centre for Continuous Manufacturing and Advanced Crystallisation, Technology and Innovation Centre,
University of Strathclyde, 99 George Street, Glasgow , G1 1RD ,UK
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Initial adhesion Thick layer formation
Material gets stuck on the punch | Upper
face due to embossed designs punch

Damaged surface

Punch tip _.” Monolayer

Stages of Powder Adherence

Stabilize Continue to

existing layer accumulate

lectio

formation —> ¥~ L 4
Separation of layers in the tablet Material adheres to the punch face Stage | Stage Il Stage Il
Methods to Assess Punch Sticking
Category Method Mechanism Quantitation | Specificity Time

Powder method Centrifugal method Centrifugal force 1 N M
Rheometry Adhesion - Cohesion forces 1 N S
Compaction method Punch tip weight Interaction between punch tip & tablet material D N F
Compaction parameter analysis Interaction between punch tip & tablet material 1 N M
Powder residual method HPLC - UV spectroscopy Chemical interaction D Y F
Tablet method Atomic Force Microscopy (AFM) Atomic-Level Stick-Slip D N F
Miscellaneous method Scanning Electron Microscopy Electromagnetic radiation D N F
Advanced methods Lasor Sensor based Infrared radiation D Y F

Abbreviations and Definitions: Indirect Method refers to characterizing the affinity between material and punch face (I - Indirect Method); Direct Method refers to characterizing the
amount of material (D - Direct Method); Time refers to the duration required to perform the experiment and analyze results (F - Fast (<5 minutes), M - Moderate (5 minutes to 1 hour),
S - Slow (>1 hour)); Specificity indicates the ability to identify components from the adhered material (Y - Yes, N - No).

n an Experimental Journey

| Rheometry I I Image analysis I

| Raman spectroscopy I

I Weighing tip & HPLC analysisl

= Based on adhesive
and cohesive force
Calculation of

Upper punch

Removable tip

Camera &lens

Lower punch

Sticking Index (SI) Lack of specificity Quantification and Traditional method

= Uses very low Restricted for specificity is possible * Provides qualitative & quantitative analysis
pressure , Lack of monolayer * Non-destructive and * Requires solvent compatibility with
specificity adhesion no sample preparation adhered material , time consuming

_'_.

T _06 micron

Weighing punch tip

Morphology Directed Raman
Spectroscopy

7

Raman equipped with
morphology

New approach to assess sticking
Linking PSD to adhered material

References

essential for reducing batch failures, minimiz
costs. Implementing reliable assessment
monitoring can help identify and address

tablets.

Early detection of sticking in pharmaceutical tablet compression is

ensuring consistent and high-quality production of pharmaceutical

ing wastage, and lowering
methods and proactive
sticking issues promptly,
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