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Material properties and product quality 

Particle Size 
distribution

Friction Morphology Density Surface area & energy Compactability & 
compressibility

Drug release

%
 A

PI
 re

le
as

ed

Time

Tablet wettability

𝑇𝑇𝑅𝑅 = 𝜋𝜋 𝒓𝒓𝒎𝒎𝒎𝒎𝒎𝒎
0.1631 𝒗𝒗 + 0.8766

𝝆𝝆
𝑮𝑮

𝐼𝐼 =  ሶ𝛾𝛾𝑠𝑠 𝟐𝟐𝒓𝒓𝒎𝒎𝒎𝒎𝒎𝒎 𝜌𝜌 /𝑃𝑃
Smallest radius in simulation

To assume 0.1% of all stress in shearing is due 
to kinetic stress (quasi-static flow regime)Simulation timestep

Shear rate

Solid density

Shear modulus

Inertial number

Poisson’s ratio

Simulation time is a detriment to DEM utility

Major principal stress -------------------(σ1)
Unconfined yield strength --------------(σc)
Angle of internal friction ----------------(φ)
Effective angle of internal friction -----(φe)

Brookfield PFT, Ametek

Optimised simulation scaling: standardising simulation time

Representative sample investigation

Z = H = 80 x d50

Y

X
X = Y = L  = 80 x d50

Baseline case – Cohesive material

Scaling factors for height/width (l) and height (h) shows equal shear responses
Surface energy affects shear response – PSD span does not!

PSD modality and different span display similar 
results to simple uniform samples

Acknowledgment: The authors would like to thank the Digital Medicines Manufacturing (DM2) Research Centre (Grant Ref: EP/V062077/1) for funding this work. DM2 is co-funded by the Made 
Smarter Innovation challenge at UK Research and Innovation, and partner organisations from the medicines manufacturing sector. For more information, visit cmac.ac.uk/dm2-home

DM2 websiteEmail: Anas-A-Y-Y-M-Almudahka.2021@uni.strath.ac.uk   LinkedIn: 

A Systematic Approach to Material 
Calibration with DEM Shear Cell

Anas Almudahka1,2, Mohammad Salehian2, Stefan Pantaleev3, John Robertson2,

2 Centre for Continuous Manufacturing and Advanced Crystallisation 
(CMAC),​Strathclyde Institute of Pharmacy and Biomedical Sciences 
(SIPBS), University of Strathclyde, Glasgow, UK 

1Department of Pharmaceutics, 
College of Pharmacy, Kuwait 
University, Kuwait 

3Altair Engineering, 
Edinburgh, UK

Aspect ratio affects shear responses and metrics – elongation increases friction 

ANoVA shows no significant difference between samples – 
Small samples result in similar metrics and significantly faster simulations

Boundary conditions

Minimising sample and achieving accuracy and repeatability allows for 
calibrated DEM material to be use in different downstream processes 

What makes a representative shear cell sample

10 million particles?

10,000 particles?

> 1000 faster

Calibration framework useable for any 
material size with      

Accurate, systematic and 
repeatable

Discrete Element Method (DEM) is a powerful simulation 
technique that treats materials as collections of individual 
particles. By modeling particle interactions—like collisions 
and friction—DEM reveals complex behaviors such as 
flow, stress distribution, and breakage.

Fn0(j)

Fn0(i)

𝜹𝜹 

Ft(ij)

Particles approach 
with normal force (Fn)

Particles overlap and 
forces are calculated

Simulation of particle 
behaviour 

Fn(i)

Fn(j)

Pi

Pj
V(i)

V(j)

V0(i)

V0(j)

Material Calibration in DEM is challenging and require 
rigorous iterations to estimate. It demands precise 
measurement of microscopic interactions, extensive 
experimentation, and careful parameter fitting to 
accurately capture real-world particle behavior.

DEM shear cell can calibrate key parameters of particle behaviour

Effect of Material Properties on DEM Behavior is 
significant. Attributes like friction, cohesion, and 
elasticity define how particles interact, influencing 
flow, stress distribution, and breakage.

φ

φe σc σ1

Calibrated outputs allow digital tablet properties estimate that 
mimics real tablets performance

Number of Particles and Sample Size heavily influence DEM 
simulation speed. Larger models mean more calculations, 
increasing computational load and extending run times.

POSTER 2

Data & Digital Twins 



9WWW.CMAC.AC.UK

CMAC	 POSTER COLLECTION

8

PharmaCrystNet: Improving the predictive capabilities of 
Crystallisation Models in the Pharmaceutical Industry

D. Alvarado, F. Paterson, C. J. Brown*
CMAC, Technology and Innovation Centre, University of Strathclyde, Glasgow, UK

*cameron.brown.100@strath.ac.uk

• Crystallisation is a crucial operation as it affects physical properties, stability, and final product performance.
• Modelling of crystallisation through population balance models (PBMs) helps understand process dynamics 

and the evolution of critical attributes throughout a process, such as crystal size distribution (CSD). This in 
turn provides guidance about process conditions necessary to ensure product meets quality standards and 
process has an acceptable efficiency.

• However, PBMs are not widely adopted due to limitations in terms of development time, large uncertainty, 
and required data quality. Thus, to bring about greater adoption, the following challenges must be address
1. Improve transferability between chemical systems
2. Reduce experimental burden needed to collect data and parameterise models
3. Obtain models that fit better complex mechanisms.

Thus, this project will develop a physics informed neural 
network (PINN) that addresses the mentioned challenges by 
achieving the following aims:

Introduction Aims

Methods and Results

Summary and future work References
• Initial results showed that the proposed architecture (LSTM: long short-term memory 

RNN) can learn to predict crystallisation outcomes across time mostly for parameters 
related to length, surface, and volume. 

• However, the performance of the model for systems where nucleation is negligible 
was poor to predict the number of particles (𝜇𝜇0), by which variations in architecture 
and physics incorporation will be carried out to improve this aspect as well as the 
overall accuracy

• Additionally, more specific analysis will be done to establish generalisation towards 
other systems not included in the training set.

• The results obtained are limited to 20 systems. Thus, future work will specially focus 
on obtention of solubility data for new combinations solute-solvent and the estimation 
of kinetic parameters for the characterised systems for their inclusion in the training 
and validation of the PINN

• Wu, G., et al., Physics-informed machine learning for MPC: Application to a 
batch crystallization process. Chemical Engineering Research and Design, 
2023. 192: p. 556-569.

• Raissi, M., P. Perdikaris, and G.E. Karniadakis, Physics-informed neural 
networks: A deep learning framework for solving forward and inverse problems 
involving nonlinear partial differential equations. Journal of Computational 
Physics, 2019. 378: p. 686-707

• Kumar Akkisetty, P., et al., Population Balance Model-Based Hybrid Neural 
Network for a Pharmaceutical Milling Process. Journal of Pharmaceutical 
Innovation, 2010. 5(4): p. 161-168.

• Boobier, S., et al., Machine learning with physicochemical relationships: 
solubility prediction in organic solvents and water. Nature Communications, 
2020. 11(1): p. 5753.

✓ A branched-tree map of drug-
like compounds was generated 
via TMAP approach to 
represent the chemical space 
that pharmaceutically relevant 
compounds occupy

✓ From this chemical space map, 
31 compounds were randomly 
selected to be as diverse as 
possible for testing of a broad 
range of the possible chemical 
space

1. Obtention of 
Kinetic Parameters 

and Solubility

✓ >200K simulations for 20 systems corresponding to 9 solvents and 14 
solutes varying process conditions such as initial and final temperature, 
cooling profile, seed mass and size. 

✓ Within the systems characterised experimentally, ~30% of solute did not 
dissolve in the tested solvent, and ~25.5% systems did not nucleate.

✓ Solubility curve could be fitted with 𝑅𝑅2 ≥ 0.95 for 41 systems

2. Simulations varying 
initial conditions

Data-driven

21 solvents commonly 
employed in pharmaceutical 
crystallisation processes 
were selected to screen 
against the 31 solutes in 
solubility and kinetic studies, 
giving a total of 651 
experimental systems

For APIs that were less accessible to source, the 
chemical space map was employed to find near-
neighbour and more accessible substitutes that 
occupy a similar region of the map

1. Generate data 
necessary to 

validate and refine 
PINN based on 

real-world results

2. Develop a 
representation of 

crystallisation 
which represents 

multiple length 
scales and 
interactions

3. Design, test, 
and refine PINN 

incorporating 
equations of state 

and PBMs

1. Selection of APIs

2. Experimental Data Collection

3. Dataset Construction

4. PINN Modelling

Physic-informed

Initial conditions

𝑘𝑘𝑏𝑏, 𝑏𝑏, 𝑘𝑘𝑔𝑔, 𝑔𝑔, 𝐶𝐶∗(𝑇𝑇)

Initial dataset was 
based on literature 
data. This dataset 
was used for PINN 

architecture 
exploration

Solubility has been 
characterised 

experimentally for 
more than 241 

systems and image 
analysis will be done 

to estimate kinetic 
parameters

𝑑𝑑𝜇𝜇0
𝑑𝑑𝑑𝑑 = 𝑘𝑘𝑏𝑏 𝐶𝐶 − 𝐶𝐶∗(𝑇𝑇) 𝑏𝑏

𝑑𝑑𝜇𝜇1
𝑑𝑑𝑑𝑑 = 𝜇𝜇0𝑘𝑘𝑔𝑔 𝐶𝐶 − 𝐶𝐶∗(𝑇𝑇) 𝑔𝑔

𝑑𝑑𝜇𝜇2
𝑑𝑑𝑑𝑑 = 2𝜇𝜇1𝑘𝑘𝑔𝑔 𝐶𝐶 − 𝐶𝐶∗(𝑇𝑇) 𝑔𝑔

𝑑𝑑𝜇𝜇3
𝑑𝑑𝑑𝑑 = 3𝜇𝜇2𝑘𝑘𝑔𝑔 𝐶𝐶 − 𝐶𝐶∗(𝑇𝑇) 𝑔𝑔

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = −𝜌𝜌𝑐𝑐𝑘𝑘𝑣𝑣

𝑑𝑑𝜇𝜇3
𝑑𝑑𝑑𝑑

PBM by Method 
of Moments

Solute - Solvent

𝑇𝑇0, 𝐶𝐶0, 𝜇𝜇0, 𝜇𝜇1, 𝑀𝑀seed

Encoding
• MACC Keys
• MHFP
• Molecular 

descriptors
• etc..

Training 
Representation

➢ 𝜇𝜇0: total particles
➢ 𝜇𝜇1: total length
➢ 𝜇𝜇2: total surface
➢ 𝜇𝜇3: total volume

Deep Set NN

RNN

𝐶𝐶𝑡𝑡, 𝜇𝜇0,𝑡𝑡, 𝜇𝜇1,𝑡𝑡, 𝑀𝑀𝑡𝑡 …

Data-driven PI (𝜷𝜷 = 𝟎𝟎. 𝟎𝟎𝟎𝟎)

𝜇𝜇0 1.59e4 4.27e3

𝜇𝜇1 0.325 0.097

𝜇𝜇2 0.089 0.158

𝜇𝜇3 0.025 0.165

𝜇𝜇4 0.062 0.215

𝐶𝐶 0.042 0.824

Performance metrics
NMSE

✓ The inclusion of 
solute-solvent 
representation allows 
model to be more 
transferable to 
different systems

✓ RNN (LSTM) showed 
their capacity to learn 
general patterns for 
different systems, 
however more work is 
necessary to improve 
their accuracy

M
ethanol

Ethanol
1-propanol
1-butanol

2-propanol
2-butanol
Acetone

2-butanone
2-pentanone

M
ethyl isobutyl ketone

M
ethyl acetate

Ethyl acetate
Propyl acetate

Dim
ethyl carbonate
Acetonitrile

2-m
ethyltetrahydrofuran

W
ater

Heptane
Cyclohexane

M
ethylcyclohexane

2,2,4-trim
ethylpentane

Lamivudine 1
Salicylic acid
Methimazole
Cimetidine

Isoniazid
Metformin hydrochloride

Probucol
Thiabendazole

Ibuprofen
1-aminoadamantane

Ivermectin
Mesna

Hydrochlorothiazide
5,5-diphenylhydantoin

Oxytetracycline
Piracetam

Phenothiazine
Cyclophosphamide monohydrate

Retinoic acid
Nicotinamide

6-aminohexanoic acid
Amino salicylic acid

Too low to 
measure

> 3 levels of 
concentration

< 4 levels of 
concentration

Balancing Performance and Manufacturability in 
Pharmaceutical Tablets

Faisal Alsharif 1,2, Natalie Maclean 1,2, Ibrahim Khadra 1, Daniel Markl 1,2

1Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow
2 Centre for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, Glasgow

Introduction 
Balancing tablet performance and manufacturability is essential in pharmaceutical formulation. Compression pressure and porosity influence tablet strength, 

disintegration, and dissolution, impacting drug release and production efficiency. This study evaluates these effects in Microcrystalline Cellulose (MCC)/Mannitol and 

Dicalcium Phosphate Anhydrous (DCPA) formulations to optimise tablet design.

Aim & Objectives
Investigate how compression pressure and porosity affect tablet performance & manufacturability.

Examine their impact on disintegration, tensile strength, and liquid absorption using sessile drop analysis.

 Analyse drug release through dissolution testing.

Optimise formulation parameters to improve tablet quality.

Materials and Methods 

Formulation Filler (1) 32% Filler(2) 32% API 30% Disintegrant 5% Lubricant 1%
1 MCC Mannitol Griseofulvin Croscarmellose Sodium 

(CCS)
Magnesium Stearate 

(Mgst)2 MCC DCPA

Blending 

• Bin blender 
• 250 rpm , 25 min

True density of blends

Gas pycnometer

Tablet manufacture Tablet characterisation 

• Weight & dimensions

• Tablet porosity calculation

Testing Direct compression

9 mm round, 250 mg

Compression pressure was 
adjusted to control porosity 
across different formulation

250 mg

Tablet Characterisation

Tensile strength Sessile drop

Water 0.4%  Sodium Dodecyl Sulfate 
(SDS) In water 

Disintegration 

Water 

Dissolution 

0.4% SDS in water

Result & Discussion

Conclusion

Pe
rf
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m
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ce

M
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uf
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lit

y 

• Higher compression pressure resulted in lower porosity, leading to denser tablets.

• MCC/DCPA exhibited better compactability, achieving higher tensile strength at lower porosity compared to MCC/Mannitol.

• Compression pressure increased tablet strength in both formulations; however, MCC/Mannitol needed higher pressure to match MCC/DCPA

• Higher porosity led to faster disintegration and quicker drug release.

• MCC/DCPA disintegrated faster than MCC/Mannitol, indicating better wettability.

• Stronger tablets resisted disintegration longer, balancing strength and dissolution.

• Balancing tablet strength, porosity, and disintegration time is crucial for optimising both performance and manufacturability.

• MCC/DCPA exhibited better compactability and faster disintegration, while MCC/Mannitol required higher compression pressure to achieve similar tensile strength.

• Higher porosity led to faster disintegration, while stronger tablets showed greater resistance to breakdown.

•  Ongoing sessile drop and dissolution studies will provide further insights into liquid absorption and drug release.
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SHARing data to accelerate Pharmaceutical 
manufacturing Efficiency across trusted Networks​

CMAC: Blair Johnston, Subhaa Arumugam
CPI: Pamela Little, Martin Keane, Kamal Abu Hassan, Rab Leckie, Marvellous Mark, Mohamed Elpkash 

CCDC: Andy Maloney, Matthew Lightfoot, Suzanna Ward  
GDP: Rob Innes 

Research Goal
Develop a Framework for Risk Assessing the Value of 

Federated Learning to Improve the Fidelity of Models in 

Pharmaceutical Manufacturing and to de-risk 

transformative (FASS) technologies in medicines 

manufacturing data sharing, to drive predictive science 

and to improve manufacturing efficiency.

Key Benefits
• Improved collaboration between organizations

• Faster model development and deployment

• Enhanced Data Privacy and Security

• Real-Time Research Data Utilization

• Better Predictive Modelling

Federated Learning Architecture
• Decentralized Data Training

• Enables collaborative ML model training while preserving privacy and ensuring 

regulatory compliance by not sharing raw data.

• Federated Client-Server Architecture
• Each client, hosted by different organizations, trains the model locally using private 

data and shares only model updates with the central server.

• Secure Model Updates & Aggregation
• The central server aggregates these updates and sends back the improved global 

model to all the clients.

• Differential Privacy & Secure Computation
• Sensitive data is protected from being reconstructed or inferred from model updates.

• Heterogeneous Data Handling
• Model training can occur on diverse data sources across different organizations.

Acknowledgment: The authors would like to thank the Digital Medicines 
Manufacturing (DM2) Research Centre (Grant Ref: EP/V062077/1) for 
funding this work. DM2 is co-funded by the Made Smarter Innovation 
challenge at UK Research and Innovation, and partner organisations from 
the medicines manufacturing sector. For more information, visit 
cmac.ac.uk/dm2-home

DM2 website

dm2dbpy: Putting the A in FAIR Data
John A. Armstrong, Christopher Boyle, Tabbasum Naz, Antony D. Vassileiou, Blair F. Johnston
j.armstrong@strath.ac.uk
Continuous Manufacturing and Advanced Crystallisation (CMAC), Strathclyde Institute of Pharmacy & Biomedical Sciences, University of 
Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, UK.

• One of the key outcomes from DM2 Platform 1 is to establish data schema and standards for 
medicines manufacturing datasets following FAIR (findable, accessible, interoperable, reusable) 
standards which was achieved through storage of data in a relational SQL database

• This data storage achieves the findability, interoperability and reusability of the data but not so much 
the accessibility since SQL itself is quite dense, and queries can be difficult to decipher

• Having a user-friendly application programming interface (API) built in Python allows researchers to 
access and use data without breaking the flow of research and in a programming language they 
are more familiar with

C: Create R: Read/select

U: Update D: Delete

QOL: don’t need to 
know arbitrary IDs 
e.g. for units or 
people, the CRUD 
functions will find 
the IDs for you 
based on 
distinguishing 
information e.g. mL 
or person’s name

1. Introduction & Motivations 2. Database Schema
Physical substances – both 
purchased and manufactured 
in-house
Datasets generated from 
analytical experiments and 
process settings

(Sub-/super-)process hierarchy 
arises from need to capture 
multi-operational experiments 
e.g. multiple probes in a 
reactor or each station in a 
DataFactory

Instrument refers to a physical 
device in the lab or a model 
being run

Measurement type refers to 
the quantity being measured 
by the instrument

“Plug-and-play” of different 
CMAC projects e.g. CSDF, 
automated tabletting DF, 
DDMAP DF Accountability

3. Interacting with the Database

• Python API built on top of SQLAlchemy’s Object Relational Mapper (ORM)
• Object-oriented approach:

o Each table is a Python class which are linked via helper functions defining primary/foreign 
keys

• Inheritance mapping: instantiating table objects will load all dependent tables
• Built-in query caching and optimisation

Example: Table describing material grade in SQLAlchemy

Table Name Primary and foreign 
key definition

Grade 
description

Define connections to 
dependent tables

Properties from 
dependent tables

• Package provides easier accessibility of data to users, with defined functions for CRUD (create, 
read, update, delete) operations

• Abstraction of SQL queries:
o Interact with DB using Python objects instead of raw SQL queries
o Simplification of complex queries and DB operations
o Function-based query construction

• Code readability: much nicer to read than raw SQL

4. CRUD Operations

Query: “Return all blends with 30% drug loading of 
griseofulvin containing 5% disintegrant.”

Python:

SQL:

“mixtures” is then a 
Python list of Mixture 
objects which are 
defined similar to the 
grade example above

Python:

Query: “Create a tablet set with 10 tablets 
consisting of 10% cmac-1 API, 1% cmac-2 
lubricant, 5% cmac-4 disintegrant and the rest 
cmac-3 filler.”

SQL:

Python:

SQL:
Python:

SQL:

6. Installation & Contribution

7. Conclusions & Future Work

• Python package is available upon request via the CMAC GitHub
• Public release on PyPI with full documentation to follow

• dm2dbpy simplifies SQL queries with a Pythonic approach, 
reducing burden for researchers

• Stepping stone on the way to plain English querying: Python is much 
more language-like than SQL

• Faster database querying: researcher spends less time getting data 
into Python

• Future work includes developing web-based GUIs for non-
programmers to interact with the database easily and integration 
with semantic technologies for smart querying.

Collaborators 
welcome!

Get in touch to 
become a 
contributor to 
the project.

5. Use Case: DM2 Tabletting DataFactory
• DataFactories generate a lot of data very quickly from a variety of 

instruments
• One such example is the DM2 platform 2 tabletting DataFactory which 

generates pre-compaction, compaction and post-compaction data 
within a matter of minutes

• Following the schema above, each instrument in the DataFactory 
would be a subprocess with each run being a process and the overall 
manufacturing target being the superprocess

• Tracking the data between these interconnected tables can result in 
SQL queries 1000s of lines long but is simplified into a short Python 
script called at the end of each iteration to store data in appropriate 
and linked tables.

Experimental data 
stored in DBProcess settings written to 

DB each iteration
Optimisation 
parameters 
written to DB
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Effect of simulation box size and 
shear on the structure of amorphous 

hydrochlorothiazide
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b Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark 
c The Cambridge Crystallographic Data Centre, United Kingdom

• Molecular dynamics (MS) simulations used increasingly to understand structure and dynamics in amorphous pharmaceutical systems

• No general guidelines around simulation box seize for small molecule systems, despite numerous such reports for biomaterials

• Effect of box size systematically studied to determine limits for consistent simulations/ properties for amorphous hydrochlorothiazide (HCTZ)

• Learnings from box size investigation used to investigate impact of shear on the structure of amorphous HCTZ to replicate ball milling

Overview        

Effect of box size on structural properties    
Impact on intra- and inter- molecular structure
• Inconsistent structural properties < 100 molecules

• 250 molecules needed as minimum to replicate long-range intermolecular interactions 

consistently

Effect of shear on structure      

Implications for structural fingerprinting using pair distribution function
• PDFs calculated from structural models by 

𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑟𝑟 = 1
𝑟𝑟෍

𝑖𝑖
෍
𝑗𝑗

𝑓𝑓 𝑄𝑄 𝑖𝑖𝑓𝑓 𝑄𝑄 𝑗𝑗
𝑓𝑓 𝑄𝑄 2 δ(𝑟𝑟 − 𝑟𝑟𝑖𝑖𝑖𝑖 −4𝜋𝜋𝑟𝑟𝑟𝑟0

• Poor consistency of PDF < 100 molecules

• Good agreement with experimental ≥ 250 molecules

10 molecules 50 molecules

100 molecules 250 molecules

500 molecules Comparison to experimental

Torsion distribution Distribution of intermolecular interactions across trajectories

Aromatic interactions

Mean distribution of intermolecular interactions

Shear simulations: Background and previous work

• Previous work from collaborators investigated polyamorphism in HCTZ with MD/ PDF

• Identified torsion distribution change depending on preparation route (melt-quench vs spray 

drying)

• Unable to replicate ball milling with simulation  
 

 
 

• Materials Studio used to simulate effect of pressure and shear on structure of amorphous HCTZ

Impact of shear on structural properties

• Shear/ pressure induces similar structural changes as melt quenching

• Increase in flipped conformer relative to ambient simulations

• Energy barrier between ring puckering states may explain process dependence of transition

• Change in distribution of intermolecular interactions, often involving groups involved in 

conformational change

Conclusions
Box size
• Local structure in MD simulations of 

amorphous HCTZ dependent on box size
• Inconsistent box packing when less than 100 

molecules are used
• Long-range interactions not accounted for fully 

until ~250 molecules in the box

Effect of shear
• Shearing results in same intramolecular 

structural change as melt-quenching, possibly 
explaining preparation method-dependent 
properties of the amorphous form

• Intermolecular contacts also significantly 
affected by shear/ pressure

Physical & Chemical Analysis of 
Pharmaceutical Materials

Dr. Christoph Busche, Dr. María José Heras Ojea, MChem. Rachel Feeney, MChem. Mark McGowan 
CMAC National Facility, University of Strathclyde, 99 George St, Glasgow, G1 1RD 

Introduction
Analytical characterisation plays an important role throughout the pharmaceutical manufacturing pipeline, specifically for testing the active pharmaceutical ingredients, excipients, blends 
and final solid dosage forms. Analytical techniques available at the CMAC National Facility include; particle sizing and morphology imaging, density measurements (bulk, tapped & 
particle), thermal stability measurements, surface area & energy, impurity detection & quantification, powder flow properties, tablet hardness and dissolution testing. Our techniques have 
also been used in a number of non-pharmaceutical related applications.

Raman coupled Morphology
This is the combination of two analytical methods: morphological analysis (shape and size 
distribution) and chemical identification via Raman spectroscopy.

Raman spectroscopy can be used to identify polymorphism in a given sample. 

The combination of morphological and chemical analysis can be used to “deformulate” a 
given blend. (here cold medicine is used as an example)

Time of Flight Secondary Ion Mass Spectroscopy (ToF-SIMS)
ToF-SIMS is a surface analysis method which uses a Bi3+ primary ion beam map a surface 
via mass spectra. Other ions (Ar or O2)  can be used to remove surface layers to expose 
deeper parts of the sample. In this example, the effect of blending on the distribution of 
excipients and Mg stearate in the final tablet has been investigated (left = less blended) 
(right = more blended). The ion distributions of Magnesium Stearate (green), Lactose 
(blue) and Avicel (red) have been overlaid to compare distribution patterns. 

Infrared microscope
IR-Microscopy can be used for chemical analysis of specific areas of interest. The 
example below shows it being used in forensic trace analysis, specifically gunshot 
residues and for the analysis of micro-bond resin droplets on glass fibres. 

Two different forms of gunpowder 
residue on cotton fabric.

Optical coherence tomography (OCT)
OCT is a high-resolution imaging technique using coherent light to measure depth 
resolved images (up to 2mm) of scattering material. 

Surface profile of 
an extrudate.

Depth profile of a 
multicomponent 

extrudate

Microscope image and live IR spectra of a resin droplet.

Reference spectra of three APIs: 
Paracetamol, Guaifenesin, 
Phenylephrine  

Original Cotton fabric.

Acknowledgements: Examples of Raman coupled Morphology were provided by Dr. Jo Lothian, Malvern Panalytical Ltd. Micro-bond resin droplets were provided by David Bryce, 
Mechanical and Aerospace Engineering, University of Strathclyde. Gunpowder residue samples were provided by Hamad S. Rashed, Pure and Applied Chemistry, University of 
Strathclyde                               

500 μm 500 μm

50 μm50 μm

Comparison between 
different brands of 
cold medicine. 8 
components could be 
identified using an 
internal reference 
library. 
Once identified the 
respective particle 
size distribution for a 
chosen component 
can be extracted.

The components were 
identified by Raman 
spectroscopy and a 
trend of the aspect 
ratio could be seen

Starch 
v 

Paracetamol
v

Guaifenesin

OCT can be used for the destruction free determination 3D imaging of structures in 
extrudates, tablets and other scattering material. Structures including coating thickness, 
cracks, domain/grain sizes

Cracks and “grains” 
below the surface of an 

extrudate
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Deep Learning Enhanced Correlation of 
Particle Descriptors to Sustainable 

Pharmaceutical Manufacturing Processes 
Omar El-Habbak1, Cameron Brown1, Alexandru Moldovan2, Helen Blade3, Rachael Shinebaum4, Alastair Florence1

1 CMAC Future Manufacturing Hub, Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, UK
2 Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, UK

3 Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
4 Technical Operations & Scientific Innovation, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK

1. The Missing Piece? 2. Data Pipeline

3. What    the    Models                               Tell      Us

• Currently, determining the suitability of powders for product 

development requires detailed, time-consuming 

experimental characterization of the bulk properties. 

• Machine learning prediction of powder flowability based on 

crystal properties could positively influence critical 

decision-making during medicine manufacturing. 

4. What’s Next?

1. PXRD pattern analysis and 
mapping to CSD RefCode 

structures

2. Mitigate data scarcity by using 
active learning and synthetic data 

generation

3. Model particle size 
distributions instead of 

individual particle 
characteristics 

KDE Plot of Regression Error Residuals – All Faces (dotted 
lines are test RMSEs)

KDE Plot of Regression Error Residuals – 4 Most Morphologically 
Dominant Faces (dotted lines are test RMSEs)

KDE Plot of Regression Error Residuals – 4 Faces with Highest Surface 
Energies (dotted lines are test RMSEs)

Crystal Property Modeling Parameter Device Used

Flowability (bulk 
property)

Flow function coefficient FT4 Powder 
Rheometer

Particle Size Distribution D10, D50, D90, D[3,2] QicPic Sympatec

Morphology and Energy 
Calculations

Total lattice energy, 
electrostatic energy, H-

bond energy, VdW energy 

Computationally 
acquired through CSD 

Python API
Surface Chemistry H-bond donor density, 

aromatic bond density, H-
bond acceptor density

Computationally 
acquired through CSD 

Python API
Surface Roughness Rugosity, RMSD, 

skewness, Pearson 
kurtosis

Computationally 
acquired through CSD 

Python API

Key Findings:

• Models run on the dataset of experimental + 

computational particle descriptors performed better 

than those run on experimental descriptors alone. 

• Pearson and Spearman correlations showed high 

correlation between flowability and certain descriptors 

(total lattice energy, electrostatic energy, VdW

attraction) highlighting the need of further exploration 

of descriptors to pinpoint their relevance to flowability.

• Models that were run on data representing particle 

descriptors of a crystal’s four faces with the highest 

surface energies outperformed those run on data 

representing particle descriptors of all faces or the 

four most morphologically dominant faces, suggesting 

a face’s surface energy has high impact on flowability.
Pearson Correlation
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6. Summary & key publications

Hikaru G. Jolliffe1, Martin Prostredny1, Carlota Mendez Torrecillas1, Ecaterina Bordos1, Bilal Ahmed1, Maria A. Velazco-Roa, 
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hikaru.jolliffe@strath.ac.uk

4b. Transferable equation: include a Fr1/2 term

Medicines Manufacturing Innovation Centre: 
research highlights from an 

industry-academia-government collaboration

•Approach also works for CQA of tensile strength, content uniformity (API RSD), and other
formulations.

1 CMAC, University of Strathclyde, Glasgow. 

Int. J. Pharm.

1. Medicines Manufacturing Innovation Centre

Paisley

Glasgow

• Part of the Advanced Manufacturing Innovation District 
Scotland (AMIDS)

• MMIC project led by Centre for Process Industry (CPI), 
University of Strathclyde, AstraZeneca, GSK, UKRI, 
Scottish Enterprise, and the Scottish Government; other 
partners also (Pfizer, Gericke, DFE Pharma).

• “…an international beacon for innovation in small molecule 
medicines manufacturing”

2. Example CDC flowsheet

1 Feeder models 2 Blender models 3 Tablet press models

1a Feedfactor prediction 2a Blender macromixing (RTD) 3a Feedframe macromixing (RTD)

1b Feedfactor variability prediction 2b Blender micromixing (RSD and strain) 3b Tablet compression/compaction

2c Blender extent of lubrication

Inputs
Material properties
Equipment configuration

Outputs
Decay model parameters

Outputs
Estimate of variability

Inputs
Material properties
Equipment properties

Outputs
RTD model parameters

Inputs
Blend properties
Equipment configuration

Outputs
Micromixing as variability

Inputs
Macromixing
Equipment configuration

Outputs
Tablet hardness

Inputs
Blend properties
Extent of blending

Outputs
Tablet specifications

Inputs
Tablet composition
Equipment configuration

Outputs
RTD model parameters

Inputs
Blend properties
Equipment configuration

LIW FEEDING BLENDING TABLETTING

Continuous

Semi-continuous

3a. Loss-in-Weight (LIW) feeder modelling
𝑓𝑓𝑓𝑓 = 𝒇𝒇𝒇𝒇𝒎𝒎𝒎𝒎𝒎𝒎 − 𝒇𝒇𝒇𝒇𝒎𝒎𝒎𝒎𝒎𝒎𝑒𝑒−𝜷𝜷𝑣𝑣•LIW screw feeders: hopper 

above screws. As screws turn, 
material is dispensed.

•Can be measured in mass per 
revolution, the feed factor (g/rev).

•Feed factor can decay as hopper 
empties. Exact performance 
depends on material and 
equipment choice.

•Later, sharper decay (high β) or 
sooner, gradual decay (low β). 

•Feed factor can also be lower or 
higher overall (ffmax).

Feeder emptying

3b. Machine Learning for parameter prediction

ffmax

•Use Machine Learning to predict LIW feeder process performance (model equation parameters)
using material properties and equipment choice as inputs.

Pow. Tech.

(Prostredny et al, 2024)

4a. Impact of batch blending on powders
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(Gericke AG, n.d.; Kushner & Moore, 2010; Kushner, 2012; Kushner & Schlack, 2014)

•Rate constant γ should be formulation-
dependent, and the same for all 
conditions (one curve)

𝜎𝜎SF=0.85 = 𝜎𝜎SF=0.85,min + 𝜎𝜎SF=0.85,max − 𝜎𝜎SF=0.85,min e−𝛾𝛾𝑉𝑉 Τ1 3𝐻𝐻𝐻𝐻

66% microcrystalline cellulose
33% lactose,
1% MgSt

•Low-shear
Low-RPM
0 < Fr < 0.4

•High-shear
High-RPM
0 < Fr < ?

𝐹𝐹𝐹𝐹 = 𝜔𝜔2𝑟𝑟
𝑔𝑔

𝜎𝜎SF=0.85 = 𝜎𝜎SF=0.85,min + 𝜎𝜎SF=0.85,max − 𝜎𝜎SF=0.85,min e−𝛾𝛾𝐾𝐾 𝐾𝐾 = 𝑉𝑉 Τ1 3𝐻𝐻𝐻𝐻𝐹𝐹𝐹𝐹𝑛𝑛, ቊ𝑛𝑛 = 0 𝐹𝐹𝐹𝐹 < 1
𝑛𝑛 = 2 𝐹𝐹𝐹𝐹 > 1
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5. Continuous blender mass holdup
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Differing behaviourMaterial A Material BInlet Lubricant 
port

Outlet and 
chuteType 1 weir

(45° aperture)
Type 3 weir

(horizontal aperture)

or

Angled outlet

•Unexpected mass-
holdup behaviour 
depending on 
equipment 
configuration.

•Hypothesis –
some material
forms inclined powder surface; when surface 
matches outlet angle, mass holdup is increased.

ffmax – impact of missing predictors

M
L p

re
di

ct
io

n

Observed

(Jolliffe et al., 2024a; Prostredny et al., 2024)

(Jolliffe et al., 2024b)
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An Intelligent Decision System 
for the Efficient Prediction of 
Thermodynamic and Thermal 
properties with a Successive 

Improvement Framework

Murray Knight – CMAC,  
University of Strathclyde 

This poster will be available at the conference

TBC

Deepak Kakde - CMAC,  
University of Strathclyde 

This poster will be available at the conference
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Discovery of a new high-pressure phase of 
Posaconazole

Banaz Fetah,¹ Daniel Markl,¹,² Cheryl Doherty,³ Iain D. H. Oswald,¹ 
1. Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK

2. EPSRC Future Manufacturing Research Hub for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, Technology and Innovation 
Centre, UK

3. GlaxoSmithKline, Stevenage, UKAim of the project
To investigate the effect of pressure on Posaconazole through the use of X-ray diffraction to enable
us to elucidate the changes to the structure as a function of applied pressure.

This work is funded by through the Engineering and Physical Sciences Research Council 
(EPSRC) and GlaxoSmithKline. 

ACKNOWLEDGEMENT

INTRODUCTION
During the tablet manufacturing process in the pharmaceutical industry, crystalline materials are subjected to various external forces, most notably pressure during the compression 
stage.1 Hence, it is important to investigate the effects of pressure on pharmaceutical materials to identify any phase transitions that may occur or understand how elastic or plastic 
the materials can be.2 By investigation of materials under high pressure, it allows us to gain valuable insights for pharmaceutical researchers to develop more effective and stable 
drug formulations. 
Posaconazole (POSA) is an antifungal compound used to treat infections in immunocompromised individuals. There are fourteen different polymorphs found, of which only 2 have 
their crystal structures reported but much less is understood about their properties.3 Of the two structurally characterised forms, the thermodynamically stable form of POSA (Form I) 
crystallises in the monoclinic space group P21 with Z = 2 whilst Form II crystallises from the melt in the same space group P21 with Z =6. Form I is primarily used to produce oral 
suspensions.4

1. Rogers, A., Hashemi, A. & Ierapetritou, M. Modeling of Particulate Processes for the Continuous Manufacture of 
Solid-Based Pharmaceutical Dosage Forms. Processes 1, 67–127 (2013).
2. Park, H., Nie, H., Dhiman, A., Tomar, V. & Zhou, Q. T. Understanding Dynamics of Polymorphic Conversion during 
the Tableting Process Using In Situ Mechanical Raman Spectroscopy. Mol. Pharmaceutics 17, 3043–3052 (2020).
3. Guidetti, M., Hilfiker, R., Kuentz, M., Bauer-Brandl, A. & Blatter, F. Water-mediated phase transformations of 
posaconazole: An intricate jungle of crystal forms. European Journal of Pharmaceutical Sciences 195, 106722 
(2024).
4. Lykouras, M., Orkoula, M. & Kontoyannis, C. Formation and Characterisation of Posaconazole Hydrate Form. 
Pharmaceuticals 16, 65 (2022).
5. Huang, C. et al. Understanding Compression-Induced Amorphization of Crystalline Posaconazole. Mol. 
Pharmaceutics 16, 825–833 (2019).
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METHODS

Figure 1. (a) Conventional diamond anvil cell (DAC). (b) 
Single crystal of POSA with ruby chips loaded in DAC.

The diamond anvil cell (DAC) is a method not widely employed across the board in studies. However, the DAC 
offers significant advantages such as its ability to reach pressures of up to 10 Gigapascal (10000 Megapascal) to 
identify new high-pressure phases. 
The DAC is essentially composed of 2 opposing diamonds, a tungsten gasket and a sample chamber. Since 
diamonds are electromagnetically transparent, various spectroscopic and diffraction techniques (e.g., single-
crystal X-ray diffraction) can be used.

Figure 2. Single crystal X-ray diffraction image.

What are some of the limitations we 
face? 
• Shading from the steel body limit the 

amount of data that we can access.
• Diamond reflections and gasket rings 

can increase background noise.Within the sample chamber ruby is added to measure the pressure inside 
the cell. Pressure transmitting medium (PTM), such as petroleum ether or 
silicone oil is added to create a hydrostatic environment which enables 
single crystal data to be collected. 

(a) (b)

.  

CONCLUSION
This study demonstrates a pressure-induced phase transition of POSA at 0.25 GPa 
There is a tripling of the b-axis and a reduction in symmetry in P1. 
Structural overlay of the ambient form (Form I) and high-pressure form show that the 
structures are mostly similar with rotations in the end groups. 

RESULTS
On compression, we observed that Form I undergoes a phase transition between 0.17-0.25 
GPa due to a sudden change in the unit cell parameters (Table 1). Our results show that 
POSA transforms to a new high-pressure polymorph where there is a tripling of one of the 
axes and a reduction in symmetry to P1. The number of formula units changes from Z=2 to 
Z=6 induced by a change in the conformation of the molecule; this form is different to Form 
II.

Slight rotation

Figure 3. (a) Ambient form (P21) with Z=2 in blue. (b) New high-pressure form (P1) 
with Z=6 in orange.

Figure 4. Structural overlay of Form I (blue) and high-pressure form 
(orange).

The overall structures are largely similar but a rotation in the end groups of the 
molecule can be observed, particularly the triazole ring (Figure 4). This change 
is significant enough to cause a change in symmetry and move to a more 
complex description of the structure bringing the amorphous form one step 
closer.

Figure 5. Microscopic images showing incremental increases in pressure 
applied to single crystals of POSA in DAC.

Previous investigation of POSA tablets by Huang et al. observed that Form I
amorphized under compaction conditions at 0.4 GPa indicating a compression-
induced phase transition.5

In this study, the crystal started deteriorating at 0.33 GPa, as shown by the 
striations (Figure 5) which made it difficult to collect good diffraction data 
beyond this point. Strain within the large crystal can result in a more disordered 
state and the overall structure can move closer to the characteristics of an 
amorphous state.

.
Table 1. Unit cell parameters of Form I and new high-pressure form.
Pressure (GPa) a -axis b -axis c -axis al(°) be(°) ga(°) Volume

0 12.5262 6.3499 22.7875 90 96.348 90 1801.41

0.25 11.9304 18.5528 23.9016 104.486 93.797 91.092 5107.5

(b)(a)

.  

FUTURE WORK
Explore the use of powder instead of a single crystal in the diamond anvil cell (DAC) 
to determine if comparable changes are observed.

HHyyddrrooddyynnaammiicc  CChhaalllleennggeess  iinn  
CCrryyssttaalllliissaattiioonn::  LLeevveerraaggiinngg  CCFFDD  ffoorr  

PPrreecciissiioonn  RReeaaccttoorr  OOppttiimmiissaattiioonn  
MMiittcchheellllee  MMaannddaazzaa1,2 *, Cameron Brown1,2  and Jan Sefcik3

1Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde
2 EPSRC Future Manufacturing Hub for Continuous Manufacturing and Advanced Crystallisation, Technology and Innovation Centre, University of Strathclyde, UK

3 Department of Chemical and Process Engineering, University of Strathclyde

* mmiittcchheellllee..mmnneemmoo@@ssttrraatthh..aacc..uukk

IINNTTRROODDUUCCTTIIOONN  RREESSEEAARRCCHH  OOBBJJEECCTTIIVVEESS  

• Compare hydrodynamic performance across three reactor 
systems: Crystalline, EasyMax, and OptiMax.

• Evaluate velocity distribution, turbulence and shear stress using 
CFD simulations. 

CCoonncclluussiioonnss  

MMEETTHHOODDSS  

• Hydrodynamic factors like turbulence, micro-mixing, and energy 
dissipation affect supersaturation control, crystal size distribution, 
and process efficiency in crystallization.

• Optimising these factors improves reactor selection, scalability, 
and overall crystallisation outcomes

• CFD analysis provides insight into how reactor design 
influences hydrodynamic performance. 

• EEaassyyMMaaxx  exhibits the best uniformity, minimising turbulence-
driven inconsistencies. 

RREEFFEERREENNCCEESS
1. Čelan, A., Ćosić, M., Penga, Ž., & Kuzmanić, N. (2024). Experimental and CFD Analysis of Hydrodynamics in Dual-

Impeller Crystallizer at Different Off-Bottom Clearances. Processes, 12(10), 2183
2. Pohar, Andrej & Erklavec Zajec, Vivian. (2020). "A Review of Computational Fluid Dynamics (CFD) Simulations of

Mixing in the Pharmaceutical Industry". Biomedical Journal of Scientific & Technical Research. 27. 10
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EPSRC Future Manufacturing Hub for Continuous Manufacturing and Advanced Crystallisation, Technology and Innovation Centre, Neda 
Nazemifard (Takeda), National Manufacturing Institute Scotland (NMIS) and Scottish Research Partnership in Engineering (SRPe) and the University of 
Strathclyde. 

FFiigguurree  55..  33DD  CCFFDD--pprreeddiicctteedd  sshheeaarr  ssttrreessss  ddiissttrriibbuuttiioonn  iinn  tthhee  EEaassyyMMaaxx  aatt  440000rrppmm,,  
hhiigghhlliigghhttiinngg  uunniiffoorrmm  ssttrreessss  ddiissppeerrssiioonn..  

FFiigguurree  77..  ((aa))  CCFFDD--pprreeddiicctteedd  vveelloocciittyy  pprrooffiilleess..  TThhee  aavveerraaggee  vveelloocciittyy  cchhaannggeess  wwiitthh  iinnccrreeaassiinngg  
aaggiittaattiioonn  ffoorr  eeaacchh  rreeaaccttoorr..  ((bb))    CCoorrrreellaattiioonn  bbeettwweeeenn  eeddddyy  ddiissssiippaattiioonn  rraattee  ((EEDDRR))  aanndd  nnuucclleeaattiioonn  

rraattee  ((JJVV))  hhiigghhlliigghhttss  tthhee  iimmppaacctt  ooff  mmiixxiinngg  iinntteennssiittyy  oonn  ccrryyssttaalllliissaattiioonn  kkiinneettiiccss..    

FFiigguurree  22..  CCrryyssttaalllliinnee  rreeaaccttoorr  vviiaall  
wwiitthh  vveelloocciittyy  ccoonnttoouurrss  aatt  440000rrppmm..  
OOppeerraattiinngg  aatt  lloowweerr  RRee,,  rreessuullttiinngg  
iinn  wweeaakkeerr  mmiicciinngg  aanndd  llooccaalliizzeedd  
ssuuppeerrssaattuurraattiioonn  ggrraaddiieennttss..  

FFiigguurree  66..  ((aa))  CCFFDD--pprreeddiicctteedd  sshheeaarr  ssttrreessss  vvaarriiaattiioonnss  aaccrroossss  ddiiffffeerreenntt  rreeaaccttoorr  ddeessiiggnnss..  ((bb))  EExxppeerriimmeennttaallllyy  
eessttiimmaatteedd  sshheeaarr  ssttrreessss  iinn  tthhee  CCrryyssttaalllliinnee  rreeaaccttoorr,,  pprroovviiddiinngg  ccoommppaarriissoonn  wwiitthh  ssiimmuullaattiioonn  rreessuullttss..  

FFiigguurree  33..  22DD  sslliicceess  ooff  EEaassyyMMaaxx  rreeaaccttoorr  wwiitthh  vveelloocciittyy  
mmaaggnniittuuddee  pprrooffiilleess  aatt  440000  aanndd  660000rrppmm..    MMoorree  uunniiffoorrmm  
vveelloocciittyy  ggrraaddiieennttss  wwiitthh  iinnccrreeaassee  iinn  aaggiittaattiioonn..  

MStar CFD 
Solver 

Overhead 
marine 
impeller

Main 
Lattice 

FFuuttuurree  wwoorrkk

• Develop industry-standard reactor design 
guidelines for better scalability and process 
control.

Problem Definition

• Objectives
• Key Parameters 
• Build 3D Geometry

Preprocessing 

• Define solvent & 
solute properties

• Select turbulence 
models

Solve 

• Define time steps
• Initial conditions 
• Run Simulation

Post Processing 

• Analyse 
Results 

a b

• Validate CFD models with experimental data across diverse operating 
conditions.

• Velocity fluctuations - 
highlight local 

• turbulences and allow 
calculations for turbulent 
intensity.

• Turbulence intensity - 
observe if flow is 
turbulent or laminar and 
predict fluid flow 
properties

• EasyMax maintains higher 
levels of shear stress 

• While shear rate is used for validation, energy dissipation rate (EDR) may provide 
deeper insight into nucleation kinetics and reactor performance. EDR directly 
represents turbulence intensity and micromixing, which are critical for 
supersaturation distribution and nucleation kinetics.

CCFFDD  RREESSUULLTTSS RREESSUULLTTSS

a b

• Modelled reactor 
geometries based 
on real laboratory 
setups.

• CFD analysis on key 
hydrodynamic 
parameters: 
Reynold’s number 
(Re), Velocity 
Distribution, Shear 
Stress and Shear 
Stress.

• MStar CFD to 
simulate flow 
behaviours at 
different agitation 
speeds 

FFiigguurree  11..  CCrryyssttaalllliinnee  vviiaall  ,,  55  mmLL  ((lleefftt)),,  EEaassyyMMaaxx  RReeaaccttoorr  sscchheemmaattiicc,,  CCFFDD  SSiimmuullaattiioonn  SSeettuupp..

Fluid 
Height

FFiigguurree  44..  22DD  sslliicceess  ooff  EEaassyyMMaaxx  rreeaaccttoorr  wwiitthh  sshheeaarr  ssttrreessss  pprrooffiilleess  aatt  440000,,  660000  aanndd  880000  rrppmm..  

0

0.05

0.1

0.15

0.2

0.25

0.3

0 200 400 600 800 1000 1200

M
ea

n 
Sh

ea
r S

tr
es

s [
Pa

]

Agitation [rpm]



CMAC	 POSTER COLLECTION

2 1WWW.CMAC.AC.UK2 0

POSTER 16

LEADS TO…

𝜕𝜕xA
𝜕𝜕t + ∇(𝐯𝐯xA) = ∇ DAB · ∇xA +

+∇ DABxA · ∇ A 1 − xA 2 − ε2∇2xA

•

•
• 𝛆𝛆𝟐𝟐𝛁𝛁𝟐𝟐𝐱𝐱𝐀𝐀
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Τ𝜕𝜕c 𝜕𝜕t = ∇ ΤM f, cc ∙ ∇μc μc = fα,c 1 − H + fβ,cH

• η

Τ𝜕𝜕η 𝜕𝜕t = −L𝜇𝜇𝜂𝜂 μη = fβ − fα − cβ − cα fβ,cβ H +WfLand − κη

η
Penalty coefficient for the α β

• η
•

σ = 1
3

κW
2

2λ = ൗ2κ W

σ = 0.471
2λ = 1.414
M = 1
L = 1

σ = 1
2λ = 1
M = 1
L = 1

Τ𝐀𝐀 𝐑𝐑𝐑𝐑 = 𝟎𝟎, 𝛆𝛆 = 𝟏𝟏 Τ𝐀𝐀 𝐑𝐑𝐑𝐑 = 𝟏𝟏, 𝛆𝛆 = 𝟏𝟏 Τ𝐀𝐀 𝐑𝐑𝐑𝐑 = 𝟑𝟑, 𝛆𝛆 = 𝟏𝟏
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So… where is 

The models, chico, they never lie
…or do they?
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TTaakkee  HHoommee  MMeessssaaggee::

SAFT-γ Mie EoS can be employed 
confidently regarding its accuracy 
and reliability in predicting 
thermodynamic properties of 
APIs.

Benchmarking the Predictive Capabilities of the SAFT-γ Mie EoS for 
Properties of Interest in Pharmaceutical Systems

Saman Naseri Boroujeni, Gaurav Seth, George Jackson, Amparo Galindo, Claire Adjiman
Department of Chemical Engineering, Sargent Centre for Process Systems Engineering, Institute for Molecular Science and Engineering, 
Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom

I. Introduction II. Methods

III. Results & Discussion

MAE of the 𝑤𝑤𝐴𝐴𝐴𝐴𝐴𝐴
𝑠𝑠𝑠𝑠𝑠𝑠 for all APIs: 0.052 [g/g],  MAE of the log10 𝑤𝑤𝐴𝐴𝐴𝐴𝐴𝐴

𝑠𝑠𝑠𝑠𝑠𝑠 for all APIs: 0.094 [-]

IV. Conclusions

SAFT-γ Mie

SAFT-VR 
Mie

GC Method

Fused 
heteronuclear 

molecular model

Mie 
potential

Square-well 
sites as other 
SAFT models

a Journal of Chemical & Engineering Data 2024, 69, 650–678.
b Molecular Physics 2024, 122, e2394132.
c Industrial & Engineering Chemistry Research 2024, 63, 20397–20423.
d Fluid Phase Equilibria 2022, 560, 113504.
e Fluid Phase Equilibria 2021, 540, 113002.
f Journal of Chemical Physics 2014, 140, 054107.
g Journal of Chemical and Engineering Data 2014, 59, 3272–3288.
h Molecular Physics 2015, 113, 948–984.

i Industrial and Engineering Chemistry Research 2017, 56, 10856–10876.
Fluid Phase Equilibria 2016, 416, 104–119.

j Molecular Physics 2016, 114, 2724–2749.
k RSC Advances 2019, 9, 38017–38031.
l Fluid Phase Equilibria 2023, 566, 113635.

m Journal of Chemical and Engineering Data 2020, 65, 5862–90.
n, o, 

p, q, r Unpublished works.

Aspirin Lidocaine Mefenamic Acid LovastatinKetoprofen IbuprofenBenzoic Acid Paracetamol

Why? The significance of thermodynamic modelling in computer-aided 
molecular and process design within pharmaceutical process 
engineering.

Active pharmaceutical ingredients (APIs), featuring multiple 
functional groups, serve as an ideal benchmark for evaluating 
the accuracy and reliability of the SAFT-γ Mie equation of state.

What? 8 Active Pharmaceutical Ingredients

7 Amino Acids

24 Organic Solvents

How? Solubility of APIs in Pure Organic Solvents
Solubility of APIs in Mixed Solvents
Solubility of AAs in Pure Organic Solvents
Solid-Liquid-Liquid Equilibrium of API + Pure Solvents
Solid-Liquid-Liquid Equilibrium of API + Mixed Solvents
Eutectic Mixtures
Octanol-Water Partition Coefficients

Molecules Contributing 
Groups

Groups 𝝂𝝂𝒌𝒌
∗ , 𝑺𝑺𝒌𝒌, 𝝀𝝀𝒌𝒌𝒌𝒌

𝒓𝒓 , 𝝀𝝀𝒌𝒌𝒌𝒌
𝒂𝒂 , 𝝈𝝈𝒌𝒌𝒌𝒌 

𝝐𝝐𝒌𝒌𝒌𝒌, 𝒏𝒏𝒌𝒌,𝑯𝑯, 𝒏𝒏𝒌𝒌,𝒆𝒆𝒆𝒆, 𝒏𝒏𝒌𝒌,𝒆𝒆𝒆𝒆

Unlike 
Interactions

𝝀𝝀𝒍𝒍𝒍𝒍
𝒓𝒓 , 𝝐𝝐𝒍𝒍𝒌𝒌

𝝐𝝐𝒂𝒂𝒂𝒂,𝒍𝒍𝒍𝒍
𝑯𝑯𝑯𝑯 , 𝑲𝑲𝒂𝒂𝒂𝒂,𝒍𝒍𝒍𝒍

𝑯𝑯𝑯𝑯

IIIa. Active Pharmaceutical Ingredients

IIIb. Solubility in Pure Solvents IIIc. SLE & SLLE Phase Diagrams 

Aspirin Benzoic Acid Paracetamol Lidocaine Ketoprofen Mefenamic 
Acid Ibuprofen Lovastatin

MAE of the 
𝑤𝑤𝐴𝐴𝐴𝐴𝐴𝐴

𝑠𝑠𝑠𝑠𝑠𝑠 0.023 0.019 0.067 0.083 0.121 0.024 0.082 0.071

MAE of the 
log10 𝑤𝑤𝐴𝐴𝐴𝐴𝐴𝐴

𝑠𝑠𝑠𝑠𝑠𝑠 0.284 0.132 0.652 0.162 0.890 1.531 0.457 0.284
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Data-Driven Virtual Knowledge Graph for Pharma

7- DM2 - Data Visualisation from Knowledge Graph
➢ Data visualisation of “particle shape - aspect ratio” of different materials from 

Morphologi-G3 via knowledge graph.

Tabbasum Naz, Blair Johnston
tabbasum.naz@strath.ac.uk, blair.johnston@strath.ac.uk

Continuous Manufacturing and Advanced Crystallisation (CMAC), Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, 

Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, UK.

 1- Abstract
Currently,  medicine manufacturing data is difficult to access and query as it is in a) unstructured format, ii) scattered at multiple locations in variety of formats iii) without meta-data and 
stored in files. To solve these problems, we have proposed a Digital Medicine Manufacturing - Extract-Transform-Load (DM2 ETL) tool to derive maximum value from the data acquisition 
effort to date and to allow future data to be integrated easily. DM2 ETL, with multiple components, is responsible for extraction, transformation and loading of heterogeneous medicine 
manufacturing data related to multiple instruments. Schema for experimental data in the medicine manufacturing domain has been designed that provides a structure for data and 
establishes linkage to meta-data. For central repository in structured format, we have used MS-SQL server.

Once data is structured in MS-SQL, server, we have performed semantic integration of medicine manufacturing data using virtual knowledge graph. Medicine manufacturing data 
virtualisation is performed through integration of ontotext ontop platform. To achieve this task, we have developed  Ontology Based Data Access (OBDA) mappings defined from DM2 

database. OBDA file descriptors are developed to map relational schema to graphs. This helps us to access the medicine manufacturing data via SPARQL endpoint. This allows medicine 
manufacturing experts to access and query the overall data assets in an integrated way, by exploiting the semantics of the extracted information. As data is in interoperable format so its easy 
to connect it to other existing ontologies in the domain. 

2-  MS-SQL Database Overview

4- Methodology
✓ Database schema for multiple instruments has been designed including 

✓ Morphologi G3 
✓ Gas pycnometer
✓ Autotap

✓ Meta-data schema has also been designed
✓ Linkage of instrument’s data with meta-data
✓ DM2 ETL has been designed fto  load instrument’s data
✓ Data Virtualisation with GraphDB via ontotext ontop open-source platform

6- Navigation of Virtual Knowledge Graph 
Navigation of “blend/mixture composition” using SPARQL query

✓ blend_1 and blend_10

5- Search Data Using SPARQL
✓ Medicine manufacturing data can be searched via SPARQL 
✓ SPARQL query to search “experiment details” 

8- Conclusion
✓ Medicine manufacturing data integration and access based on virtual knowledge graphs (VKG)
✓ Towards FAIR data
✓ Medicine manufacturing data available in relational database and virtual knowledge graph
✓ Fully structured data that can be linked with other resources
✓ Data is also available in MS-SQL server that can easily be linked with Tableau visualisation software and provides interactive data visualization

3- Virtual Knowledge Graph Approach for Medicine Manufacturing Data

•
The task is that of identifying entities (e.g. drugs, 
proteins, genes, diseases) and identifying 
relationships betw

een them
 from

 e.g. scientific 
literature, clinical trial reports, etc.

•
U

seful for constructing pharm
aceutical know

ledge 
graphs, m

edicine repurposing/re-use, adverse 
m

edicine reaction detection, discovery of new
 

m
edicines etc.
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Data

•Existing datasets have lim
itations, e.g. assum

e 
a classification setting, are noisy, do not have 
annotations for end-to-end R

E, etc.

•W
e introduce a new

 dataset suitable for end-
to-end generative biom

edical R
E obtained 

from
 U

M
LS and W

ikipedia.

•Each instance in dataset consists of text (e.g. a 
sentence) together w

ith all relation triples 
expressed in the text.

•D
ataset has a total of about 107k instances 

w
hich w

e split into 106k/500/500  train/val/test 
split.  B

aseline m
odels include B

A
R

T
1, G

E
N

IE
2, 

and B
IO

G
P

T
3.

•O
ur proposed approach com

bines elem
ents 

from
 previous m

ethods for true end-to-end 
generative pharm

aceutical relation extraction. 
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Figure 1: K
now

ledge G
raph extracted from

 the  follow
ing text: 

"Aberrant splicing of phenylalanine hydroxylase m
R

N
A: the m

ajor cause for phenylketonuria in parts of 
southern Europe. W

e report a m
utation w

ithin the phenylalanine hydroxylase (PAH
) gene that causes 

aberrant splicing of the m
R

N
A and that is in tight association w

ith chrom
osom

al haplotypes 6, 10, and 
36. Because of the high frequency of these particular haplotypes in Bulgaria, Italy, and Turkey, it 
appears to be one of the m

ore frequent defects in the PAH
 gene causing classical phenylketonuria in 

this part of Europe. The m
utation is a G

 to A transition at position 546 in intron 10 of the PAH
 gene, 11 

bp upstream
 from

 the intron 10/exon 11 boundary. It activates a cryptic splice site and results in an in-
fram

e insertion of 9 nucleotides betw
een exon 10 and exon 11 of the processed m

R
N

A. N
orm

al 
am

ounts of liver PAH
 protein are present in hom

ozygous patients, but no catalytic activity can be 
detected. This loss of enzym

e activity is probably caused by conform
ational changes resulting from

 the 
insertion of three additional am

ino acids (G
ly-Leu-G

ln) betw
een the norm

al sequences encoded by 
exon 10 and exon 11"

Table 1: R
esults show

ing perform
ance of our 

approach com
pared to other m

ethods from
 

the literature.
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Physics Informed Neural Networks For 
Fluid Dynamics In Channels 

Thomas Ralph, Cameron Brown, Alastair Florence. 

University of Strathclyde, Glasgow. 

thomas.ralph@strath.ac.uk 

1. Background 

Computational fluid dynamics (CFD) is the current best approach to 
simulating virus deactivation, however these simulations are often 
very computationally expensive, and can also take months to finish 
execution. This creates a computational bottleneck within the 
equipment design phase for the discovery of new medicines. 

The aim of this project is to adequately  predict the outputs of virus 
inactivation simulations using artificial intelligence (AI), machine 
learning, neural networks, and so on. These predictions need to be 
faster than CFD and still reliably accurate. 

Neural networks are capable of predicting fluid velocity within 
desired geometries and may possess the ability in the future to bypass 
the need to rely on CFD for, not just fluid, but for all kinds of 
Multiphysics simulations. 

2. Aims 

• Aim 1: Create a physics informed neural network (PINN) with 
square-shaped obstacles using NVIDIA Modulus to use as a base 
model for transfer learning. 

• Aim 2: Create multiple channels with varying parameter set ups / 
obstacle shapes and train new PINNs using transfer learning 
with the base model. 

• Aim 3: Create fluid validation data for each of the models using 
COMSOL to compare with the PINN results. 

• Aim 4: Analyze the error between the validation and prediction data 
of each of the variables of interest (x-velocity, y-velocity, and 
pressure), to gauge accuracy of each model. 

3. Target Application 

Figure 1 

8. Transfer Learning Fluid Flow PINN For Serpentine Channel 

10. References 

6. Transfer Learning Fluid Flow PINN For Square Channel 

9. Future Work (3D Coil Simulation) 

Figure 1 shows the axial velocity of fluid flow as it moves through a 2D 
serpentine channel from [1]. The change in velocity is in response to 
centrifugal forces. This simulation was produced using Fluent Ansys. 

The velocity of the fluid can be used to generate a virus deactivation 
diagram. The PINNs in this poster is aimed at generating flow 
predictions similar to the CFD results shown in Figure 1. 

Figure 7 shows a 3D CFI generated using COMSOL (CFD software). Exploring the 
possibilities of generating 3D fluid simulations using NVIDIA Modulus would be 
suitable for future work. The geometry would appear like the CFI in 
Figure 7. 

1.) Design, Construction, and Optimization of a Novel, Modular, and Scalable Incubation Chamber for Continuous Viral 
Inactivation, October 2016 

2.) Modular Coiled Flow Inverter with Narrow Residence Time Distribution for Process Development and Production, February 15 
2019 

Once such fluid predictions have been simulated in a 3D CFI, exploring the 
possibilities of applying virus inactivation kinetics to the velocity particles to 
generate a graph of virus inactivation in 3D would be an appropriate future step. 

3 Design of a novel continuous flow reactor for low pH viral inactivation, 13 November 2017 
4 Continuous Cooling Crystallization in a Coiled Flow Inverter Crystallizer Technology—Design, Characterization, and Hurdles, 

29 August 2021 
5 MINIATURIZED TUBULAR COOLING CRYSTALLIZER WITH SOLID-LIQUID FLOW FOR PROCESS DEVELOPMENT, June 

10-13, 2018 

7. Transfer Learning Fluid Flow PINN For Door-Knob Channel 

5. Base Model For Transfer Learning 

Figure 3 

4. Base Model Specifications 

Figure 3 shows the validation, prediction, and difference data for u, v, and p. The difference/error for each variable is very close to zero. This model has been 
used as a base model to use for transfer learning of other PINNs with varying geometries. MAE for u, v, and p is 0.0028, 0.0016, and 0.0012 respectively. 

The base model in Figure 2 was trained using 5,000 interior points, 64 
inlet and outlet points, 2,000 boundary points, 10 integral continuity 
lines, and 500,000 training steps. 

The integral continuity lines are randomly placed throughout the chan
nel to specify the average velocity at each vertical line. 

The standard distance function is colored blue to red, indicating 
interior points closest and furthest from the channel boundaries. 

Figure 2 

Figure 6 shows the validation, prediction, and difference data for u, v, and p. This model was trained using only 100,000 training steps and used the transfer 
learning model in Figure 2 to aid in its predictions. We can see higher error in u and v towards the channel outlet. For p, we see the opposite. This channel 
closely resembles the channel seen in Figure 1 except the inlet and outlet locations differ. MAE for u, v, and p is 0.012, 0.019, and 0.25 respectively. 

Figure 6 

Figure 5 shows the validation, prediction, and difference data for u, v, and p. This model was trained using only 100,000 training steps and used the transfer 
learning model in Figure 2 to aid in its predictions. We can see high error magnitude in this model for u, v, and p. Particularly at the narrow passages within 
the channel. This was a common trend seen in other channels with narrow passages. MAE for u, v, and p is 0.041, 0.026, and 0.59 respectively. 

Figure 5 

Figure 4 

Figure 4 shows the validation, prediction, and difference data for u, v, and p. This model was trained using only 100,000 training steps and used the transfer 
learning model in Figure 2 to aid in its predictions. This model is a length and obstacle number expansion of the model in Figure 2. We can notice v error 
getting higher towards the outlet of the channel. The p difference is relatively close to zero but not as accurate as the p difference seen in Figure 2. MAE for u, 
v, and p is 0.0056, 0.0041, and 0.013 respectively. 
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A Prototype Crystallisation Knowledge Graph

Early Testing using Generative AI
Although knowledge graphs are powerful tools for representing
related data, information is traditionally retrieved from them using
the SPARQL query language. This has to be learned and is more
difficult to work with than the database query language SQL.

Large Language Models, however, can write SPARQL based on
plain English prompts and return analyses on the data within
graph.

A Large Language Model (LLM) was provided with the graph file and prompted with some
basic information about its structure:

“Here's a knowledge graph in RDF/XML format. The experiment data are held as data
property assertions, and each experiment is made up of steps which share a common
experiment UUID, which is also a data property assertion. Analyse the graph so that you
can locate all the data.”

Following this initial prompt the LLM was
asked:

“List the solutes, solvents and
concentrations from each experiment.
Don't show the full experiment IRI, only
show data after the # in the IRI.”

It went on to examine the file, and after
an initial mis-step which it dealt with itself,
provided the required list (right, table
trimmed for space reasons).

The next prompt was: “Each experiment
has cloud and clear points. For each
experiment, show me the clear point
temperatures and the standard deviation
of the clear point temperatures.”

It returned this information (left). The standard
deviations were checked by another method
and were correct.

The LLM was asked to provide this list again with solvents and concentrations, and to
order the table by solvent, which it was able to do (below).

Conclusion
Although this session was promising, due to the probabilistic nature of LLM responses, on
some other tests it was not always able to interpret the knowledge graph correctly.
Further work will be to use better initial prompts to steer the LLM down the correct
interpretation pathway. Graph plotting is also possible within the LLM and will be tested.

Jason K. Robertson 1,2, Michael Chrubasik 3, Blair F. Johnston 1,2

1 Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
2 Continuous Manufacturing and Advanced Crystallisation (CMAC) Future Manufacturing Hub, University of Strathclyde, Glasgow, UK
3 National Physical Laboratory, Glasgow, UK

Introduction
Although the literature has many examples of crystallisation
processes and outcomes, these are difficult to search and analyse
because there are not many papers containing detailed
experimental methods with data in a structured, machine-readable
format. The aim of this project is to create a crystallisation
knowledge graph to describe crystallisation experiment process
elements along with experimental methods and data.

What will this give us?

 Refined or even new approaches to crystallisation experiments, through knowledge 
graph-enabled machine learning analyses

 A structured dataset for training AI models to predict crystallisation outcomes. 

 Enables generative AI models to assist in data interpretation and hypothesis 
generation.

 Allows researchers to easily query and retrieve crystallisation conditions, results, and 
trends

 Researchers can ask complex scientific questions in natural language

 Pharmaceutical and materials science industries can use the graph for process 
optimisation

 Helps in screening and designing crystallisation processes for better drug formulation 
and material synthesis.

Architecture
The knowledge graph is the
cornerstone of the project;
the entire application is built
around it.

• The knowledge graph 
is at the core;

• The knowledge graph completely 
controls the user interface – to 
change the UI we simply change 
the knowledge graph;

• An industry-standard REST API abstracts users from the knowledge graph file;

• The user interface communicates with the knowledge graph via the API to fetch the 
crystallisation experiment framework and to send back researcher contributions;

• The API allows automated contributions, enabling any future front ends or tools.

Knowledge Graph

API

User
Interface

Data
Import

External
Tools

What are Ontologies and Knowledge Graphs?
An ontology describes how concepts within a domain are related to
each other in a way which is computationally useful. For example,
a crystallisation experiment could be described as (this is a
fragment for brevity):

When data are added to the concepts, the ontology becomes a knowledge graph. A
search might ask “Which EXPERIMENTS including a seeding STEP at a temperature
MEASUREMENT over 60 deg. C resulting in a particular MORPHOLOGY?” The knowledge
graph would answer this easily; the same query on flat data tables would be more difficult.

Since the knowledge graph contains data, and the relationships between those data, it is
more computationally useful than data on its own. Knowledge graphs are therefore well-
suited to storing data for machine learning applications.

Populating the Knowledge Graph
Although there is a web-based user interface for inputting
experimental data, it is anticipated that most data will be ingested
via the Application Programmers’ Interface (API).

The API will accept exported data by
lab equipment, automatically
entering it into the knowledge graph
without the researcher’s
intervention.

Using this automated approach,
the aim is to import data from
existing sources (such as CMAC’s
Data Factory, which collects and
Integrates large volumes of
managed data from sources
including laboratory experiments,
production lines, and
simulation models) to rapidly
grow the available dataset.

Next Steps
• Further work with the LLM on natural language analyses
• Data from more sources, both real-time and whole experiment
• Continue engagement with industry and academics
• Incorporate other pre-existing ontologies e.g. for unit conversion

Acknowledgements and Contact
We would like to acknowledge NPL (EPSRC ICASE), and University of Strathclyde (EPSRC 
DTP REA) for funding, and would like to thank Amal Osman for sample solubility data.

jason.robertson@strath.ac.uk, BlueSky: @cryogenicx.bsky.social
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Computer-aided Design of Optimal Solvent Blends 
for Crystallisation of Mefenamic Acid (MA)

Gaurav Seth, Saman Naseri Boroujeni, Amparo Galindo, George 
Jackson, Claire S. Adjiman*

Introduction

System and key performance indicators (KPIs)

Mass  balance:
𝐹𝐹1𝑥𝑥𝑠𝑠𝑠,1 = 𝐹𝐹4𝑥𝑥𝑠𝑠𝑠,4 

𝐹𝐹1𝑥𝑥𝑠𝑠2,1 + 𝐹𝐹2 = 𝐹𝐹4𝑥𝑥𝑠𝑠2,4 
𝐹𝐹4𝑥𝑥𝐴𝐴𝐴𝐴𝐴𝐴,1 = 𝐹𝐹4𝑥𝑥𝐴𝐴𝐴𝐴𝐴𝐴,4 + 𝐹𝐹3 

𝑥𝑥𝑠𝑠1,1 + 𝑥𝑥𝑠𝑠𝑠,1 + 𝑥𝑥𝐴𝐴𝐴𝐴𝐴𝐴,1 = 1 
𝑥𝑥𝑠𝑠1,4 + 𝑥𝑥𝑠𝑠𝑠,4 + 𝑥𝑥𝐴𝐴𝐴𝐴𝐴𝐴,4 = 1 

For 𝒊𝒊𝒕𝒕𝒕𝒕 component, 𝒊𝒊 ∈ {𝒔𝒔𝒔𝒔, 𝒔𝒔𝒔𝒔, 𝑨𝑨𝑨𝑨𝑨𝑨}, and 𝒋𝒋𝒕𝒕𝒕𝒕 stream, 𝒋𝒋 ∈ {𝟏𝟏, 𝟐𝟐, 𝟑𝟑, 𝟒𝟒} : 
• Molar mass of components – 𝑀𝑀𝑊𝑊𝑖𝑖 
• Mass of 𝑖𝑖𝑡𝑡𝑡 component in 𝑗𝑗𝑡𝑡𝑡 stream - 𝑤𝑤𝑖𝑖,𝑗𝑗 = 𝑀𝑀𝑊𝑊𝑖𝑖𝐹𝐹𝑗𝑗𝑥𝑥𝑖𝑖,𝑗𝑗

• Mass of API crystallized - 𝑤𝑤𝐴𝐴𝐴𝐴𝐴𝐴
𝑐𝑐 = 𝑀𝑀𝑊𝑊𝐴𝐴𝐴𝐴𝐴𝐴𝐹𝐹3

KPIs:

• SEF (g solvents waste/g crystals produced) - SEF = (𝑤𝑤𝑠𝑠𝑠,4+𝑤𝑤𝑠𝑠𝑠,4)/𝑤𝑤𝐴𝐴𝐴𝐴𝐴𝐴
𝑐𝑐

• PEF (g material waste/g crystals produced) - (𝑤𝑤𝑠𝑠𝑠,4 + 𝑤𝑤𝑠𝑠𝑠,4 + 𝑤𝑤𝐴𝐴𝐴𝐴𝐴𝐴,4)/𝑤𝑤𝐴𝐴𝐴𝐴𝐴𝐴
𝑐𝑐

• Crystallisation yield, 𝑌𝑌𝑐𝑐 = (𝑤𝑤𝐴𝐴𝐴𝐴𝐴𝐴
𝑐𝑐 /𝑤𝑤𝐴𝐴𝐴𝐴𝐴𝐴,1) ∗ 100

Fig:  Process diagram

Crystallizer

Filter

API crystals

1

2

3

4

𝐹𝐹1, 𝑇𝑇1

𝑥𝑥𝑠𝑠𝑠,1
𝑥𝑥𝑠𝑠𝑠,1
𝑥𝑥𝐴𝐴𝐴𝐴𝐴𝐴,1

𝐹𝐹2, 𝑇𝑇1

𝐹𝐹4, 𝑇𝑇4
𝑥𝑥𝑠𝑠𝑠,4
𝑥𝑥𝑠𝑠𝑠,4
𝑥𝑥𝐴𝐴𝐴𝐴𝐴𝐴,4

𝐹𝐹3, 𝑇𝑇4

𝑥𝑥𝑠𝑠𝑠,2 = 0
𝑥𝑥𝑠𝑠𝑠,2 = 1
𝑥𝑥𝐴𝐴𝐴𝐴𝐴𝐴,2 = 0

𝑥𝑥𝑠𝑠𝑠,3 = 0
𝑥𝑥𝑠𝑠𝑠,3 = 0
𝑥𝑥𝐴𝐴𝐴𝐴𝐴𝐴,3 = 1

Process model and design constraints
Solvent assignment constraints:

𝑦𝑦𝑖𝑖𝑖𝑖,𝑘𝑘 = ቊ1, 
0, 

if the solvent is assigned to 𝑠𝑠𝑠 or 𝑠𝑠𝑠
otherwise

෍
𝑘𝑘∈𝑁𝑁𝑠𝑠

𝑦𝑦𝑖𝑖𝑖𝑖,𝑘𝑘 = 1, 𝑖𝑖𝑖𝑖 = {𝑠𝑠𝑠, 𝑠𝑠𝑠}

෍
𝑖𝑖𝑖𝑖∈{𝑠𝑠𝑠,𝑠𝑠𝑠}

𝑦𝑦𝑖𝑖𝑖𝑖,𝑘𝑘 ≤ 1, ∀𝑘𝑘 ∈ 𝑁𝑁𝑠𝑠

Relating the solvents to functional groups:

෤𝑛𝑛𝑖𝑖𝑖𝑖,𝑙𝑙 = ෍
𝑘𝑘∈𝑁𝑁𝑠𝑠

𝑦𝑦𝑖𝑖𝑖𝑖,𝑘𝑘𝑛𝑛𝑘𝑘,𝑙𝑙 , ∀𝑙𝑙 ∈ 𝑁𝑁𝑔𝑔

𝑁𝑁𝑠𝑠 −  set of candidate solvents
𝑁𝑁𝑔𝑔 −  set of functional groups
𝑛𝑛𝑘𝑘,𝑙𝑙 −  number of functional group 𝑙𝑙 in solvent 𝑘𝑘

Process constraints:
Solid liquid equilibrium for streams 1 & 4

𝑥𝑥𝐴𝐴𝐴𝐴𝐴𝐴,𝑗𝑗𝛾𝛾𝐴𝐴𝐴𝐴𝐴𝐴,𝑗𝑗 = exp Δ𝐻𝐻𝐴𝐴𝐴𝐴𝐴𝐴
𝑚𝑚

𝑅𝑅
1

𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴
𝑚𝑚 − 1

𝑇𝑇𝑗𝑗
, 𝑗𝑗 ∈ {1,4}

𝛾𝛾𝐴𝐴𝐴𝐴𝐴𝐴,𝑗𝑗 − activity coefficient of API in 𝑗𝑗𝑡𝑡𝑡 stream
Constraints on temperatures:

 𝑇𝑇1≤ min 𝑇𝑇1
𝑏𝑏 − 𝑇𝑇0, 𝑇𝑇𝑠𝑠2

𝑏𝑏 − 𝑇𝑇0
 𝑇𝑇4 ≤ 𝑇𝑇4

𝑏𝑏 − 𝑇𝑇0
𝑇𝑇𝑏𝑏,𝑠𝑠2 = 𝑀𝑀𝑇𝑇 1 − 𝑦𝑦𝑎𝑎 + 𝑦𝑦𝑎𝑎𝑇𝑇𝑠𝑠2

𝑏𝑏∗

𝑦𝑦𝑎𝑎 = ቊ1, 
0, 

if antisolvent is used in stream 2
otherwise

𝑇𝑇1
𝑏𝑏  − bubble temperature of stream 1

𝑇𝑇𝑠𝑠2
𝑏𝑏 ∗  − bubble temperature pure solvent 𝑠𝑠2

𝑀𝑀𝑇𝑇 − a large value

𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃 𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕:
𝐗𝐗 = [𝑦𝑦𝑖𝑖𝑖𝑖,𝑘𝑘 𝑦𝑦𝑎𝑎 𝐹𝐹1 𝐹𝐹2 𝑥𝑥𝑠𝑠𝑠,1 𝑇𝑇1 𝑇𝑇4]𝑇𝑇

𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎 𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩 𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌 :

Results

Aim
❑ Formulate computer-aided mixture/blend design 

(CAMbD)
• Identify optimal solvent mixtures, process 

temperatures and mixture composition 
• Minimize the Process E-factor or PEF (g waste/g 

crystals)
❑ Use SAFT 𝛾𝛾 - Mie group contribution method – 

predicting thermodynamic properties within 
optimisation framework.

80% of small molecule
pharmaceuticals – solid 
crystals

Anti-solvent

Cooling jacket

Crystallisation - 
Widely used in pharma 
manufacturing

Solvent + API

Solvent(s) choice, 
process conditions

• Solubility
• API yield
• Solvent 

consumption

𝑠𝑠𝑠- solvent
𝑠𝑠𝑠- anti-solvent

Propylbenzene

𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑎𝑎𝑎𝑎𝑎𝑎 = 4
𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑎𝑎𝑎𝑎𝑎𝑎𝐻𝐻2 = 1

𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝐶𝐶𝐻𝐻2 = 1
𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝐶𝐶𝐻𝐻3 = 1

Note :- Stability of ternary mixtures for stream 1 and stream 2 is confirmed using gSAFT within gPROMS

Ongoing/Future work

Fixed API production
Minimum yield

min
𝐗𝐗

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 ∶

𝑃𝑃𝑃𝑃𝑃𝑃

Mass Balance
Design Constraints

0 ≤ 𝑥𝑥𝑠𝑠𝑠,1≤ 1
𝑆𝑆𝑆𝑆𝑆𝑆 ≥ 3.5

0 ≤ 𝐹𝐹1≤ 50 mol/sec
0 ≤ 𝐹𝐹2≤ 50𝑦𝑦𝑎𝑎 mol/sec
290.15 ≤ 𝑇𝑇1 ≤ 400 K
290.15 ≤ 𝑇𝑇2 ≤ 400 K

𝑤𝑤𝐴𝐴𝐴𝐴𝐴𝐴
𝑐𝑐 = 100 g/sec

𝑌𝑌𝑐𝑐 ≥ 0.9

Process constraints

Optimization problem
API - Mefenamic Acid (MA)
Set of candidate solvents (𝑵𝑵𝒔𝒔) - Water, 1-2-Propanediol, Acetic acid, Isobutyl acetate, 
Isopropyl acetate, 2-methyl-1-Propanol, Butyl acetate, ethanol, 1-butanol, 1-pentanol, 
Acetone, Ethyl acetate

Stream table
S.No. 𝑠𝑠𝑠, 𝑠𝑠𝑠 s1 (g/sec) s2 (g/sec) PEF 

(g/g)
𝑌𝑌𝑐𝑐 (%) 𝑇𝑇1 (𝐾𝐾) 𝑇𝑇4 (𝐾𝐾) 𝑦𝑦𝑎𝑎

1 1,2-Propanediol
water

340.14 9.86 3.5 99.88 400 290.15 0

2 1-pentanol
-

350 - 3.5 99.75 398.61 290.15 0

3 Butanol
Isobutyl acetate

349.18 0.82 3.51 99.48 383.92 290.15 0

4 Isobutyl acetate
Ethyl acetate

322.56 27.44 3.54 95.83 377.71 290.15 0

• Solvent recycling

• Effect of adding impurities 

• Additional design criteria – energy balance, crystal 

shape, particle size distribution Crystallize
r

Filter

API crystals

Flash 
Drum

make-up 
anti-solvent𝐹𝐹2

𝐹𝐹1
𝑥𝑥𝑠𝑠𝑠,1
𝑥𝑥𝑠𝑠𝑠,1
𝑥𝑥𝐴𝐴𝐴𝐴𝐴𝐴,1

𝐹𝐹4

𝐹𝐹3

𝑥𝑥𝑠𝑠𝑠,4
𝑥𝑥𝑠𝑠𝑠,4
𝑥𝑥𝐴𝐴𝐴𝐴𝐴𝐴,4

𝐹𝐹5

𝑥𝑥𝑠𝑠𝑠,5, 𝑥𝑥𝑠𝑠𝑠,5, 𝑥𝑥𝐴𝐴𝐴𝐴𝐴𝐴,5 

𝑥𝑥𝑠𝑠𝑠,6
𝑥𝑥𝑠𝑠𝑠,6
𝑥𝑥𝐴𝐴𝐴𝐴𝐴𝐴,6

𝐹𝐹6

Conclusions
• Results suggest the use of cooling crystallization to 

minimize the solvent consumption.

• Multiple high-performance solutions generated by 

including integer cuts in MINLP. 

• Using high inlet temperature – high yield.
References:
1. Wang, J. and Lakerveld, R., 2018. Integrated solvent and process design for continuous 

crystallization and solvent recycling using PC‐SAFT. AIChE Journal, 64(4), pp.1205-1216.
2. Watson, O.L., Jonuzaj, S., McGinty, J., Sefcik, J., Galindo, A., Jackson, G. and Adjiman, C.S., 

2021. Computer aided design of solvent blends for hybrid cooling and antisolvent crystallization 
of active pharmaceutical ingredients. Organic Process Research & Development, 25(5), 
pp.1123-1142.
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Discovery and Applications of a Novel Solid-state Arrangement:
Water Bridge Salt Form

Saadia Tanveer,1,2 David Remick,3 Paul Meenan,4 Marianne Langston,5 Anton Peterson,5 Martin R. Ward,6 Chantal Mustoe,6
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Introduction
Salt formation is a common technique to modify the properties and enhance the solubility and 
bioavailability of an Active Pharmaceutical Ingredient (API). However, salts tend to convert back to their 
free (unionised) form under certain conditions via a reaction known as salt disproportionation.

Industry Challenge: Disproportionation poses significant challenges for the pharmaceutical industry by 
impacting stability and solubility of drug formulations

Disproportionation Reaction

• This project aims to build a fundamental understanding of the salt “water bridge” structure, its propensity
to form, stability, and structure-property relationships

• To design and apply a disproportionation monitoring workflow and test the stability behaviour of salt
hydrates with and without bridging water motif between the API and counter ions

• The study provides insights into the pH-dependent stability of miconazole salts, highlights the potential
benefits of the water-bridging structure present in MM DH as a contributing factor to its sustained stability

Potential Benefits

Case study: Miconazole Mesylate Dihydrate (MM DH)

Salt disproportionation is an acid-base 
reaction involving a proton exchange process 
under certain conditions and changes the 
chemical composition of API. Salt form stability 
is indicated by maximum solubility pH (pHmax)

𝒑𝒑𝒑𝒑𝒎𝒎𝒎𝒎𝒎𝒎 = 𝒑𝒑𝒑𝒑𝒂𝒂 + 𝐥𝐥𝐥𝐥𝐥𝐥 𝑺𝑺𝟎𝟎
𝑲𝑲𝑺𝑺𝑺𝑺

Figure 1: pH solubility profile of a weakly basic compound [2]

pH > pHmax

Salt disproportionation occurs

It has been reported that the rate and extent of salt disproportionation 
for Miconazole Mesylate (MM) salt (amorphous AMO, anhydrous AH, 
dihydrate DH) in the presence of excipient is significantly different, and 
MM DH was resistant to disproportionation over the time studied [1]

Figure 2: Miconazole mesylate 
dihydrate (WUFJEP) showing 

water-bridge between ions 

Aim & Objectives

Water bridge salt hydrate 
A “water-bridge salt hydrate” is a salt where counter ions (such as 
miconazole and mesylate) are linked indirectly via water molecules 
forming hydrogen bond bridges. This structural arrangement relies on 
water molecules to mediate the interactions between the cation and 
anion, stabilizing the salt hydrate.

Disproportionation monitoring Workflow 
A workflow has been developed to monitor the disproportionation process using alkalimetric titration of an 
aqueous salt solution by adding aliquots of NaOH. In-situ Raman spectroscopy and continuous pH 
monitoring are employed to detect the phase change, and the results are validated using PXRD and HPLC

• Theoretical pHmax of MM DH (SWB) is 2.3
• The phase change was detected by a sudden 

decrease in the Raman peak area for the salt 
(@1268) and a sharp increase in the free 
base peak area (@1506) at a pH of 3.97. 
Additionally, a sudden drop in pH was 
observed during the transition. The solid was 
assessed by PXRD and validated the change 
to the miconazole hemihydrate.

• MM DH disproportionation at 3.97 indicates 
an enhanced stability compared with normal 
salt behaviour

Disproportionation behaviour of miconazole 
mesylate dihydrate (water bridge salt) at varying 

pH conditions

Figure 5: The peak area of Raman characteristic peak for 
miconazole (1506cm-1) and MM DH (1268 cm-1) and pH as a 

function of time. At pH 3.97 there is a sharp change in pH and the 
Raman bands of the two solids 

Disproportionation behaviour of miconazole chloride dihydrate salt  MCZ Cl DH (non-water bridge)

• The pHmax of MCZ Cl DH (non SWB) is calculated as 3.77
• The onset of disproportionation is at ~pH 3.46, which corresponds well to the calculated pHmax.
• The solid form precipitated during this disproportionation reaction is also miconazole hemihydrate

Nucleation behaviour of MCZ free 
base and influence of water bridging 
between counterions
• The impact of seeding was tested via 

two experiments depicted in Figure 7
• Via either method there is no impact 

of seeding on nucleation of the MCZ 
free base the product remained as 
MM DH after 48 hours as revealed by 
Pawley refinement of XRD data

Figure 7: (A) Schematic diagram of the experimental workflow. In-situ monitoring of the characteristic peak for miconazole (1506 cm⁻¹) and 
MM DH DH (1268 cm⁻¹) and pH as a function of time for: (B); Seeding at constant pH (C); and seeding at variable pH (D). Pawley refinement 
of a product after 48H (seed addition at constant pH, (E) or (seed addition and varying pH, using the unit cell parameters from MM DH 
(WUFJEP).

References:
[1] Patel, M.A., Luthra, S., Shamblin, S.L., Arora, K., Krzyzaniak, J.F. and Taylor, L.S., 2018, Molecular Pharmaceutics, 15(1), 
pp.40-52.
[2] Abouselo, A., Rance, G.A., Tres, F., Taylor, L.S., Kwokal, A., Renou, L., Scurr, D.J., Burley, J.C. and Aylott, J.W., 2021, Molecular 
Pharmaceutics, 18(9), pp.3247-3259.
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Equilibrate, 
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solid phase 
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pHmax values to analyse the enhanced stability of 

water bridge/non-water bridge salt hydrates    
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Figure 4: Schematic diagram of the disproportionation monitoring for the MM DH system    

Figure 3: Schematic diagram of the disproportionation monitoring workflow  
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Figure 6: Peak area of Raman characteristic peaks for miconazole (1506 cm⁻¹) and MCZ Cl DH (1268 cm⁻¹) as a function of time and pH (A) 
and as a function of pH with PXRD results indicating phase composition (B)

(A) (B)

Results and Discussion  

Conclusion & Future Work

• The developed workflow has been applied to miconazole salts and distinct changes in disproportionation 
behaviour are observed between MM DH and MCZ Cl DH despite having the same API molecule. 

• The different counter ions have introduced a difference in the connectivity between the ions and the water 
molecules. We believe a water-bridging motif in MM DH salt contributes to enhanced stability. A larger 
pool of observations will enable a more robust set of guidelines to be developed so that salt “water bridge” 
forms can be a valid solid form for drug delivery. 

• Charge distribution analysis will be performed to identify the impact of structural motifs in the known water 
bridge salt system with enhanced stability.

• Comparison  will be made between the known water bridge system and traditional hydrates to develop a 
workflow for pharmaceutical compounds using crystallographic data and physicochemical properties.

(C)
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 Introduction to DM2 Platform II

The Microscale Tablet Manufacturing System

Increasing complexity with more excipients, formulation and process parameters

Process automation to support model-based experimentation

Increased process efficiency and less waste of time material

Real-Time Data Quality Control 

Self-Driven Experiments

Micro NIR
Weighing 
balance

Robotic 
arm

Dosing and 
blending station

Pre-Compaction

Experimental Agents

Supervisory 
control unit

Compaction

Operator

Automated hardness, 
weight, dimensions testing

Storage 
boxes Bin

Post Compaction

Automated sessile drop 
measurements 

→ Wettability
→ Swelling

Syringe

1. Bayesian optimisation to meet the target as soon as 
possible

2. Scale-up optimisation to fully explore the operating 
region of process parameters

3. Rapid manufacturing and storage of tablets

MS SQL

Data Collection

MS Excel

Error Handling
• Recycle any inappropriate dose 

weight and content homogeneity.
• Repeat experiment in case of 

incomplete data.

Dose weight

Formulation

Compaction 
Pressure

Dwell Time

No. of Tablets
Powder 

Obtained

NIR Spectrum

Compaction 
Parameters

Tablet Weight

Tablet 
Thickness

Tablet 
Hardness

Tablet 
Diameter

Controls

M
easurem

ents

Automated System

DM2 Video Demo

Rapid Formulation Development and Process Optimisation Rapid Manufacturing

Material Properties 

Optimised formulation
• Excipient selection
• Excipient conc.
Initial process condition
• Compaction pressure

CCDC Particle 
Informatics: 

computations particle 
properties

Process refinement and 
validation
• Main compaction pressure
• Dwell time

New Drug 
Candidate

Tableting 
DataFactory

Real-time quality 
control

Material characterisation:
• Particle size/shape
• True density
• Bulk density 

Rapid supply of tablets 
with optimised attributes

AR visualisation

Digital Formulation and 
Process Optimisation

Hybrid system of models

Multi-objective, constrained 
optimisation

Tableting 
DataFactory

Empirical models

Physics-informed 
Bayesian optimisation High experimental load

Choice of excipient
Drug loading

Process settings

Hololens

Tablet Properties

Compaction

Post-Compaction

Automated System

Pre-Compaction

Objective
• Meet target porosity = 15%

Obtain Parameters
Optimize

• Main compression Pressure

Bayesian Optimization 
(BO)

Constraint
• Tensile strength > 2 MPa

Tableting and Testing

Dosing, NIR, 
Compaction, Testing

Dosing 

Tablet tester

Micro NIR

Tablet press

Robot

Sessile Drop

Tablet testing, Sessile drop, 
Dispose

Automated 
syringe

Syringe

Tablet tester

Camera

Robot

Testing

Tablet testing

Tablet tester

Storage box

Robot

NIR Spectroscopy

Dosing, NIR, Vials

Dosing 

Micro NIRRobot

Vials 

Tableting and Storage

Dosing, NIR, 
Compaction, Storage

Dosing Micro NIR

Tablet press

Robot

Storage box

Dosing

Dosing, Weight 
measurement, Cleaning

Dosing 

Robot
Balance

Dosing 

Main Workflow for Scheduling of Sub-Workflows

16% APAP, 3.5% CCS, 30.4% LAC, 49.1% MCC, 1% Mgst 18% APAP, 3.5% CCS, 23% LAC, 54.5% MCC, 1% Mgst

20% APAP, 3.5% CCS, 2.7% LAC, 72.8% MCC, 1% Mgst 22% APAP, 3.5% CCS, 73.5% MCC, 1% Mgst
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Automated Cooling Crystallisation in the 
Crystallisation Screening DataFactory
Christopher Boyle*, Parandeep Sandhu, Sahil Salekar, Javier Cardona, Blair Johnston
CMAC, University of Strathclyde, Glasgow, UK. *christopher.boyle.101@strath.ac.uk

Motivation C
rystallise

From smart 
exp. 

workflow 

Solubility

To smart 
exp. 

workflow 

Crystallise

Analyse

Optimise

O
pt

im
is

e

Sample tracking
QR codes are 

generated 
automatically and 

printed on vials.

Dosing
Vials are 
dosed with API 
and solvent by 
automated 
platform: 
Chemspeed 
Flex.

Kinetics

Image Classification

Image Segmentation

Multi-label classifier developed and 
validated by Parandeep Sandhu: 
see his poster for more detail!

Images segmented by YOLOv8 [2]. 
Trained model attains mAP of 66.9%.

Small scale crystallisation
The Technobis Crystalline is 
used to perform cooling 
crystallisation experiments. 

Bespoke experiment control
Our custom software interfaces with our data architecture 
while enabling flexible control based on state machines.

Data rich measurements
Array of 6 crystalline platforms 
each with temperature control, 
transmissivity probes, and on-
line imaging.

ResNet18

References & Acknowledgements
Thanks to DataFactory team (Amal Osman, Connor Clark, Fraser Paterson, Farha 
Kamal) for running experiments. Thanks to John Armstrong for getting our models 
to run on the Nvidia Jetsons efficiently and implementing the Seq2Seq model. 

[1] Scikit-learn: Machine Learning in Python. doi:10.5555/1953048.2078195
[2] Computer Vision Annotation Tool. doi:10.5281/zenodo.3497105
[3] D. Reis et al. (2024) arxiv:2305.09972

Im
ages

Tem
perature &

 
Transm

issivity

Nvidia Jetson efficiently runs deep 
learning analysis with just 50W.

Efficient high throughput solvent screening
Leveraging robots and state of the art machine 
learning to explore solvent space for API.

Crystallisation Classification System
Model API-solvent interactions to predict key 
parameters like solubility, particle shape, oiling 
out, and agglomeration.

Training data composed of 
images annotated to identify 
particles using CVAT [1].

Solubility & MSZW. Clear point gives 
solubility; add in cloud point and we can 
estimate metastable zone width. This is 
estimated by temperature cycling.

Image features & 
classes are used to 
predict particle 
dissolution.

Smart experimentation
Efficient design space exploration using 
Bayesian optimisation: quickly find 
optimal solvent and process parameters 
depending on the current target.

Intuitive (non-ML) models predict clear/cloud 
given by looking for changes in features. 
Machine Learning (ML) methods combine 
features for greater accuracy & generalisation.

no
n-

M
L

M
L

Method RMSE (°C)
ThreshMovAvFA* 9.9
AbsMagChange* 14.7
Transmissivity* 20.9
RandomForest** [1] 16.7

ANN** 4.8
CNN** 9.0
RNN** 6.8

Seq2Seq** 6.0

Particle Size Distributions
Obtained from batches of 
images for a representative 
indication of particle size 
and shape.

Particle size & count are 
tracked over time to estimate 
growth rate and nucleation 
rate or can be passed on to 
population balance models.

FAIR Data
Data are stored 
in relational 
databases, 
ready for further 
analysis.

*validated on whole dataset **validated on representative subset 

Target specific growth rates, particle 
shape or size, or emphasise solvent 
environmental impact while meeting 
industrial processibility goals e.g., 
Black's rules, meeting temperature 
requirements, and/or achieving desired 
yield.

Clear/cloud point
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A Workflow for the Automation of Pharmaceutical 
Salt Selection and Screening Process

Introduction
With over 60 % of novel active pharmaceutical ingredients (APIs) in recent years exhibiting low aqueous solubility and bioavailability, 
pharmaceutical salts have had an increased importance over time. However, salt screening, the process to find viable salt forms, can be a 
lengthy and complex process exploring different counterions and crystallisation conditions to find new crystalline forms. The use of tools to 
predict solubility or crystal packing coupled with artificial intelligence/machine learning for salt formation would be invaluable in reducing the 
experimental burden and uncertainty in salt selection, alongside improving sustainability through reduced material and energy usage and 
carbon footprint. Overall, this project aims to develop an automated workflow for model-driven salt selection and process development. This 
work introduces a workflow for the prediction and development of salt forms of APIs.

Next Steps/Future Work
Future work for this project will involve the development of the model, including generation of data through the CSDF, to fuel predictive tools. 
Alongside this, future translation of the workflow examined with amantadine to other compounds, which when aligned with the wider research in 
this space in CMAC, will lead to a toolbox available for efficient salt selection for increased solubility of future APIs.

Generation of Training Data/Current Work
• Small-scale salt formation experiments are currently being 

carried out on APIs of interest in the Crystallisation Screening 
DataFactory (CSDF) in order to prepare appropriate data for 
training a model. 

• Amantadine was selected as the first compound as it exhibits 
low aqueous solubility and is available commercially in form 
of a hydrochloride salt

• A Python script was used to compare pKa values and 
solubility data for the API and selected counterions generated 
from COSMO calculations. 

• Suitable combinations of solvents and counterions for 
amantadine are presented in Table 1.

Solubility Data 
Unavailable

Calculated 
Solubility Too 

Low

Calculated 
Solubility 
Low/Salt 

Formation 
Unlikely

Calculated 
Solubility 

Adequate/Salt 
Formation 

Likely

Table 1: Suitable Counterions and Compared Solubilities of Amantadine

Figure 1: Initial Workflow for an Automated Salt Selection Process

Figure 2: Crystallisation Screening DataFactory (CSDF) Workflow

•
•
•

•
•
•

•

•

Counterion

Solvent

Methane 
sulfonic 

Acid

Toluene 
sulfonic 

Acid

Camphor 
sulfonic 

Acid
Malic Acid Succinic 

Acid Lactic Acid Formic 
Acid Citric Acid

1-BuOH

1-PrOH

2-BuOH

2-PrOH

2-MeTHF

2,2,4-
Trimethylpen

tane

Acetone

MeCN

Cyclohexane

Methylcycloh
exane

Dimethyl 
Carbonate

EtOH

EtOAc

Heptane

MeOH

MeOAc

Methyl Ethyl 
Ketone

Methyl 
Isobutyl 
Ketone
Methyl 
Propyl 
Ketone
Propyl 
Acetate

Water
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Figure 3: Known sources of measurement uncertainty seen within the CSDF

Figure 4: Solubility plots demonstrating the variability of clear points for three different 
concentrations of salicylic acid in ethanol at various heating rates (0.2°C, 0.3°C, 0.4°C, 0.5°C, 
0.75°C, 1°C and 1.25 °C  per min). * denotes the heating rate (0.5°C) used by previous 
DataFactory researchers(3)

Figure 6 shows how various factors could affect the accuracy of solubility data such as type of Crystalline 
used, experiments carried out by different researchers and possible variation in data analysis. 

A suggestion to improve the confidence in solubility data was to develop a crystalline troubleshooting 
workflow. This proposed preliminary workflow was designed to recommend best next experiments based 
on results during a solubility experiment as shown below in Figure 7.

Acknowledgments: 
Many thanks to Thomas Pickles, Farha Kamaal, Javier Cardona, Jan Sefcik and Cameron Brown for their expertise and support with regards to the DataFactory

Resulting in
• Accelerated research & development
• Improved data collection
• Cost savings
• Improved environmental sustainability

Self-driving labs offer
• Increased efficiency
• Enhanced safety
• Improved accuracy
• Increased equipment 

utilisation

Allows for better understanding of accuracy and precision

Improves 
• Predictive power and validity of models
• Decision making
• Transparency and trust in data

• Understand capabilities & 
limitations of the CSDF in 
producing reliable and consistent 
crystallisation data 

• Investigate data uncertainty 
produced within the CSDF & its 
propagation

• Quantify the possible overall 
confidence level of the data 
produced by the CSDF
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Figure 6: Solubility plots demonstrating the variability of clear points for three different API/Solvent combinations based on recent lab data, CMAC existing 
data and literature data (1,2) . Dotted lines represent exponential fits.

Figure 4 shows how a range of heating rates between 0.2 – 
1.25°C leads to a variation in results of up to +/- 5°C. This 
highlights how heating rates can influence accuracy of 
experimental measurements. This trend has been reported in 
Cashmore et al(4). Further research is required to optimize the 
heating profile to get clear points as quickly but as accurately 
as possible by varying the rates within one experiment.

Figure 7: Proposed preliminary workflow on next best experiments based on solubility experiment outcomes. Colour codes refer to possible automation 
capabilities as follows: green =  automatable now, amber =  could be automatable, burgundy  = manual intervention required

External thermocouples were used to investigate the efficiency 
of the crystalline’s temperature controls in various solvents 
and how solvent volume has an impact on results.

Figure 5: Deviation results of temperature results recorded by the crystalline and the 
thermocouple depending on solvent volume. Results were based on final temperature hold 
which was 10 C below the corresponding solvent boiling point

Figure 5 shows how volume of solvent can affect the efficiency 
of the crystalline’s ability to heat solvents. In most cases, 
when working with 2-5mls of solvent, there is a temperature 
error margin of up to +/-2 C recorded by the crystalline. This 
reflects the working volumes highly recommended by 
Technobis. One exception was water where an error margin 
was seen to be up to +/-5 C. Further investigations will be 
carried out to understand the extent of the uncertainty when 
working with water as a solvent.

Figure 2: A solubility 
matrix of the top 10 
investigated APIs 
investigated during a 
period of three months.

Blank: experiments not 
started. * indicates 
that the compound did 
not nucleate therefore 
multiple experiments 
were required to generate 
triplicate data.
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Figure 1: The crystallisation screening 
Datafactory (CSDF) automated workflow

Generation of various crystallization parameter data 
including
• Solubility       
• Kinetics       
An example of a dataset produced by the CSDF is 
shown in Figure 2

• Crystal morphology
• Crystal forms
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Time-scale

• DVS powder data predicts tablet moisture content at a given 
RH, independent of porosity with possible overestimation at 
high RH. Sorption rate constant depends on porosity but not 
RH, enabling tablet sorption rate estimation from powder.

Effect of (A) RH and (B) porosity on moisture content and sorption rate.      
(C) MCC and (D) MCC-CCS powder correlated with tablet moisture uptake.
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• A scaling factor from DVS and real storage data enables 
long-term storage predictions. Scaling was unaffected by 
porosity or formulation, though formulation impact remains 
uncertain.

• Variabilities in model prediction due to averaging multiple 
tablets at each time point and differences in initial weights.

Moisture-induced mass increase for MCC and MCC-CCS (8%) 
tablets at different porosities. Model predictions (lines) 

derived from one measurement of DVS powder data and 
experimental data (points).
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From Powder to Tablet: Predicting Moisture Sorption 
and Understanding Physical Stability Changes

• Ensuring the physical stability of immediate-release tablets is crucial 
to maintain their quality and performance during storage,  where the 
storage-induced changes can lead to altered tablet properties, 
potentially affecting drug release.

Introduction Methods

Results

Future work
• Investigating the behaviour of magnesium stearate (MgSt) after storage by analysing potential surface redistribution using Raman spectroscopy.
• Extending DVS studies to improve the scaling factor model by identifying the parameters affecting it (Formulation and storage conditions variations).

• How do the intrinsic 
properties of particles 
and their interactions 
in bulk powder and 
compacts influence 
the tablets physical 
stability under 
storage? and to what 
extent can these 
effects be predicted?

Isra’ Ibrahim1,2, James Mann3, Alexander Abbott3, Fredrik Winge4, Adrian Davis5, Bart Hens6, Ibrahim Khadra1, Daniel Markl1,2

1 Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK.
2Centre for Continuous Manufacturing and Advanced Crystallisation, University of Strathclyde, Glasgow, UK.

3 Global Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK.
4 Global Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden.

5Analytical R&D, Pharmaceutical Sciences Small Molecules, Pfizer, Sandwich, UK.
6Drug Product Design, Pfizer, Zaventem, Belgium.

• Moisture sorption (DVS            
and modelling).

• Swelling (Morphologi 4).

Raw Material 
Characterisation

• Direct compression.
• 5 placebo Formulations.
• 4 porosities.

Tablets 
Manufacturing

• Moisture Sorption.
• Weight and swelling)
• Porosity (modelling)
• Hardness

Tablets 
Characterisation

Tablets 
Performance

• Disintegration time 
• Liquid absorption and 

swelling (sessile drop)

MCC

MCC-CCS

MCC-CCS-MgSt

MCC-CCS-MgSt-Lac

CCS(3%,8%)

MgSt (1%)

Lactose(48%)

Testing 
pre- and 

post 
storage at 
50°C/75% 
at 5-time 

points

Dispersion of 
powder on dishes

RH-controlled 
storage jar

Using DVS to link powder and 
tablet moisture behaviour

Experimental set-up and the 
sequential development of tablet 

sets.
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• Excipients and 
porosity both 
influenced changes 
in tablet mass and 
volume during 
storage.

• All tablets showed a 
significant reduction 
in tensile strength 
within the first day 
of storage.
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Disintegration time of tablets before and after storage at 50°C/75% RH.

• The addition of magnesium stearate and lactose slowed 
disintegration, with a more pronounced effect attributed to 
MgSt, rather than other excipients.

• Sessile drop measurements indicated reduced wettability after 
storage, leading to lower liquid uptake and a decreased swelling 
over time.

The average relative change in tablets mass, volume and 
tensile strength after storage at 50°C/75% RH.

Effect of formulation on storage-
induced physical instability

Cost reduction

Time saving
(Several days or 

weeks to few hours)

Reasonable use 
of materials 

(Hundreds of grams 
to few milligrams)
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Methodology

Introduction
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Addition rate
⏳
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Temperature 
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Initial and final
volume

Agitation rate
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Addition mode Tube depth

Control variables 

Future Work

Comparative Analysis of Antisolvent Crystallisation
Screening: Determination of Solubility and Kinetic data

through Small-scale Crystallisation Experiments 

Farha Kamaal ,  Jan Sefcik ,  Javier Cardona 
1 Department of Chemical & Process Engineering, University of Strathclyde, United Kingdom 
2 EPSRC Future Manufacturing Research Hub for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, United Kingdom 
3 Department of Electronic and Electrical Engineering, University of Strathclyde, United Kingdom

Light source

Approach 1

Antisolvent crystallisation is one of the approaches used in pharmaceutical manufacturing to
enhance drug purity and yield. [1] 
Understanding solvent-API interactions during antisolvent crystallisation is key to optimising the
process. By adjusting solvent composition and mixing rates, crystallisation outcomes and product
properties can be controlled.
The experiments will compare temperature cycling for pre-mixed samples with isothermal
antisolvent addition, evaluating their effects on crystallisation behavior, including crystal size,
morphology, and yield.
This study provides key solubility and kinetic data for various API-solvent-antisolvent systems
using the CMAC Crystallisation Screening DataFactory (CSDF). 

Sample Preparation

API + Solvent

Targets
��Size, Shape/habit
✨Nucleation rate
��Growth rate
��Crystal form 

⚠Detect unwanted outcomes

Acknowledgement: EPSRC Continuous Future Manufacturing and Advanced Crystallisation Research Hub (EP/P006965/1) and the University of Strathclyde
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Crystalline Equipment

XRPD for crystal form Nucleation & growth rate from Crystalline images

Begin experimentation with the following API-solvent-antisolvent systems:
         - Glycine-Water-Ethanol
         - Paracetamol-Ethanol-Water

Simultaneously study diffusive mixing in antisolvent crystallisation through microfluidic
experiments.

CSDF Workflow

Monitoring of
vials in the

crystallisation
process

Crystalline showed nucleation trends, while XRPD confirmed phase and
polymorphism.
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A mother liquor recycling approach to recover API 
and solvent in cooling crystallisation

Yusuf Khan1, 2*, Scott Brown1, 2, Chris J. Price1, 2 , Jan Sefcik1, 2, Anna Jawor-Baczynska3 and Kirstie Milne 3

yusuf.khan@strath.ac.uk

Acknowledgement: Centre for Continuous Manufacturing and Advanced Crystallisation (CMAC)  and the University of Strathclyde. References: QR on top.
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2 Centre for Continuous Manufacturing and Advanced Crystallization (CMAC), Glasgow, UK. 
3 Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK.

1. Introduction
• Recycling the mother liquor in crystallisation operation increases the product

yield but also leads to impurity buildup.
• This study investigates the effect of different process topologies on the yield and

impurity profile in the mother liquor in crystallization of paracetamol in the
presence of two impurities (acetanilide & metacetamol) and methanol as solvent.

2. Mother Liquor Recycling (Batch Experiment)

3. Mother Liquor Recycling (Rotavap Experiment)
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• Mother liquor recycling experiment was
carried out at 0.6 recycle fraction of
mother liquor for the verification of the
model in EasyMax 100 reactor.

• Product yields were close to the predicted values. As no washing step was
carried out, impurities found in the product were significant.
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• A simple material balance model was prepared with to obtain the impurity profile
and yield for various recycle fractions.

• The model predicted the total impurity content would level off after 10 cycles.
• The impurity in the mother liquor lost was calculated and added to get an the

actual impurity content in the mother liquor.
• The difference between the actual and predicted values is due to the

assumption in the model that all the impurities are present in the mother liquor
and none in the product crystals themselves.

• A material balance model was prepared where the recycle stream was
concentrated back up to the initial starting concentration and a fraction of it was
recycled to the crystalliser.
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Min 𝓍𝓍sol,in 60
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M1 𝓍𝓍sol,1 24
M1 𝓍𝓍API,1 18.05
Tcry 25°C
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4. Mother Liquor Recycling (Genevac Experiment)
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• Experiments were carried out starting from the steady
state impurity concentration. A rotary evaporator was
used to concentrate the mother liquor back up to the
starting concentration and recycle a fraction of it back
to the crystalliser.
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• Experiments were carried out using
a genevac evaporator. The recycle
operation consists of 3 steps:-

1. in which the mother liquor was
concentrated further to crystallise
API, stopping just before impurities
crystallise,

2. the mother liquor was decanted off
as waste and the cake was
washed,

3. the recovered API was recycled
back by dissolving it using the
recovered solvent.

• The fresh feed from cycle 2 was
added such that the input to the
crystalliser matches the initial API
and solvent amount.

• Impurity amount in fresh feed was
kept the same for it to build-up.

• In this topology, API can be lost as
waste through stream 7 & 11. Loss
of API can be further reduced by
using a cold wash and by decanting
the liquid off at higher temperature.

• The impurity profile does not build-up since we
started from steady state impurity profile for 0.6
recycle fraction.

• The distillate collected is pure solvent and can
be reused as a wash solvent.

• The impurity found in product is significant as
we did not carry out a washing step.

4. Conclusion & Future Work
• Mother liquor recycle reduces the solvent waste and increase the yield in API manufacturing.
• Future work will include extending the models to include impurity incorporation during crystal

growth.
• The use of other equipment such as membranes for recycle stream concentration and solvent

recovery will be investigated.

• Since the decanting was done manually and the time between evaporation and decanting
operation was not always the same, the API concentration in decanted waste is not
consistent.

• The impurity in the mother liquor does not build-up despite feeding the same amount in
each cycle. The product obtained is more pure than the previous experiments.

• With further optimizations in the decanting and washing operations, higher yield and purity
can be achieved in this topology.
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Simulating Nucleation  

Exploring Interfacial Effects on Heterogeneous 
Crystal Nucleation Using Molecular Dynamics

Motivation

References
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Future Work

➢ Nucleation is vital for many industrial 
processes.

➢ The majority of crystallisation takes 
place via heterogenous nucleation, 
where the nucleus forms at an 
interface.

➢ This can be undesirable, causing 
fouling in vessels, or in other cases 
nucleants are added to induce 
nucleation or produce a desired 
polymorph.

➢ A greater understanding of 
heterogeneous nucleation will 
provide valuable insight into how to 
better enhance or inhibit nucleation.

1. M. Salvalaglio,C. Perego,F. Giberti,M. Mazzotti,& M. Parrinello,  Molecular-dynamics simulations of urea nucleation from aqueous solution, Proc. Natl. Acad. Sci. U.S.A. 112 (1) 
2. P. Lamas, C. and R. Espinosa, et al. Homogeneous nucleation of NaCl in supersaturated solutions. The Royal Society of Chemistry 2021; 23 (47) 
3. Finney AR, Salvalaglio M. Molecular simulation approaches to study crystal nucleation from solutions: Theoretical considerations and computational challenges. WIREs Comput Mol Sci. 2024; 14(1)
4. Espinosa JR, Vega C, Valeriani C, Sanz E. Seeding approach to crystal nucleation. J Chem Phys. 2016;144(3):03450
5. Vesga, Maria J. and McKechnie, David et al. Conundrum of γ glycine nucleation revisited: to stir or not to stir? The Royal Society of Chemistry 2019; 21(14)
6. McKechnie D, Anker S, Zahid S, Mulheran PA, Sefcik J, Johnston K. Interfacial Concentration Effect Facilitates Heterogeneous Nucleation from Solution. J Phys Chem Lett. 2020 Mar 19;11(6)
7. Samira Anker, David McKechnie, Paul Mulheran, Jan Sefcik, and Karen Johnston. Assessment of GAFF and OPLS Force Fields for Urea: Crystal and Aqueous Solution Properties.Crystal Growth & Design 2024 24 (1)

Specialised modelling software is continuously improving, and migrating to new software can be 
challenging. Previous urea simulations⁷ were carried out in LAMMPS, which although versatile, 
simulation time can be long, making it necessary to transfer to a more efficient software. 

Mae Macleod¹, Paul A. Mulheran¹, Jan Sefcik¹˒², Karen Johnston¹
 1 Department of Chemical and Process Engineering, University of Strathclyde 
2 Future Continuous Manufacturing and Advanced Crystallisation Research Hub, University of Strathclyde

• The reliability of the seeding method is limited by how the 
phase of each particle is determined.

• A crystal seed is simulated in solution at 
different supersaturations 

Seeding Method 

• The critical temperature is determined 
within the range where at its lowest, 
there is melting and its highest, there is 
still growth of the seed⁴

Free Energy Profile

𝐽𝐽 =  𝜌𝜌𝑓𝑓+𝑍𝑍 𝑒𝑒𝑒𝑒𝑒𝑒 −∆𝐹𝐹∗

𝑘𝑘𝑏𝑏𝑇𝑇 ,

𝑍𝑍 = 1
𝑁𝑁∗

−∆𝐹𝐹∗

3𝜋𝜋𝑘𝑘𝑏𝑏𝑇𝑇

ൗ1 3

Attachment frequency

Critical nucleus size

Density

Nucleation is difficult to observe experimentally 
due to the time and physical scale of the 
process. Computational simulation, can provide 
insight into the initial formation and dynamics of 
the nuclei.

Nevertheless, due to the rare nature of 
nucleation, direct simulations of nucleation 
becomes unfeasible on account of long 
computation time.

Instead, enhanced sampling methods e.g. 
metadynamics¹ are used. Though rigorous, 
they are computationally expensive. A seeding 
method was developed as an alternative, less 
expensive, approximate method². 

There are few examples of heterogeneous 
nucleation simulations, particularly from 
solution³. 

Interfacial Concentration Enhancement Effect

E
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im
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One Urea Molecule 

Solution Properties

Glycine

Water
Tridecane

Water

Glycine

Air

Energy (kJ/mol) LAMMPS GROMACS
Bond 302.99 302.99
Angle 0.10 0.10
Dihedral 33.48 33.48
Improper 0.03 0.03
Lennard Jones -0.60 -0.60
Coulomb -759.51 -759.51

An increased nucleation rate has been observed 
experimentally where a hydrophobic surface is present. 

This was unexpected, due to the hydrophobic nature of 
the material, as glycine is a polar, hydrophilic molecule. 
Similar effects have also been observed experimentally 
for urea.

To investigate the cause of this effect, the interaction 
between glycine solution with air, and an oil interface 
were simulated.

When a PTFE⁵, or tridecane⁶ surface was introduced, 
glycine nuclei were found to preferentially 
form at the interface rather than in the 
bulk solution. PTFE 

Stirrer 

The figures below show the density profiles from the simulation of glycine at a solution-air and 
solution-oil interface, carried out by McKechnie⁶.

It was found that there was an increased concentration of glycine at the tridecane interface. 
This was thought to be due to dispersion interactions.

Density

The RDF shows the 
fluid structure is well 
replicated between 

software.

Simulation Snapshot

The initial energy values from 
the simulation of one urea 
molecule are in excellent 
agreement between software.

Average (kg/m³) L: 1008.95 ± 0.088, G: 1008.94 ± 0.162

To further study the interface 
effects, the next stage is to 
investigate the crystal phase 
by: 
• Planting a crystal seed in 

the bulk solution.
• Planting a seed on a 

surface.
• Comparing stability.

240 K 260 K

Radial Distribution Function
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Multi-Route Data Factory for Amorphous Solid Dispersion:
From Amorphous Solid Dispersions to Oral Solid Dosage Forms

Abdelazeez Mohamednour 1 ,Ecaterina Bordos1, Daniel Markl1, John Robertson1,

To transform Amorphous Solid 
Dispersions(ASDs) produced via Hot Melt 
Extrusion (HME) to Oral Solid Dosage 
Forms(OSDFs). By the following methods:
- to Convert ASDs into tablets through Direct 

Compression.
- to Encapsulate ASD powders or granules 
into Capsule.
- to Develop ASD-based 3D-printed tablets 

for personalized drug delivery and controlled 
release.

1- Aim and Context of Work
milling

Physical Stability of ASDs.
- Risk of crystallization or phase separation.
Process optimization & Selecting the Right 
Route.
Performance of the Final Dosage Form.
- compare the performance of the produced 
tablets, capsules or the 3D printed tablets. 

2- Challenges

3- Methodology
Production of ASDs via Hot Melt Extrusion
API and polymer  blends will be processed 
through a HME system to produce stable 
amorphous extrudates.
-Why HME? 
-Solvent free.
- Molecular Uniformity
- solubility and bioavailability enhancement.

References
[1,5] -Downstream Processing of Itraconazole: HPMCAS Amorphous Solid Dispersion: From Hot-Melt Extrudate to Tablet Using a 
Quality by Design Approach.
[2] - Advanced Pharmaceutical Applications of Hot-Melt Extrusion Coupled with Fused Deposition Modelling (FDM) 3D Printing for 
Personalized Drug Delivery.
[3,4] -Prasad E, Islam MT, Goodwin DJ, Megarry AJ, Halbert GW, Florence AJ, Robertson J 2019. Development of a hotmelt 
extrusion (HME) process to produce drug loaded Affinisol™ 15LV filaments for fused filament fabrication (FFF) 3D printing. Additive 
Manufacturing 29:100776.

Down stream processing

(A) Tableting:
Direct compression of the milled 
extrudate to forms tablets.
(B) Capsule Filling:
Pelletized granules are encapsulated 
under controlled conditions to ensure 
uniform dosing and optimized 
release.
(C) 3D Printing:
By linking HME with 3D Printer

2-Schematic of a combined Hot-Melt Extrusion (HME) 
and FDM 3D printing into a single continuous process

1- Proposed manufacturing routes for the 
HME extrudate.

3-Filament free Hot Melt Extrusion 3D 
printer

4-Expected Outcomes 

Solubility Enhancement: Oral solid dosage 
forms produced from ASDs are expected to exhibit 
significant solubility improvements compared to 
their crystalline counterparts due to the 
amorphous nature of the API and the inclusion of 
hydrophilic polymers. However, the specific impact 
of the OSDF manufacturing route is yet to be 
determined. 

4-impact of formulation and length scale (100% 
infill versus 44% infil from 3DP dose forms)

➢ A direct head-to-head comparison between 3D
printed tablets, capsules and direct compression
tablets will be performed to assess release
profile and immediate release compliance.

➢ The impact of the OSDF manufacturing route on
the ability to sustain the API in the amorphous
form and inhibit its crystallisation during
dissolution will be assessed.

➢ The addition of additional excipients, such as
surfactants and disintegrants, will be considered
to enhance dissolution rates by improving
wetting and disintegration in aqueous
environments

Change in downstream equipment after the 
extruder barrel results in differently shaped and 
sized feedstock materials for milling

Characterization of Feedstocks

5-Photograph (top) and SEM micrograph 
(bottom) of different feedstocks for milling. From 
left to right: HCF,PE, CRF.

5-Future Work
• characterization and testing different oral solid 

dosage forms (OSDFs) to ensure their suitability 
for pharmaceutical applications.

• Solid-State Characterization.

Future Manufacturing Hub for Continuous Manufacturing and Advance  
Crystallisation, Technology and Innovation Centre, 
University of Strathclyde,  99 George Street, Glasgow, G1 1RD, UK
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Introduction

Future Work

Automated Scale-Up Crystallisation DataFactory for
Model-Based Pharmaceutical Process Development:

A Bayesian Case Study
Thomas Pickles*[1], Youcef Leghrib[1], Matt Weisshaar[2], Mikhail Goncharuk[2], Peter

Timperman[2], Timothy Doherty[2],  David D. Ford[2], Alastair J. Florence[1,3], Cameron J.
Brown[1,3]

*thomas.pickles@strath.ac.uk

Hardware

Workflow

Case Study

Papers of Interest

The pharmaceutical industry is
challenged by rising costs and inflexible
global supply chains whilst needing fast
delivery of new drugs to market.
The complexities of crystallisation pose
a problem to automation in handling
differing compositions, mixing behaviours
and physical properties.
Model-based design of experiment
integrates mathematical models to optimise
experimental planning.
Scale-up data is critical for translating
laboratory results to industrial applications.

Defined bounds for each variable: 
Cooling rate (0.1 to 0.5 °C/min)

SS (1.2 to 1.5)
Seed mass (1 to 5%)
Sampling Method:

Five-point Latin hypercube sampling (LHS) 

Improvements:
7% improvement over the best LHS result
46% improvement over the LHS average

107% improvement over the worst LHS result

Bayesian optimisation: Gaussian process model
with expected improvement acquisition type.

The authors would like to acknowledge E.Hadjittofis (UCB), N. Nazemifard (Takeda), J. Merritt (Eli Lilly), K. Nandiwale (Pfizer), O. Watson (AstraZeneca) and Y. Jangjou (Sanofi) for discussion and guidance. The authors would also like to acknowledge Rhys Lloyd (CMAC) and Jonathan Moores (CMAC) for project management and administration.
Finally, the authors would like to acknowledge Aaron Bjarnason for their contribution to laboratory training. This work was funded jointly by Astra Zeneca, Chiesi, Eli Lilly, Pfizer, Roche, Sanofi, Takeda, and UCB. It was carried out within the CMAC Future Manufacturing Research Hub (EPSRC Grant ref: EP/P006965/1) using equipment bought

through the UKRPIF Net Zero Medicines Manufacturing Research Pilot funded by Research England and the Scottish Funding Council.

[1] Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK, [2] Snapdragon Chemistry, a Cambrex company. 360 2nd Ave., Suite C, Waltham, MA 02451 USA, [3] EPSRC Future Manufacturing Hub in Continuous Manufacturing and Advanced Crystallisation, University of Strathclyde, Glasgow, G1
1RD, UK

A Python notebook capable of initalising a design space, constructing data-driven and
mechanistic models, predicting next optimal experiments and discriminating between models.  Automated self-optimization of continuous crystallization

of nirmatrelvir API, React. Chem. Eng., 2024,9, 2460-2468
1.

 Optimizing Batch Crystallization with Model-based Design
of Experiments. (2024). LAPSE:2024.1542

2.

 Self-Driving Laboratories for Chemistry and Materials
Science, Chemical Reviews 2024 124 (16), 9633-9732

3.

 Comparative Study on Adaptive Bayesian Optimization
for Batch Cooling Crystallization for Slow and Fast Kinetic
Regimes, Cryst. Growth Des. 2024, 24, 3, 1245–1253

4.
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Check out our
showcase

TBC

POSTER 40

Resolving Drug Release Mechanisms of 
Amorphous Solid Dispersions during 
Dissolution using Optical Coherence 
Tomography Powell, D, Bordos, E, Devlin, M, Robertson, J, Florence, A, Markl, D,  Continuous Manufacturing and Advanced 

Crystallisation (CMAC), Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, 
Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, UK  

API 
Selection Polymer 

Selection

Melting 
Temperature

Glass 
Transition

Kinetic
Stability

Solubility

Temperature

Screw Speed

Die Pressure

Drug LoadingProcessing 
Stability

Amorphous Solid Dispersions (ASDs) are a drug delivery system for enhancing the dissolution poorly water-soluble drugs [1]. The 
project Digital Design and Manufacture of Amorphous Pharmaceuticals aims to characterize the mechanisms of drug release from 

ASDs during dissolution. 
Optical Coherence Tomography (OCT) is a contact free, nondestructive imaging technique based on low-coherence interferometry [2]. 
OCT allows the collection of high-quality images that penetrate beneath the surface of an object. The objective of this work is to utilize 

OCT to image amorphous extrudates during dissolution to analyse swelling and liquid absorption of the polymer

Context
70% of all pharmaceutical small molecule candidates fall into BCS class II due to 
poor aqueous solubility. Amorphous Solid Dispersions (ASDs) are a drug delivery 
system for enhancing the dissolution of such poorly water-soluble drugs [1]. 

Aim

Methods
Optical Coherence Tomography (OCT) is a contact free, non-destructive imaging 
technique based on low-coherence interferometry [2]. UV-vis spectroscopy can 
determine concentration using Beer’s law as it relates to UV absorbance.

Motivation
Understanding the mechanisms that influence ASD dissolution is key to drug 
product performance evaluation. Predictive tools based on these mechanisms 
will enable quality by digital design and right first-time manufacturing

The objective of this work is to utilize OCT and UV-vis spectroscopy to monitor 
ASD dissolution to analyse structural changes that occur during this process and 
relate these to dissolution performance.

WP3
Optical 

Coherence 
Tomography

Low 
Frequency 

Raman

Dissolution 
Testing

Predictive ASD 
product 

performance 
models

Swelling

Erosion

Dissolution

Phase 
transformations

Precipitation

Liquid 
absorption

Structures within the bulk of the dry extrudate are unresolved and cannot be detected as 
crystalline by Low-Frequency Raman or X-ray diffraction. These structures could represent 
residual crystalline material from processing, an amorphous rich phase, a pore or, if the sample 
is above the limit of kinetic stability, crystallisation that occurred after manufacturing.

Low Frequency 
Raman

WP1

WP2

Methods

2D Scan 3D Scan

OCT takes individual 
scans along a cross 
section of the 
samples, penetrating 
up to 2 mm into the 
sample. These scans 
are compiled into a 
2D image which can 
in turn be repeated 
along a third axis to 
generate a 3D image.

Samples were 
generated through hot 
melt extrusion.

Incorporated UV-vis 
in-line spectroscopy 
to align physical 
changes with 
dissolution changes

OCT allows the collection of high-
quality images that penetrate beneath 
the surface of an object.  Images show 
the structural changes through a cross-
section of the sample. These images 
reveal numerous unresolved structures 
and structural changes during 
dissolution that require elucidation.  
However, clearly defined absorption 
and swelling layers allow for the 
monitoring of these processes using 
OCT. Sub layers that appear to form 
within the gel layer of the extrudate 
could provide evidence of 
unconventional dissolution 
mechanisms.

Optical Coherence Tomography Data

Solution

Gel Layer

Glass

Possible Crystalline or 
Amorphous Phase 
separation?

Film forming 
during dissolution

Samples were 
observed with 
OCT during 
dissolution to 
record structural 
changes such as 
liquid ingress, 
gel formation 
and swelling.  
Dissolution time 
scale increases 
with drug 
loading.

OCT Erosion Analysis

Results

Ritonavir – Soluplus, 10% - Drug Loading
T = 0 seconds

T = 260 seconds

T = 520 seconds

T = 800 seconds

After a period of contact with the dissolution 
media the sample swells and gels. A thin, high 
intensity outer surface layer is retained, 
however, the bulk of the gel forms two layers, 
identified by the line in the gel (arrow).

The high intensity signal observed indicates a 
well- defined interface with a high refractive 
index. At time 0 there has been minimal media 
absorption.

T = 520 seconds

T = 200 secondsT = 10 seconds

Upon contact with the dissolution medium a 
high intensity scattering phenomenon is 
quickly observed in the initial swelling moment

The upper layer of the bifurcated gel 
undergoes limited swelling. Gel layer 
formation is driven by liquid absorption. 

The top surface strips away from the extrudate 
bulk. It appears to remove the top gel sub-
layer at this point, exposing the bulk of the gel 
beneath.

The bulk gel layer is now exposed to the 
dissolution medium and begins to rapidly 
dissolve from the direction of flow (right to 
left).

Ritonavir – Soluplus, 20% - Drug Loading
T = 10 seconds T = 2000 seconds T = 9000 seconds

The initial dry extrudate has a single interface 
with the dissolution medium. As before, the 
sample absorbs liquid, however, the 
absorption process is significantly slower at the 
higher drug loading. The swelling of the 
extrudate occurs over a much longer period.

There appears to be a thick, high intensity 
outer layer, Then two layers of gel, though the 
demarcation between the layers is less clear 
than the 10%DL. The glass-gel interface is less 
clear due to the intense scattering above 
blocking transmission.

The swelling continues until the surface 
ruptures, peeling off the top layer. This process 
is significantly slower than the 10% DL. The 
bulk gel dissolves much quicker after the 
surface layer is breached. The sample can be 
seen dissolving at the right side of the image, 
even while the surface layer remains attached

As drug load increases, the rate of dissolution 
decreases in general, however, this is offset for 
drug loadings up to 14% by increased 
concentrations due to higher drug loading. 
However, above this threshold dissolution is 
increasingly inhibited. Onset of dissolution in 
this system above this threshold is delayed by 
an increasing margin, with the 20% drug 
loading taking upwards of an hour to begin 
dissolving. This delayed dissolution appears to 
be correlated with the delamination of the 
surface layer.

Full dissolution 
video here!

Conclusion
Optical Coherence Tomography (OCT) identifies the key mechanisms of ASD 
dissolution as the exposure of a bulk gel layer to the medium. The formation of a 
robust surface layer upon contact with medium appears to inhibit dissolution.

UV-vis

Translation 
Stage

Custom – designed 
Flow Cell

Peristaltic 
Pump

OCT

Optical Table

pH 5.0 NaAce 
Buffer

O-ring

Optical 
Window

Sample

Dissolution studies were 
conducted in a closed-loop 
system utilizing a custom-
engineered flow cell 
designed for precise and 
controlled analysis.

This work was supported by the Engineering and Physical Sciences Research Council as part of Digital Design and Manufacture of Amorphous Pharmaceuticals, 
DDMAP (Grant Ref: EP/W003295/1).

Partners

Erosion of sample surface material is 
monitored using a trained YOLO single 
convolutional neural network image 
segmentation model, which identifies and 
delineates sample areas in OCT images. 
This enables precise tracking of the 
sample area. Given the extrudate’s large 
aspect ratio, sample length remains 
nearly constant, allowing area to serve as 
a proxy for volume and, via density, mass. 
Future modeling will fit erosion rates to 
dissolution rates in a mass balance 
framework.
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Automation of amorphous solid 
dispersions physical stability 

prediction

Why Automate?

• Automated workflow: higher 
throughput and 24/7 operation

• FAIR database principles enhance 
data integrity

• Consistency and traceable samples 
throughput entire workflow

• Ensures reproducibility
• Limits human error and exposure to 

hazardous chemicals or repetitive 
manual tasks

Autonomous analysis of samples

ObjectivesMotivation

• Amorphous active pharmaceutical ingredients (API) may offer improved
pharmacokinetic performance over poorly soluble crystalline API. 

• However, they may exhibit poor chemical and physical stability through a higher free 
energy state. This may lead to subsequent crystallisation 
during storage or after ingestion

• Amorphous solid dispersions (ASD) offer a viable 
approach to enhance the physical stability of an 
amorphous system since they may restrict 
molecular mobility and reduce the 
thermodynamic driving force for 
crystallisation for an API.

• This project leverages automation to 
create a large stability database, 
improving predictive tools for material
-sparing ASD stability assessment.

Well classes

Bespoke storage solution

Per oven there are:
• 12 API mixed with 5 polymers at 8 DL’s
• 1152 samples per oven (we have 3 oven conditions)
• 50 APIs at 3 varied stability conditions

• 12,300 samples
• Imaged once every 2 hours = millions of data points…
Currently running three full ovens: 
= 3456 samples continuously monitored
= 41472 data points per day

When samples remain amorphous, 
there is no effect on the polarised 
light since the material is isotropic. 
This is a stable amorphous system

Once a sample crystallises, it is 
anisotropic and causes the 
polarised light to ‘split’, enabling us 
to visibly see light through the 
sample

Automated 
sample prep

Manual sample 
transfer

Automated crystallisation detection/ 
analysis and reporting

Well 
classes

mAP50 
(Accuracy)

Empty well 0.956
Surface 0.833

Bulk 0.872
Dust 0.925

• Build an end-to-end automated workflow which enables a high throughput 
screening of ASD stability

• Autonomous high throughput screening 
workflow utilising an automated dosage platform

• Image analysis to autonomously 
capture and report sample stability

• Machine learning model 
for prediction of ASD 
stability

References

Conclusions and further work

[1] – Taresco et al, Rapid Nanogram Scale Screening Method of Microarrays to Evaluate Drug-Polymer 
Blends Using High-Throughput Printing Technology, Mol Pharm, 14, 2079-2087 (2017) 
[2] – Eerdenbrugh et al, Small scale screening to determine the ability of different polymers to inhibit drug 
crystallization upon rapid solvent evaporation, Mol Pharm, 7, 1328-1337, (2010)
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Stable ASD drug loading: 

• To characterise ASD stability, 
polarised light imaging is 
used to detect birefringence 
within individual samples.

• Samples autonomously 
monitored to report the onset 
of crystallisation and monitor 
subsequent growth rates in-
situ.

Sample Solvent

Polymer

API

• Polymer + API solutions prepared 
using DMSO

• Samples dosed onto a 96-well plate

• Only 60 μg of material used

Stable Unstable Unstable Limitation

• Sample stability distinguished using classifiers above

• Image analysis model has been trained using 8000 
annotated images

• Each well is imaged every 2 hours to capture:

• Successfully implemented an automated workflow to prepare over 15000 ASD 
samples for stability testing

• Image analysis can detect the onset of crystallisation for ASDs and subsequently 
report this as a csv to a database

• Continue implementing workflow to obtain stability data for over 50 API
• Generation of a machine learning model from experimental results to predict the 

stability of ASDs and extract governing factors in amorphous stability

Validation of model using a 
pre-split dataset following 

80:20
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Material-to-Product Hybrid System of Models

Acknowledgment: The authors would like to thank the Digital Medicines 
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funding this work. DM2 is co-funded by the Made Smarter Innovation 
challenge at UK Research and Innovation, and partner organisations from 
the medicines manufacturing sector. 
For more information, visit cmac.ac.uk/dm2-home

A Digital Formulator and Self-Driving Tableting DataFactory: 
Hybrid Modelling and Process Optimisation 

Mohammad Salehian*, Faisal Abbas*, Jonathan Goldie*, Jonathan Moores*, Daniel Markl*
*Centre for Continuous Manufacturing and Advanced Crystallisation, University of Strathclyde, Glasgow, UK

D
igital D

om
ain

Physical Assets

Compaction

Automated hardness, 
weight, dimensions 

testing

Storage 
boxes Bin

Post Compaction

Automated 
sessile drop 
measurements 

Pre-Compaction

Weighing 
balance

Robotic arm

Dosing and 
blending 
station

Micro NIR

Rapid Formulation Development and Process Optimisation Rapid Manufacturing

Material Properties 

Optimised formulation
• Excipient selection
• Excipient concentration
Initial process condition
• Main compaction pressure

CCDC Particle 
Informatics: 

computations particle 
properties

Process refinement and 
validation
• Main compaction pressure
• Pre compaction pressure
• Dwell time

New Drug 
Candidate

Tableting 
DataFactory

Real-time quality 
control

Material characterisation:
• Particle size/shape
• True density
• Bulk density 

Rapid supply of tablets 
with optimised attributes

AR visualisation

Digital Formulation and 
Process Optimisation

Hybrid system of models

Multi-objective, constrained 
optimisation

Experimental 
Agents

Empirical models

Physics-informed 
Bayesian optimisation

In-Silico Optimisation

Raw material 
attributes
• Particle size
• Particle shape
• True density
• Bulk density

Mixture 
models

Blend attributes
• Particle size distribution
• Particle shape distribution
• True density
• Bulk density
• Tapped density
• Flowability

Process 
models

Tablet attributes
• Porosity
• Tensile Strength

Formulation
• API Concentration
• CSD particle properties

CSD-Particle informatics
• Mechanical and chemical 

properties of crystalline particles:
• Particle shape
• Surface analyses 

Process conditions
• Compaction pressure

Decision parameters
• Excipient selection
• Excipient conc.
• Compaction pressure

Optimisation algorithm
Genetic Algorithm (Global search)

Objectives
• Maximum Flowability
• Maximum drug loading

Constraints
• Porosity > 15%
• Tensile Strength > 2 MPa

New Drug 
Candidate

CMAC Data FabricOrchestration

Experimental Agents (Process Optimisers)

Digital Formulator and In-Silico Formulation Optimisation
Identify optimal formulation that maximise flowability while meeting porosity 

and tensile strength targets

Physics-informed Bayesian Optimisation Multi-output Bayesian Optimisation

Objectives
• Target Porosity
• Target Tensile Strength

Decision Parameters
• Compression Pressure

Physics-based models
• Kawakita Model
• Duckworth Model

Data-driven Bayesian 
Optimisation
• Gaussian Process

Objectives
• Min. Elastic Recovery
• Target Porosity
• Target Tensile Strength

Decision Parameters
• Main Compression Pressure
• Precompression Pressure
• Dwell Time

Initial DoE
• Latin Hypercube Sampling

Data-driven Bayesian Optimisation
• Multi-Output Gaussian Process

Self-Driving Tableting DataFactory
A self-optimising tableting and testing system driven by physics-informed or multi-

output Bayesian optimisation engines

Problem Statement
We aim to rapidly develop the formulation 
and process parameters of a new drug 
candidate with new Active Pharmaceutical 
Ingredient (API) using the raw material 
properties, predictive models, and process 
optimisation algorithms coupled with the 
automated tableting DataFactory.

Key Innovations and Developments:

Material-to-Product Modelling

Physics-informed Data-Driven Modelling

Physics-Informed Bayesian (Process) Optimisation

Physics-guided data balancing 
using empirical models

Physics-Informed Neural Networks (PINNs) with customised 
architecture and loss function with empirical compaction models.

Hybrid (data-driven and mechanistic) system of mixture and process models to 
predict blend and tablet properties from raw material characterisation data.

Up to 60% save in experimental load by 
incorporating physics-based empirical models 

into Bayesian process optimisation.

Dexamethasone Validation Case:

Salehian et al. "A hybrid system of 
mixture models for the prediction 
of particle size and shape, density, 
and flowability of pharmaceutical 
powder blends." International Journal 
of Pharmaceutics: X (2024): 100298.
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Multi-Label Classification of 
Crystallisation Outcomes for the 

Crystallisation Screening DataFactory

MMeeaassuurree
• CCrryyssttaalllliissaattiioonn
• IImmaaggeess
• TTeemmppeerraattuurree  &&  
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EExxppeerriimmeenntt  
PPllaannnniinngg
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OOppttiimmiissaattiioonn

DDoossiinngg
• VViiaall  ffiilllliinngg

Crystallisation Screening DataFactory

Light 
Source

Light 
Detector

The Technobis Crystalline has the following features:

Transmissivity: Measures light transmission to detect 
crystallisation by identifying light interruptions. 100% when 

the solution is clear; decreases as crystals form.

Camera Imaging: Captures real-time images frequently 
from which crystallisation outcomes can be observed.

Light 
Source

Light 
Detector

Technobis Crystalline V2

Metastable zone (Cloud Point)
Kinetics
Crystallisation Outcomes 

Solubility (Clear Point)

Image Dataset

Labels Precision Recall F1-Score
Object Present 99% 98% 98%
Block Crystal 90% 84% 87%

Needle Crystal 98% 99% 98%
Plate Crystal 98% 98% 98%

Elongated Crystal 95% 94% 95%
Agglomerated 97% 96% 97%

Bubbles 92% 85% 88%
Droplets 99% 99% 99%

Too Concentrated 95% 96% 95%
UFO 74% 71% 72%

Over 120,000 images have been semi-annotated. The collected 
data is systematically divided for training and validation 
purposes.

By employing K-fold cross-validation, we can determine the 
optimal thresholds for each label, enabling the model to achieve 
the best possible metrics for automation.

Our model classifies images based on the confidence score for 
each label. 

When a label's confidence score exceeds a predefined 
threshold, the image is assigned that label, allowing it to have 
multiple classifications.

Multi-Label 
Classifier Metrics

• Model 
assessed using 
~25,000 images 
not used in 
training

Needle 
Crystal 

Object 
Present 

Block 
Crystal 

Plate 
Crystal

Elongated 
Crystal

Agglomerated 
Crystal 

Bubbles Droplets
Too 

Concentrated

Unidentified 
floating 

object (UFO)

Paper coming soon! Look out for our publication in Engineering 
Applications of Artificial Intelligence in 2025

Methodology

Label 
ThresholdSigmoid

Model 
Outputs

Input Image

Deep 
Learning 

Multi-Label 
Classifier

Object 
Present

Block 
Crystal

Elongated 
Crystal

Active 
Pharmaceutical 

ingredient: 
Nicotinamide

Solvent:
Methyl ethyl Ketone

Results

C
ry

st
al

 H
ab

its
O

th
er

 O
ut

co
m

es

Clear point 
(Transmissivity)

Clear point 
(Image 

Classifier)

Cloud point
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𝐒𝐒𝐰𝐰 = 𝚷𝚷𝟏𝟏
𝜿𝜿 𝑪𝑪𝒊𝒊 𝑺𝑺𝒊𝒊

𝐢𝐢 = 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂
𝐤𝐤 = 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧 𝐨𝐨𝐨𝐨 𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛

𝐂𝐂𝐢𝐢 = % 𝐰𝐰
𝐰𝐰  𝐨𝐨𝐨𝐨 𝐢𝐢

𝐒𝐒𝐢𝐢 = 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝐨𝐨𝐨𝐨 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐢𝐢

Future Work
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Single crystal diffraction
Pow

der x-ray diffraction

Xray m
icroscopy

Sm
all angle x-ray 

scattering (SA
XS)

•
2 diffractom

eters (C
u, and M

o sources)
•

Latest technology detector (Photon III C
M

O
S) – 

provides highest sensitivity
•

Both equipped w
ith cryostat for variable 

tem
perature studies

•
C

u system
 ideally suited to routine structure and 

absolute configuration determ
ination

H
igh pressure crystallography

•
M

o system
 dedicated to high pressure diffraction

•
Single crystal and pow

der
•

H
igh brilliance 

•
R

outine structure solution at high pressure 
conditions

•
C

an also provide insitu high pressure PXR
D

W
ide range of kit available in lab:

•
C

apillary PXR
D

•
H

igh resolution data
•

Indexing, R
ietveld refinem

ent, Q
uantitative 

PXR
D

, structure solution from
 pow

der data
•

C
ryostat for variable tem

perature 
m

easurem
ent (80-500 K)

•
Phase transitions, 
desolvation/hydration, stability 
testing etc.

•
Screening PXR

D
•

H
igh throughput (40 sam

ple plate)
•

Transm
ission geom

etry
•

Excellent signal:noise
•

Identify sam
ples of interest for 

high resolution data collection, e.g. 
new

 form
s, ID

 im
purities etc.

•
R

eflection PXR
D

•
C

an accom
m

odate large sam
ple sizes, and 

highly absorbing m
aterials

•
N

um
ber of useful accessories:

•
Anton Paar C

H
C

+ tem
perature and 

hum
idity stage

•
Provides insitu PXR

D
 testing during 

controlled tem
perature and hum

idity runs
•

G
oebel m

irror – allow
s setup for thin film

 
testing and surface m

easurem
ent

Bruker Skyscan 2214 nano-C
T:

•
< 500 nm

 spatial resolution
•

2 detector options:
•

Flat panel – large form
at/fast im

aging
•

sC
M

O
S – high resolution im

aging
•

H
igh pow

er source (160 kV, x uA) 
required for dense m

aterial im
aging and 

optim
izing for com

posite device im
aging

•
C

an im
age vast range of m

aterials from
 

individual particles, to tablets, and 
com

plex m
edical devices

Xenocs Xeuss 2.0 SAXS system
 (2.5 m

 
sam

ple-detector distance)
•

3 xray source options (C
u, M

o, and C
r)

•
Large area detector (D

ectris 1M
)

•
C

om
bined SAXS/W

AXS
•

Insitu PXR
D

•
G

ISAXS

Exam
ple application areas:

•
Size/shape analysis lipid-nanoparticles

•
N

anom
edicines stability/binding

•
Stress-strain analysis

X-ray Pair D
istribution Function (x-PD

F)
•

D
edicated instrum

ent for x-PD
F data collection

•
M

ultiple sam
ples per day throughput

•
Analysis of am

orphous structure
•

R
elate changes in am

orphous structure to stability
•

N
anoparticle characterisation
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CORE project: Industrialisation  
of Spherical Agglomeration

Bilal Ahmed – CMAC,  
University of Strathclyde 

This poster will be available at the conference
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Is it possible to autonomously
generate an optimal 3D printing design

of a tablet structure that meets dose
requirements and enables the control

over the drug release profile?

The model parameters
(frequency and solid

coefficient of the Gyroid)
enable precise control of the

structure.

Figure 1. Specific surface area (SSA) calculated of the digital design controlled by the model parameters
(frequency, solid coefficient) of the Gyroid for four different tablet weights. (a) SSA with a frequency range of
0.3 - 0.5 Hz at constant solid coefficient of 1. (b) SSA with a solid coefficient range of 0 - 3 at constant
frequency of 0.5 Hz. 

Control over drug release profile.

Personalised dosage to meet
patient needs.

Rapid optimisation process
for responsive medicines

manufacturing

‘One size 
DO NOT fit all’

Develop a mathematical model to optimise the structural design of tablets made via fused deposition modelling (FDM) 3D printing. The 3D design is self-optimised to achieve desired
weight and ensure mechanical integrity. This approach is capable of autonomously adjusting design parameters to meet specified drug loading and maximise surface area for enhanced
release performance. The approach is validated for various design and benchmarked against a standard design. Future steps include the development of a self-optimising 3D printing
platform and expansion of the work to various materials, including new APIs, to showcase its versatility in pharmaceutical manufacturing.

Figure 2. Variation in the diameters of the 3D printed tablets (n=10) with (a) different frequency and (b) solid
coefficient. The error bars are present but too small to be perceptible.

* Computational resource and long time needed to
generate the virtual tablet structure - further
optimization of procedure required.

Figure 5. Visualising structural changes of 3D printed 250 mg tablets in response to change in
frequency model parameter: (a-c) tablet design renderings, (d-f) microscope images, (g-i) CT images.

Figure 4. Release profiles of 250 mg 3D printed tablets (n=6) with variable model parameters: (a, c)
frequency and (b, d) solid coefficient. (c) and (d) focus on the drug release in the first 60 minutes to
highlight differences between the different Gyroid structures.

Scan for video

*

Figure 3. Percentage deviation of intended weight for four different tablet weight. (a) Frequency range of 0.3-0.5 Hz at a
constant solid coefficient of 1 s. (b) Solid coefficient range of 0-2 at constant frequency of 0.5 Hz. 

Next steps:
Use Bayesian optimization to

identify optimal process
parameters that achieve target

weight and specific surface area
while minimizing sample

variability.

Figure 6. Visualising structural changes of 3D printed 250 mg tablets in response to change in
frequency model parameter: (a-c) tablet design renderings, (d-f) microscope images, (g-i) CT images.

POSTER 50

Advancing Particle Engineering and Process Optimization
through Digital Workflows

Primary Processing Team
CMAC National Facility

Objective: achieve target particle size
of >10 microns
Challenge: current process shows wide size
distribution and fouling
Solution: revisit solvent system and use of
continuous precipitation to achieve desired particle
attributes

Objective: Achieve Consistent product, robust
process and yield maximization
Challenge : current process shows batch to batch 
variability and wider size distribution
Solution: Continuous Process using Taylor cuvette
flow to achieve uniform mixing, consistent product
with easy scaleup

Objective: Feasibility for continuous process to
achieve Process yield < 85%, required particle size
distribution and robust process
Challenge : current batch process unable to meet
target of required size distribution
Solution: A continuous crystallization process
using predictive and mechanistic model to
optimize process

Solvent selection – small scale

Old solvent system
Broad sized agglomerates
Massive fouling and encrustation

New solvent system
Well defined particles
No fouling and encrustation
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Inline analysis - cross validation using offline analysis

Yellow –operating conditions
Orange – growth experiments
Grey – Secondary nucleation experiments
Green – Primary nucleation
Solid line boundary conditions (phase separation)

• Cooling
• Anti-solvent
• pH induced 
• mixing induced
• Acid-base
• spherical crystallization

W
HAT KIND OF PROCESS

01

• Workflows implementation
• Small scale screenings
• Process boundaries
      assessment
• Process and process 
• model development
• Equipment selection

A
PP

RO
A

CH
FO

R
PR

OCESS DEVELOPMENT

03

EX
PER

IM
ENTS/ANALYSIS

04• Data rich experimentation

• Targeted experiments for
       parameter estimation

• Product analysis inline/
      offline

M

ODEL FRAMEWORK

05• Hydrodynamic models

• Predictive models

• Mechanistic models

• Linking CPA’s to CQA’s

M
ODEL REFINEMENT/POC

06• Final process/model refinement

• Design space assessment/
       validation

A robust process
/model to acheive 

required
CQA’s

OBJECTIVES

02
• CQA’s (Size, shape, polyform, CSD)

• Yield/ Impurity

• End-to-end continuous with
      enhanced through
      put/consistency

• Process Robustness

MODEL PREDICTION VS EXPERIMENTAL VALIDATION

OBJECTIVES – THROUGHPUT AND FINAL PARTICLE SIZE
CONTROL VARIABLE – PH
FEEDBACK CONTROL – NO OF PARTICLES (FBRM)
PROCESS – 4 STAGE PH CONTROLLED CRYSTALLIZATION

ANTI – SOLVENT CRYSTALLIZATION ACID BASE CRYSTALLIZATION PH CONTROLLED CRYSTALLIZATION

Linkedin: cmac-centre

POSTER 51
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Amorphous Precipitation / Amorphous solid dispersion via co-precipitation

Objectives
• Targeted size distribution
• Improved flow properties
• Robust process with consistent 

product
• Product with desired 

yield/purity/composition/stability
• Improvement filtration/drying

Amorphous Precipitation / Amorphous solid dispersion via co-precipitation

Optimization
DOE

predictive
black box/baysian

Proof of concept/validation

Equipment/Process
Process selection
Platform selection

Process scale

Process Boundaries
Super saturation

Flow ratio
Shear rate

Temperature
Residence time

Components
Polymer type and amount

Solid concentration
Solvent

Surface tension
Viscosity

Agitation conditions

Measure STR Static mixer Laminar

Mode of operation batch Continuous Continuous

Volumes 100ml-3L (tested) As small as 3ml to 100ml 1L (can go to 1000L)

Flowrates ml/min Depends on vol to be treated 20-150 20-300

AS composition at the end 80% 63% (can go even lower) 63% (can go even Lower)

Sheer rate S-1 100-300 2000-6000 10000-30000

Particle size Wide distribution/fines and agglomerates 
of 50-100 micron Smaller agglomerates 20-40 micron Tunable particles 10-50 microns

API concentration : 270-420mg
Precipitation temp: 0-10
Super saturation : 30-80
Flow ratio : 1:3
Immediate precipitation as amorphous

API concentration : 230-420mg
Precipitation temp: 0-10
Super saturation : 20-50
Flow ratio : 1:3
No immediate precipitation – crystalline product

Anti-solvent  for amorphous precipitation Anti-solvent and API-Polymer composition

SS - 40-50

SS - 60-70

SS - 80-90

60-40 DMSO:IPA 215mg/ml
Precipitates as Amorphous
Slurry stable below 12C- turn 
crystalline above 12C
Free flowing slurry

85-15 DMSO:IPA 410mg/ml
precipitates as amorphous
slurry stable below 15C
dense flow

70-30 DMSO:IPA 
280mg/ml
precipitates as amorphous
Slurry stable at 18C
Free flowing slurry

Gum for Feed to anti-solvent ratio below 
1:2

Effect of super saturation on amorphous precipitation Exploring process boundaries to meet CQA targets

0
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CE
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Size microns

Process reproducibility

Condition 6-RT4 Condition 10-RT4

Amorphous Solid Dispersion
Process optimization Using BayBE Process optimization based on suggested experiments

STEP 1

Define Objective
Yield - Max
Bulk density - Max
Composition - Match

STEP 3

perform suggested 
experiment
add objective 
values from 
experiment

STEP 2

Search space
Flow ratio: 1:5-10

RPM -700-1300
Residence time: 

9-30 min

STEP 4

perform next 
suggested 

experiment
Find Optimum

ASD 

ASD showed same composition as feed solution 
for API/Polymer

Batch process Cross mixer
Laminar 
reactor

Amorphous precipitation 
Process Batch no Flow Function 

Coefficient (FFC)

Batch process <4

Cross mixer AB7780-S4 8.68

Laminar reactor 

AB7944 8.11

AB0261 7.60

AC5308 8.15

Find out more about our capabilities: Email: national-facility@cmac.ac.uk Web: www.cmac.ac.uk Linked In: 
Shortlisted for an Excellence in Pharma Award: 
Contract Services and Outsourcing category at 
CPhI 2018

CMAC - Transforming Medicines Development & Manufacture

Spherical Agglomeration

Maturation and spherical 
agglomerate formation

In spherical agglomeration, the BSR controls 
agglomerate
• Size, 
• Shape, and 
• Strength. 
The BSR range is estimated through small-scale tests 
using vials and a vortex mixer.

• Agglomerates grow through collision and 
merging, with particles adhering to form larger 

spheres. 
• The bridging liquid redistributes, smoothing 

the surface and enhancing sphericity.

• Layering involves gradual particle 
deposition on agglomerates, leading to 

controlled growth under low shear. 
• Coalescence is the fusion of 
agglomerates into larger units, 

occurring under high shear or excess BL.

• Mature agglomerates are collected via 
filtration. 

• The final drying step ensures the removal of 
residual solvents, resulting in a stable, free-

flowing agglomerate.

Separation and Drying
Binder-to-solvent ratio (BSR)

Bridging liquid (BL) addition

Dispersion of Fine particles

Wetting and Nucleation

1 Solvent screening

2

To optimize agglomeration, a suitable Bridging Liquid (BL) and 
Dispersing Liquid (DL) combination must be chosen, with BL 
being immiscible with DL.

3

• Fine powder is dispersed in a dispersing 
liquid (DL).

• The particles remain suspended as 
individual entities.

4 • A small amount of BL is pumped through 
fine tubing into the reactor containing 
dispersed particles in  DL.

• Tubing diameter control droplet & 
agglomerate size. 

• BL selectively wets fine particles, promoting 
adhesion.5

Fine particles begin to adhere, 
forming small clusters (nuclei) that 
act as the core for agglomerate 
growth.

6
Growth and consolidation

7

8

Objectives
• Improved flow properties
• Improved bulk density
• Improved filtration 

performance
• Tunable particle size
• Robust and consistent 

process
• Robust agglomerates

Sample BSR Mixing (rpm) Mean size at 0.5 bar
(µm) Bulk Density (g.mL-1)

Raw Material - - 5 0.17

S1 2.6 12000 35 0.46

S2 2.6 8000 84 0.32

S3 2.7 16000 143 0.31

S4 2.7 16000 145 0.32

0

1

2

Raw Material S1 S2 S3 S4

FR
I

Flow rate Index

0

1

2

Raw Material S1 S2 S3 S4

SI

Stability Index

Conclusions:
Advanced particle engineering in the form of spherical agglomeration and amorphous solid dispersion were successfully employed for the 

improvement of chemicophysical properties of API. Amorphous solid dispersions improve the physical stability of amorphous API through the 

inclusion of polymers, all while fine-tuning critical process parameters to maintain critical quality attributes such as the size distribution, flow, 

and residual solvent content within the desired ranges.

Spherical agglomeration is demonstrated through the development of a robust process that improves the downstream processing of material 

of problematic needle-shaped crystalline particles in addition to improving filtration and drying durations.

The use of digital workflows for process optimization enables the lowering in carbon footprint as a result of the reduction in experimental 

work.

Advancing Particle Engineering and 
Process Optimization through Digital 

Workflows
Primary Processing Team
CMAC National Facility

cmac-centre
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Breaking the crystal lattice: 
navigating the development of stable 

amorphous drug products via the 
API-polymer solubility challenge

Ecaterina Bordos – CMAC, University 
of Strathclyde  

This poster will be available at the conference
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Advancing UV Calibration and 
Control Strategies for Real-Time 
Supersaturation Management in 

Crystallisation

Humera Siddique – CMAC,  
University of Strathclyde

This poster will be available at the conference

POSTER 55

Self-optimisation of dynamic 
heterogeneous catalytic systems

Soya Dohi – University of Leeds  

This poster will be available at the conference
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1. School of Chemical, Materials and Biological Engineering, University of Sheffield, UK 2. Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK 

SCALING UP AGITATED FILTER DRYERS: THE EFFECTS 
OF AGITATION ON AGGLOMERATION RATES

Suruthi Gnanenthiran1, Pari Rao2, Christopher Hewitt2, Kate Pitt1 & Rachel Smith1 

INTRODUCTION

Agitated filter dryers (AFDs) are commonly used in the pharmaceutical industry for efficient filtration and drying. The agitation improves heat and mass 

transfer, resulting in better product uniformity and shorter drying times.1 Ideally, materials are dried without altering any properties achieved during 

crystallisation to preserve drug performance behaviour. However, intense agitated drying conditions can result in undesired particle agglomeration, leading 

to manufacturing challenges such as out-of-specification products, additional milling, and extended cycle times. 

Drying in AFDs is a dynamic process where heating and agitation of the wet 

cake can result in the formation of solid bridges leading to agglomeration.1 

Previous work implemented a mechanistic approach to isolate the effects of 

agitation during drying. Building on this, the current study evaluates constant 

tip speed as a scaling index to determine whether agglomeration behavior 

can be successfully scaled up in a larger AFD when geometric similarity is 

maintained. The extent of agglomeration is investigated for samples with an 

average initial moisture content of 20 % subjected to various agitation 

speeds and time periods. Existing knowledge of wet granulation processes is 

used to design this work as similar mechanisms may occur (Figure 1).

MOTIVATION MATERIALS AND METHODS

Wet Granulation:

Drying in AFDs:

Figure 1 – Contrasting mechanisms of wet granulation to drying in AFDs

❑ At low speeds, scale-up data shows good agreement, indicating tip speed 

scaling effectively matches energy input per unit mass, resulting in 

comparable granule dynamics.

❑ Initial balance between agglomeration and breakage shifts toward 

agglomeration dominance at 60 mins, more prominently in the larger AFD.

❑ At higher speeds, agglomeration increasingly dominates over breakage 

with longer agitation, though d50 values diverge due to greater breakage 

promoting snowballing in the larger AFD.

❑ Agglomeration trends provide further insight into underlying mechanisms.

❑ Scaling with tip speed replicates agglomeration behaviour qualitatively 

however quantitative differences are observed.

REFERENCES
1. H. L. Lim, K. P. Hapgood and B. Haig, Powder Technol, 2016, 300, 146–156.
ACKNOWLEDGEMENTS
Funding: EPSRC and AstraZeneca, Technical support: CMBE Mechanical Workshop

CONCLUSIONS AND OUTLOOK

Tip speed scaling 
qualitatively replicates 

agglomeration behavior 
across scales.

Quantitative differences 
due to increased 

breakage in the larger 
AFD.

Investigate other scaling 
indices for improved 
quantitative scaling.

RESULTS OF SCALE UP

PSL GFD 010 GL FD80

Vessel Volume (litres) 0.3 2

Sweep Ratio (D/T) 0.91 0.93

Clearance Ratio (C/T) 0.09 0.09

Agitation Speed (rpm) 50 + 100 32 + 64

MORPHOLOGY OF AGGLOMERATES

Large clusters of particles visible in SEM image, highlighting extensive 

agglomeration. Micro-CT cross-sectional image indicates packing of fines 

on the outer surface of an agglomerate, consistent with a snowballing 

mechanism. This growth mechanism results from fines generated from 

breakage adhering to wet agglomerates to promote further growth.

Figure 3 – (a) SEM image and (b) Micro-CT cross-section of dried agglomerates

a) b)

Figure 2 – d50 values over time at (a) low speeds and (b) high speeds

a) b)

48 mm

53 mm

5 mm

12
0 

m
m

PSL GFD 010 AFD

74 mm

80 mm

7.5 mm

14
0 

m
m

GL FD80 AFD

Measurement Characterisation Technique

Moisture Content Moisture Analyser 

Agglomerate Size Analysis Sieving

Imaging
Scanning Electron Microscopy (SEM)

Micro-computed tomography (Micro-CT)

Jacket Temperature
25 °C
Impeller geometry 
45° pitch blade
Agitation time
8 to 60 min

API
Salicylic acid 
d10 = 22.3 µm 
d50 = 52.3 µm 
d90 = 111.0 µm
Solvent
Distilled water

(M
astersizer)

https://www.bing.com/th?id=OIP.Yoi-N3XjpkVtUnM_sCGmvAHaCAw=349h=94c=8rs=1qlt=90o=6dpr=2pid=3.1rm=2

Co-Processing of Amorphous Solid 
Dispersions via Co-precipitation with 
Continuous Taylor-Couette Flow Reactor  

Aims - Characterisation of the Laminar Platform

What is the Laminar Platform? Minimum suspension 

Heat transfer – Evaluate the temperature control within the reactor 

Minimum suspension – Determine the minimum rotor RPM for total solid suspension 

Solid and Liquid residence time distribution – Quantify the mode of flow at different rotor RPMs and net flow 

Effect of shear rate on particle formation – Measure particle size and shape of an antisolvent recrystallisation of lactose monohydrate 

Inefficiencies and fouling – Determine the limitations of this reactor 

The Laminar Platform is a horizontal, jacketed, 300mL, Taylor-Couette flow reactor (TCR). An inner rotor spins to create different 

modes of Taylor-Couette flow. These modes influence different particle formations and morphologies. 

Conclusions 

Future work
To use the platform within its characterised operating ranges to coprecipitate amorphous solid 

dispersions. Coprecipitation of drug stabilised by polymer will determine the viability of drug 

systems produced on the Laminar platform and may fill in gaps where hot melt extrusion and 

spray drying are not viable options based on operating conditions.  

Heat transfer was efficient and performed above its usual experimental conditions, 

recrystallisation of lactose proved that particle size can be controlled, solid and liquid RTD 

showed that the platform can perform at near plug flow conditions at 20 tanks for both instances 

and the minimum suspension RPM is sufficient to provide the conditions needed to operate at 

plug flow Taylor-Couette ranges for a suspension density of 0.809 𝑔𝑔/𝑐𝑐𝑚𝑚3.

Lewis MacQueen*, Kenneth Smith, Humera Siddique, Michael Devlin, John Robertson, 
Alastair Florence  

CMAC, Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS)
*lewis.macqueen@strath.ac.uk

References 
[1] Taylor-Couette reactor: Principles, design, and applications Schrimpf M, Esteban J,
Vorholt AAIChE Journal (2021) 67(5) e17228 

Acknowledgments
Thanks to the EPSRC and CMAC for funding. Thanks to Dr Michael Devlin and Dr Daniel Powell for their ongoing support 
and Lewis Ross for providing me with invaluable API/polymer stability data

Heat Transfer 
• Heat transfer experiments were conducted using six 

different water flow rates - 50, 100, 150, 200, and 300 

mL/min - pumped through the annular space. The water 

temperature was maintained at 50°C using jacketed lines 

to ensure consistent thermal conditions

• Chiller temperature was maintained at 15°𝑐𝑐 and at a flow 

rate of 5.1L/min

• The rotor was cycled through 300, 600, 900 and 1200 RPM 

• A Prandtl number of 32.18 indicates that the boundary 

layer is thin, heat transfer between the walls of the 

reactor is effective, and the benefits from the inter-vortex 

mixing are apparent. This allows for momentum to 

dominate over thermal diffusion

• The reactor did not reach its operational limitations, and it 

was found that heat transfer was not affected by the flow 

rate 

Effect of shear rate on particle formation 

Solid and liquid residence time distribution  

y = 6.4375x + 41.764
R² = 0.9977
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Heat transfer coefficient WRT rotational Reynolds number  

Heat transfer rate with respect to flow rate

Increasing 𝑅𝑅𝑒𝑒𝜃𝜃  the Nusselt number also 

increases which shows that convective heat 

transfer is the dominant mode, and therefore 

higher heat transfer between the boundaries. 

Increasing the rotational speed leads to a 

higher heat transfer coefficient which 

enhances the convective heat transfer. This 

data shows that the reactor did not hit its 

operational limits and performs within 

future experimental requirements.

The system was operated above the critical Taylor no 

(105) hence, the heat transfer coefficient indicates that 

convection (forced convection) is the dominant mode of 

heat transfer between the annular space and the jacket.

Minimum suspension experiments were conducted using a two-

part method, where, a visual confirmation method was utilised 

first, followed by a quantitative analysis:

• A slurry density of 5 wt% lactose in EtOH at 0.809 𝑔𝑔/𝑐𝑐𝑚𝑚3 was 

selected based on visual contrast, higher densities did not give 

the contrast needed to confirm full suspension 

• A lower slurry density of 2 wt% was used to quantify the effect 

of net flow rate on particle suspension to allow better 

confirmation on effects

• Quantitative analysis using an FBRM probe to measure particle 

count at a range of RPMs 

• It was concluded that from visual confirmation that 190 RPM 

was the lower limit for full suspension of 5 wt% lactose 

• This was backed by quantitative analysis shown by instability 

starting from 190 RPM 

45 RPM 5 wt% lactose in EtOH 190 RPM 5 wt% lactose in EtOH

190 RPM 0𝑔𝑔/𝑚𝑚𝑚𝑚𝑚𝑚 flow rate 2 wt% 
lactose in EtOH

190 RPM 75𝑔𝑔/𝑚𝑚𝑚𝑚𝑚𝑚 2 wt% lactose 
in EtOH

FBRM data with decreasing RPM from 400 to 170 with 5-minute 
increments. Arrow represents 190 RPM to 180 RPM and destabilisation 

observed after this 

Condition Lactose: 

Antisolvent

RPM of Laminar Volume flow 

rate mL/min 

lactose

Volume flow 

rate mL/min 

antisolvent

Total volume 

flow rate 

mL/min

RT 

(minutes)

1
1:2

13:26
300 600 900 1200 12.04 33.33 45.37 7.27

2
1:3

9.5:28.5
300 600 900 1200 8.79 36.54 45.33 7.27

3
1:4

7.5:30
300 600 900 1200 6.94 38.46 8.72 7.27

• An antisolvent recrystallisation of lactose 

monohydrate is carried out at 20℃
• Lactose dissolved in water at 19.1𝑔𝑔/𝐿𝐿
• Ethanol used as the antisolvent 

• Table 1 shows the conditions used during 

the antisolvent recrystallisation 

Liquid RTD
• A calibration of sodium benzoate using a Carl Zeiss 

MCS5000 UV spectrometer was carried out with a 

transflectance probe with a path length of 5mm

• Water was used as a carrier liquid pumped in at 

different flow rates, an injection of 3mL of 30mg/L 

sodium benzoate is introduced

• Flow rates of 12.5, 25, 50, 75, and 100g/min and 300, 

600, 900 and 1200 RPM were used to determine the 

effects of net flow and RPM on RTD

• Time of total elution of sodium benzoate was recorded 

to determine the effects of RPM and net flow 

Solid RTD
• A Mettler Toledo G400 FBRM is used to 

measure the residence time of a 5mL 

injection of MCC (PH101) 10 wt% suspension 

• Water was used as a carrier with flow rates 

of 50, 75, 100 and 125g/min and 300, 600, 

900 and 1200 RPM 

• Higher flow rates are used with the 

knowledge of particle settling in tubing lines 

from the minimum suspension work

Liquid RTD – results 
• With increasing RPM, intervortex mixing was more apparent 

and therefore an increase in axial dispersion 

• Lower flow rates and higher axial dispersion was observed 

longer time spent by the tracer within the annular space 

allows more interaction between vortex structures  

• At 1200 RPM, three ranks could describe the system moving 

towards plug flow at 300 RPM with a maximum of 20 tanks, 

analogous to the number of vortex structures present 

• Vortices have minimal intervortex mixing at lower RPMs and 

each behaves as a tank-in-series 

• Optimal plug flow conditions seen at 300 RPM 

Solid RTD – results 
• Solid RTD indicates that lowering RPM 

makes the system move towards plug flow, 

higher RPM tends towards a fully mixed 

system, this agrees with the liquid RTD 

• The minimum number of tanks at 1200 

rpm was 3 and increased to 20 at 300 rpm

• Optimal plug flow conditions seen at 300 

RPM 

ASD systems for Laminar processing  

Based on API/polymer stability at 40℃/75%RH within DDMAP by Lewis Ross, a 

selection of ASD systems will be processed in coprecipitation experiments 

completed in the Laminar platform. A selection of compatible, miscible 

solvent/antisolvents will be used. 
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𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝐴𝐴𝑆𝑆𝑖𝑖𝑖𝑖 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
𝑊𝑊𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑖𝑖𝑖𝑖 
𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑜𝑜𝑜𝑜𝑜𝑜
𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜 + 𝐴𝐴𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝑜𝑜𝑜𝑜 +
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜𝑜𝑜 

𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 + 𝐴𝐴𝑆𝑆𝑖𝑖𝑖𝑖

𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 𝐴𝐴𝑆𝑆𝑖𝑖𝑖𝑖 𝑊𝑊𝑖𝑖𝑖𝑖

𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜

= 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜 + 𝐴𝐴𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜

𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 + 𝐴𝐴𝑆𝑆𝑖𝑖𝑖𝑖

Reaction 
Space 

Rotor
Water 
Jacket

Electric Motor

Rotor

Toroidal 
vortex

[1] 

θ

B: 1:3 600 RT3A: 1:3 300 RT3

C: 1:3 900 RT3 D: 1:3 1200 RT3

API/polymer 
40℃/75%RH

Soluplus PVP K30 Plasdone Affinisol HPMC-AS

Carbamazepine wt% 10 0 0 0 10

Ritonavir wt% 80 70 80 80 80

Paracetamol wt% 60 60 50 50 60

Naproxen wt% 30 30 30 10 10

Celecoxib wt% 60 60 70 40 50

Felodipine wt% 40 40 50 30 30

PSD at three different supersaturations 
showing growth is not governed by 

supersaturation but by RPM

PSD at two different RPMs of the same 
supersaturation, showing the effects of RPM

PSD at two of the same RPMs and 
supersaturations at RT2 and RT3, showing 

particle size steady-state

PSD at different RPMs and same supersaturations, 
showing the effects of RPM 

Calibration of sodium benzoate tracer RPM vs time of total elution of tracer at 
various flow rates  

TIS and ADM models fitted to 
experimental data 

Axial dispersion vs Reynolds axial 
number at different Reynoldsθ

RTD at different RPMs with respect to 
net flow

Axial dispersion vs Reynolds axial 
number at different Reynoldsθ
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Table 1: Conditions for antisolvent recrystallisation 

Table 2: 3-month stability for API loadings in polymer  

Blockages Particle settling regions 
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The Use of SIFT-MS in the Manufacture of Amorphous Solid Dispersions 

• To demonstrate the integration of SIFT-MS with TGA  and HME for the analysis of volatiles produced from the heating and shearing of polymers
• To use this setup to analyse the chemical differences between two chemically identical polymers but from different manufacturers 

• This study explores the use of SIFT-MS in the analysis of volatile compounds produced in the manufacture of amorphous pharmaceuticals via hot-melt extrusion

• Showcasing the SIFT-MS technique as an identification and quantification tool coupled with both Thermogravimetric Analysis for volatiles produced from temperature and with hot-melt 
extrusion for volatiles produced from heat and mechanical shear

• This workflow has shown clear differences between both polymers despite their aligning chemical structure when comparing their volatile behavior and potential degradation products

• The large library of compounds within the SIFT-MS has allowed for the identification of these potential impurities

Figure 3: Operational Schematic of SIFT-MS adapted with permission from Syft Technologies

Aaron D. Smith1,2* Ecaterina Bordos1,2, Alastair Florence1,2, John Robertson1,2

References

- - Bordos, E, Islam, MT, Florence, AJ, Halbert, GW & Robertson, J 2019, 'Use of terahertz-Raman spectroscopy to determine solubility of the crystalline active pharmaceutical ingredient in polymeric matrices during hot melt extrusion', Molecular 

Pharmaceutics, vol. 16. pp. 4361-4371. DOI: 10.1021

1 Centre for Continuous Manufacturing and Advanced Crystallization Research, University of Strathclyde 
2 Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde

* aaron.smith@strath.ac.uk

Figure 3: Schematic showing the combination of the SIFT to an Extruder with sampling over the vent port - 
adapted from Bordos et al, 2019 

SIFT-MS uses soft chemical ionization of fragments in volatile compounds and rapid 
detection to distinguish between analytes. No sample preparation required, and 
equipment is fully mobile. Real-time, high-throughput analysis with extensive compound 
library compiled using reaction rate constants of reagent ion peaks.

Figure 2: Schematic showing the combination of the SIFT-MS to the exhaust of the TGA

Introduction

Aims

Selected-ion-flow-tube Mass Spectrometry

Experimental Setup

• Figure 2 highlights experimental setup for TGA-SIFT-MS where volatiles are purged from the TGA 
furnace using inert gas and through the exhaust into the SIFT-MS

• Three Mass Spectra are collected for the reagent ions H3O+, NO+ and O2
+. All plots shown here are NO+

• Figure 3 highlights experimental setup for HME-SIFT-MS where the sampling is done over the final 
barrel vent port of the extruder 

• Volatiles are fully controlled by conditions in this setup – high temperatures means more volatiles

Figure 6: Targeted plots for potential degradation products between the two polymers highlighting the differences between them. E) Water. F) Acetic Acid. G) Methyl 
Formate. H) Ethylene Glycol. I) 2-pyrrolidinone. J) Vinyl Acetate
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Results

Figure 5: A) Untargeted analysis using TGA-SIFT-MS for S630, B) Targeted analysis using identified compounds for S630, C) Untargeted Analysis using TGA-SIFT-MS for VA64, D) Targeted Analysis using identified compounds for VA64

C DA

Figure 7: HME plots comparing both S630 and VA64 during extrusion. The same screw speed of 100rpm with increasing temperatures. E) Mass Spec plots for extrusion at 170oC. F) Corresponding PCA score plot. G) Mass Spec plots for extrusion at 190oC. H) Corresponding PCA score plot. I) Mass Spec plots for extrusion at 210oC. J) Corresponding PCA score plot 

E F G H I J

B

Case Study Analysis 
• This setup is used to analyze two chemically identical polymers with the only difference being the 

manufacturer 

• Clear differences seen in both the volatile profile and the concentration of the compounds. 

• PCA used to show differences in extrusion data 

• Clear differences seen in both the volatile profile and the concentration of the compounds. 

• By comparing results grouped by 
temperature we can confirm clear 
differences between the volatile 
profile of the subject material

• The clear differences could be 
attributed to various chemical 
reactions between the volatiles 

• PCA analysis further confirms the 
differences between the increasing 
temperatures 

• This information can further be 
used to potentially narrow down 
the operating window for the 
processing of these materials

• Analysis using the polymer Soluplus during extrusion completed at various temperatures to analyze the volatile profile using SIFT-MS
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Introduction
Synchrotron X-ray phase contrast imaging (XPCI) allows rapid microscopic imaging of multiphase systems with low absorption contrast 
between the components, such as organic crystals in solvents. This permits time-resolved studies of the structural evolution of dynamic 
systems. This technique has been applied to both crystal growth, using 2D radiographic imaging (which will be extended to 3D in the future), 
and to filtration processes, using time-resolved 3D tomography scans.

In-situ Studies of Crystallization and Filtration 
Processes Using Time-resolved Synchrotron 
Based X-ray Phase Contrast Imaging (XPCI)

Oliver V. Towns1,2*, Ameer Alshukri1, Nathan Hennessy1, Tariq Mahmud1, Joanna Leng3, Sara Ottoboni2,4, Chris J. Price2,4, Helen Wheatcroft5, Anna Jawor-Baczynska5, 
Sven L. M. Schroeder1,2

1Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK 
2EPSRC Centre for Innovative Manufacturing in Continuous Manufacturing and Crystallisation, University of Strathclyde, Glasgow, G1 1RD, UK

3School of Computer Science, University of Leeds, Leeds, LS2 9JT, UK
4Department of Chemical and Process Engineering, University of Strathclyde, Glasgow, G1 1RD, UK

5Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
*cm15ovt@leeds.ac.uk

Figure 1. Screenshots of frame from the video processing pipeline. A: Raw video frame. B: 
Background corrected frame. C: Binary threshold frame. D: Contour labelled frame. E: Example 
of figure extracted from frame, major (blue) and minor (green) lengths with labelled averages.

A

E

B C

D

Figure 2. XPCI images of latex spheres taken from reference 1 with associated pixel intensity graphs plotted along yellow line.

1. Paganin, D., Mayo, S., Gureyev, T., Miller, P. and Wilkins, S. 2002. Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. Journal of Microscopy. 206(1), pp.33-40.

Whole
Crystals

GasPore
Network

Figure 3. Examples of each phase in a single scan, segmented with Avizo.

Crystal Growth Radiography
Current industrial standards for monitoring crystallisations 
are limited in the information that is gained, eg:
• FBRM and Laser Light Scattering: only give 1D length 

information
• Microscopy Probes: Only give 2D information and can be 

difficult to process.
XPCI has the following advantages over standard techniques:
• Easier background correction due to parallel rays, so no 

crystals are out of focus.
• Phase contrast also can reveal other phase behaviour 

(anti-solvent mixing, oiling out, etc.)
• Can be paired with other X-ray modalities, such as 

diffraction, for more information
• Has the potential to extract time-resolved 3D information, 

building a more complete picture of the process and 
therefore influencing more accurate models.

A bespoke object detection algorithm has been created to 
automatically segment crystals from the background.
Thickness information may be extracted using the Paganin 
filter as shown in figure 2 (1).

Greyscale Crystals Liquid

Time
Figure 4. Z-slice of granular paracetamol filtration, washing and drying through time. Liquid phase highlighted in blue.

Filtration Tomography
Synchrotron based X-ray phase contrast 
tomography has been used to visualise the 
filtration, washing and drying of pharmaceutical 
solids. 3D scans are taken in less than a minute 
meaning that they can be taken throughout each 
step, allowing us to build a 4D picture of the 
whole process.
Paracetamol (granular and micronized) and 
metacetamol (needle-like) were used for different 
sizes and morphology examples, and the 
filtration conditions were investigated, such as: 
flow-rate, drying-rate and stopping points.

Phase contrast allows for each phase to be 
segmented and analysed individually in 3D, and 
through time. Data on the following can be 
extracted:
• Particle shape and size distributions in 3D
• Phase variation with height
• Where liquid, and therefore impurities, is 

retained
• How the pore network changes
With a better understanding of the filtration, 
washing, and drying process efforts can be made 
to implement more efficient processing.
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• What is fundamentally changing in the tablet? 
• At what stage does the mechanism switch over? 
• Can you have more than one type of mechanism, and if 

so, which is the performance-controlling one? 
• How does storage impact the mechanisms?

The Balance of Manufacturability, Performance and 
Stability in Pharmaceutical Tablets

Introduction
Objectives

Materials and Methods
Directly compressed tablets were manufactured using a compaction 
simulator and characterised after 7 days.

Tablet Characterisation

Next Steps

¹Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, UK.
²Centre for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, Technology and Innovation Centre, Glasgow, UK.

3Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK. 
4Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden.

5 Analytical R&D, Pharmaceutical Sciences Small Molecules, Pfizer, Sandwich, UK.
6Drug Product Design, Pfizer Belgium, Zaventem, Belgium.

lujain.al-obaidly@strath.ac.uk [1]  Maclean, N. et al. (2021) Exploring the performance-controlling tablet disintegration mechanisms for direct compression formulations. Int J Pharm, 599, 120221. 
[2]  Maclean, N. et al. (2022) Investigating the role of excipients on the physical stability of directly compressed tablets. Int J Pharm: X, 4, 100106
[3] Markl, D., Maclean, N., Mann, J., Williams, H., Abbott, A., Mead, H., & Khadra, I. (2021). Tablet disintegration performance: effect of compression pressure and storage conditions on surface 
liquid absorption and swelling kinetics. International Journal of Pharmaceutics, 601, 120382.

To develop and validate long-term 
physical stability models – how do the 
physical tablet properties change in 
time?

Results

Acknowledgements: Dr. John Armstrong for the data extraction of the sessile drop parameters using modelling. 

MCC – microcrystalline cellulose

Formulations manufactured with these different 
filler combinations:

Filler 2: 
Mannitol (%)

Filler 1: 
MCC (%)Blend

01001

25752

50503

75254

10005

5 Placebo blends 

Future

Lujain Al-Obaidly1,2, James Mann3, Alexander Abbott3, Fredrik Winge4,  
Adrian Davis5, Bart Hens6, Ibrahim Khadra1,2 and Daniel Markl1,2
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Increasing the mannitol filler concentration in a formulation alters its 
performance-controlling mechanism, particularly beyond a 50:50% 
MCC/mannitol filler ratio. 

Rate of liquid absorption and linearity of the absorption process plotted against individual tablet 
porosities. Liquid absorption parameters determined and extracted using the power law model.

Tablet porosity notably influences both liquid absorption and 
swelling behaviour, highlighting the role of porosity in facilitating 
fluid penetration. Higher porosity resulted in faster liquid uptake 
and swelling initiation in all formulations.

Note: dotted line represents 
perfect linearity (m=1). 

At different targeted porosities

• Varying filler ratios
• 5% w/w Disintegrant (CCS)
• 1% w/w Lubricant (MgSt)

Tablet Manufacture

Light source Camera

Contact Angle

Image 
Processing

Data 
Extraction 

Model- Fitting 
& Data 

Analysis
Sessile drop experiment

Weight
Breaking force Disintegration time

Dimensions 
(thickness & 
diameter)

• 10, 15, 20, 25%

Impact of varying porosity Impact of varying mannitol filler concentration

• The initial swelling rate increases more significantly with 
increasing porosity for formulations with higher MCC concentrations 
than mannitol.

Effect of mannitol concentration on the 
average swelling extent after infinite time.

• Tablets with higher mannitol filler concentrations resulted in slower 
swelling rates and lower swelling extent, and a weaker correlation 
between disintegration and porosity, suggesting a shift in 
disintegration mechanism.

Swelling start time and initial swelling rate plotted against individual tablet porosities. Swelling 
parameters determined and extracted using the modified Schott model. 

Linear 
relationships

Effect of mannitol concentration on the initial 
swelling rate of the tablets 

Disintegration times and heat map for 
tablets at different mannitol 

concentrations and porosities

• MCC100% tablets showed the 
greatest swelling extent, while 
mannitol 100% tablets had the least.

• For tablets of the same porosity, higher mannitol concentrations 
resulted in the slowest swelling.

Pharmaceutical oral solid dosage forms (OSDFs) are the most 
common drug delivery systems. However, there is a significant gap in 
the literature with regards to their physical stability particularly
understanding the changes in drug release kinetics. 

Potential Benefits

Ensuring product quality
Predicting drug shelf-life

Optimising formulation processes
Time and cost reduction to 
market

Aims & Objectives

Accelerated Stability 
Studies carried out to 

explore:

This project aims to study the physical stability of OSDFs, with a focus 
on exploring the impact of porosity and filler ratio on the performance-
controlling disintegration mechanisms of immediate release tablets.

Exploring complex formulations with different:
• Porosities
• MCC/mannitol filler ratios

With & without
storage

CCS – croscarmellose sodium  MgSt – Magnesium Stearate

Scan for latest 
results:
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Innovative Nanoparticle Production
Hakam Alaqabani, Jade Forrester, and Yvonne Perrie

Lab Capabilities 
Drug Discovery Clinical 

Development Approved Drug

Advanced Formulation Development: Polymer-LNPs-Liposome

• Designing Drug Delivery Systems (DDS) for Targeted & Sustained Release
• Development of nanoparticles loaded with drugs, DNA, siRNA, mRNA, proteins, peptides, and small 

molecules
• Scalable microfluidic mixing from bench-scale to GMP production

Comprehensive Analytical Characterization

• Particle Attributes
•Size & Surface Charge: ELS (Electrophoretic Light Scattering), DLS (Dynamic Light 
Scattering), NTA (Nanoparticle Tracking Analysis), DSC (Differential Scanning Calorimetry).
• Spectroscopic & Chromatographic Techniques
•Chemical Characterization: UV-Vis, FTIR, HPLC, Mass Spectrometry, Fluorescence 
Spectroscopy, gel electrophoresis , Gas Chromatography
• Structural & Stability Analysis
•Morphology & Composition: Cryo-TEM, SEM, Xenocs Small Angle X-ray Scattering 
(SAXS)
•Stability & Quality Control: Freeze Drying, pH Monitoring, Long-Term Stability Testing

Production Attributes

• Stability Testing: Freeze drying, pH monitoring, 
temperature cycling, and long-term stability studies

• Purification Techniques: Dialysis, Tangential Flow 
Filtration (TFF), and Spin Columns

• Drug Release Kinetics: Controlled release studies 
using the USP 4 SOTAX apparatus

In vitro and in vivo
• Biological & In Vivo Evaluation
• Cellular Studies
• Viability, Toxicity, Uptake across various cell lines
• Intracellular Trafficking via Confocal Fluorescence Microscopy
• Antibody Studies using Flow Cytometry
• In Vivo Imaging & Tracking
• Bioluminescence & Fluorescence Imaging (IVIS & GX Systems)

Research development 

• Formulation Parameter Optimization: Enhancing 
stability, bioavailability, and controlled release

• Vaccine Development: In vitro and in vivo studies for 
immunogenicity and efficacy

• Anti-Cancer Investigations: Targeted drug delivery 
and therapeutic efficacy assessments

•

Formulation

Characterization

Purification & 
Release  

Biological

Applications

Introduction
Our research team focuses on the advanced development and manufacture of targeted drug delivery systems, including lipid nanoparticles 
(LNPs), polymer-lipid hybrid systems, and liposomes. By leveraging scalable microfluidic technologies, we are able to optimize and produce 
formulations with precise control over critical quality attributes, ensuring both consistency and scalability from bench-scale to GMP 
production. In addition, we provide comprehensive analytical characterization using a variety of techniques to assess particle size, surface 
charge, chemical composition, and structural integrity. Our team also conducts in-depth biological and in vivo evaluations to assess cellular 
uptake, toxicity, and the efficacy of drug delivery, as well as tracking via advanced imaging systems. 

Dataf ile Name:Exp48N3.analysis_30102024_011.lcd
Sample Name:PM
Sample ID:1:5 Dilution
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Reference: 
Binici, B., Rattray, Z., Zinger, A., & Perrie, Y. (2025). Exploring the impact of commonly used ionizable and pegylated lipids on mRNA-LNPs: A combined in vitro and preclinical perspective. Journal of controlled release : official journal of the Controlled Release Society, 377, 162–173.
MCMILLAN, Caitlin, et al. Tailoring lipid nanoparticle dimensions through manufacturing processes. Rsc Pharmaceutics, 2024, 1.4: 841-853.
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Project Aims

Objectives

Enabling Big Data with Automated Dissolution and Self-Driving Tablet Manufacture

Experiment Objective

Investigating the impact of disintegrant level on dissolution performance enabled by self-driving tablet manufacture and automated dissolution

Tablet Component Excipient
%w/w

F1 F2 F3

API Ibuprofen 50 10 10 10

Filler 1
Microcrystalline

Cellulose
43.5 42 40.5

Filler 2 Lactose 43.5 42 40.5

Disintegrant Croscamellose Sodium 2 5 8

Lubricant Magnesium Stearate 1 1 1

Tablet Dimensions

Weight (mg) 250 Shape Flat, Round

Diameter (mm) 9 Porosity 10%, 15% & 20%

Compaction
Simulator

Robotic Arm

Sessile Drop

Tablet Tester

Stability Chamber

Next Steps

Data Output
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Proposed Integrated Workflow

Self-Driving Laboratory

Design Optimal
Experiments
Formulation
Test Methods
Storage

 Automation and
Robotics

Tablet
Manufacture

Advanced data
analysis
Dissolution Model
Stability Model
Predicted Dissolution

Experimentation
Tablet Weight

Dimensions
Dissolution

Stability

Self-Driving Tablet
Manufacture
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Autonomous Physical Stability Model Development
Maria Chang  ,  Lee Ashworth  ,  James Mann  ,  Faisal Abbas  ,  Daniel Markl

Centre for Continuous Manufacturing and Advanced Crytalllisation (CMAC), University of Strathclyde, Glasgow UK
Strathclyde, Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK

Global Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK

 Total Experiment Time (Tablet Manufacture + Dissolution): 
07hr 40min 24 sec

Automated Tableting Bayesian Optimisation:
00:57:27

Self-Driving Tablet Manufacture (Analysis, Break, Sessile Drop:
01:57:57

Fully Automated Dissolution: 
04:45:00

ETL Define Meta Data Workflow

Increase experiment design

Dissolution Prediction Models

Further Enhance Automated Dissolution’s Automated
Capabilities

Number of Tablets per formulation:
84

Total Experiment Time: (3
Formulations x 3 Porosities)

23 hr 01 min 12 sec

Connecting systems to enable accelerated development of
performance and stability models for pharmaceutical tablets

O
N

E
TW

O
TH

R
E

E

Connect Self-driving Tableting System with Fully Automated
Dissolution System 

Connect linked systems from Objective 1 with Fully Automated
Storage System to enable simultaneous optimization of
manufacturability and performance

Combining the Dissolution Modelling Predication with
Stability Prediction that can then be used iteratively. 

Fully Automated
Storage

Fully Automated
Dissolution

Machine Learning
Sample Carousel

Online UV

USP 2 Dissolution

Total Experiment Time
(Manually Operated at CMAC): 

2 days 1 hr
V

Note: Total time is cumulative total, timing does not take into account working hours

1

2

3

1,2 3 3 1,2 1,2
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mRNA-LNP Vaccines; A Case Study
Jade Forrester, Hakam Alaqabani and Yvonne Perrie

Introduction
At continuous manufacturing, we specialise in precision nanoparticle formulation, encompassing lipids, solid lipid, polymeric 
nanoparticles, and nano emulsions. Utilising a wide variety of microfluidic technologies, we formulate these nanoparticles with 
unprecedented accuracy and scalability. In parallel, we explore the exciting potential of messenger RNA (mRNA) vaccines. This 
study highlights pivotal data on the CQAs and in vitro and in vivo efficacy and behaviour of mRNA vaccine formulations.

Materials and Methods
In this study, the impact of structure on potency was investigated by formulating a range of mRNA-LNP vaccines with varied 
ionizable and PEGylated lipids. All formulations were manufactured using a microfluidic mixer (NanoAssemblr® Benchtop from 
Cytiva) and standard critical quality attributes were analysed including particle size, polydispersity, zeta potential and mRNA 
encapsulation and recovery. The mRNA-LNP vaccines were also evaluated in both in vitro (HEK-293) assays as well as 
preclinical in vivo studies (BALB/c mice).

Results
All LNP formulations exhibited similar 
CQAs, including particle sizes <100 
nm, low PDI (<0.2), near-neutral zeta 
potential, and high encapsulation 
efficiency (>90%). However, the 
potency of these LNPs, as measured 
by in vitro mRNA expression and in 
vivo expression following 
intramuscular injection in mice varied 
significantly. LNPs formulated with 
SM-102 exhibited the highest 
expression in vitro, whilst in vivo SM-
102 and ALC-0315 LNPs showed 
significantly higher mRNA expression 
than DLin-MC3-DMA, DODAP and 
DOTAP LNPs. 

Reference: 
Binici, B., Rattray, Z., Zinger, A., & Perrie, Y. (2025). 
Exploring the impact of commonly used ionizable and 
pegylated lipids on mRNA-LNPs: A combined in vitro 
and preclinical perspective. Journal of controlled 
release : official journal of the Controlled Release 
Society, 377, 162–173.
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2CMAC Future Technology and Innovation Centre, University of Strathclyde,  99 George Street, Glasgow, G1 1RD, UK

Musab Osman1,2, Daniel Markl1,2, Gavin Reynolds3,  
Catherine Yates3, Pratik P. Upadhyay4 and John Robertson1,2

1Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK

3Oral Product Development, Pharmaceutical Technology and Development, AstraZeneca, Macclesfield, SK10 2NA, UK

Introduction
4Oral Product Development, Pharmaceutical Technology and Development, AstraZeneca, Gothenburg, Sweden

Challenging the Concept of Strain Rate 
Sensitivity: Feedframe Dynamics Drive Tensile 
Strength Reduction in High-Speed Tabletting

CONCLUSIONRESULTS  

REFERENCES

This study challenges the assumption that tensile 
strength (TS) reduction in high-speed tableting 
stems from strain rate sensitivity (SRS). Instead, we 
demonstrate that feedframe paddle rotation 
weakens interparticle bonding by increasing 
lubrication extent, reducing TS. 

INTRODUCTION  

X  35/min X   350/min per 1 die

Binary mixtures 
 

▪       Is scaling up simply increasing tablet output (e.g. dwell time 15 ms? 

▪       What is actually happening during Scaling up ? 
Feedframe rotation speed is increased—up to 100 RPM or more—to ensure consistent die filling at high tabletting speeds

Fig.1. Effect of Dwell Time on Tensile Strength of Pure Materials: MCC, 
Starch, Lactose, and DCPA

Single materials 

Fig.3. Effect of Feedframe Paddle Speed on Tensile Strength of Lubricated 
Materials (1% MgSt): DCPA, Lac, MCC & Strach.

Fig. 4. Impact of Feedframe Speed on Tensile Strength of Binary Mixtures at 1% 
Lubrication Level (MgSt): DCPA-Lac, MCC-Lac, and MCC-Starch. 

Dwell time = the time during which compaction 
force is more or equal to 90% of its peak value
rpm = feeder rotation per minute 
DCPA = Dibasic calcium Phosphate Anhydrous
Lac = Lactose monohydrate
MCC = Microcrystalline cellulose
Starch = Partially Pregelatinised Maze Starch Feeder/Feedframe:

 A device that transports powder in the die

range: 00 to 100 rpm
Based on tabletting speed

Rotating paddles Rotation

Fig.2. Effect of Dwell Time and Lubrication Level (MgSt) on Tensile 
Strength of MCC, Starch, Lactose, and DCPA.

▪ The authors would like to acknowledge the contributions of CMAC 

National Facility Team for their technical support. MO would also like to 

thank EPSRC and  AstraZeneca, Macclesfield, UK for funding.

[1] M. T. Ende Chemical Engineering in the Pharmaceutical Industry: Drug Product Design, 
Development, and Modeling, Second Edi. New Jerssey, USA: John Wiley & Sons, Inc, 2019.

[2] C. C. Sun, “Development of a High Drug Load Tablet Formulation Based on Assessment of 
Powder Manufacturability : Moving Towards Quality by Design,” vol. 98, no. 1, pp. 239–247, 
2009, doi: 10.1002/jps.

[3]   M. C. Monedero “Effect of Compression Speed and Pressure on the Physical Characteristics of 
Maltodextrin Tablets,” vol.     9045, p. 10, 2008, doi: 10.3109/03639049809082362

▪ Dwell time does not affect the tensile strength of 
the studied materials, except for DCPA, which shows 
a slight increase at high speed.

▪ Dwell time does not impact the tensile strength of 
Lac and DCPA, regardless of lubrication levels. 
For MCC, a slight decrease in tensile strength is 
observed at 2% and 4% lubrication, and for starch at 
1% and 2%. However, these changes are minor and 
fall within the standard error range. 

▪ Feed frame paddle rotation weakens the tensile 
strength of lubricated materials.

Musab.Osman@Strath.ac.uk

Musab Osman
 

▪ Thus; what has traditionally been attributed to 
strain rate sensitivity in tablet manufacturing is, in 
fact, a lubrication problem caused by increased 
feedframe  paddle rotational speeds. 

▪ Feed frame-induced tensile strength reduction in 
binary mixtures is governed by the sensitivity of 
their individual components to feedframe speed

ACKNOWLEDGEMENT

1. Low tensile strength Intact tablets 2 .Capping

Feeder

Feed Frame

Slow speed Fast speed

For over 45 years, the reduction in tensile strength 
during high-speed tabletting has been attributed to 
strain rate sensitivity. Material strength was thought to 
decrease as compression speed increased. This was 
explained by the idea that faster compression reduced 
plastic flow in speed-sensitive materials, such as 
microcrystalline cellulose and starch. 
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Developing Workflows to Drive Autonomous 
Experimentation

Murray Robertson1, Helen Feilden1, Ian Houson1, Cameron Brown1, Blair Johnston1, Chantal Mustoe1 & Alice Turner1

1. The EPSRC Future Manufacturing Research Hub in Continuous Manufacturing and Advanced Crystallisation, University of Strathclyde, Glasgow 
www.cmac.ac.uk

murray.robertson@strath.ac.uk

2. Set QTPP, 
Sustainability & 
Manufacturing Objectives

3. Select Conceptual 
Process Options

4. Identify Modelling 
Approach

5. Model 
Calibration & 
Refinement

6. Model 
Driven Design 
Development 
for Product & 
Process

7. Initial Quality Risk 
Assessment

8. Confirm CQA, CMA, 
CPP & Design Space 
for Process

9. Model Driven Control 
Strategy & Risk Assessment

10. Operate Process

1. Collate & Calculate 
API Prior Knowledge

11. Product 
Performance 
Analysis

12. Product 
Lifecycle 
Management / 
Continuous 
Improvement

• Quality by Digital Design (QbDD) is a framework to 
accelerate medicines development and enable 
regulatory innovation for new medicines approvals. 

• It exploits emerging capabilities in industrial digital 
technologies and accelerates the identification and exploration 
of more robust design spaces. 

• The QbDD Workflows help guide implementation of the QbDD 
framework. 

Introduction – QbDD Workflows

Figure 1: From QbD to QbDD: The transition from QbD to QbDD with reference to 
its effect on the knowledge space and the use of an existing data fabric to inform 
experimentation and CPSs at each stage of development (as 
part of self-driving DataFactories) to enable a range of 
benefits. 

Collation of known data 
and data that can be 

predicted 

QTPP and 
systems-level 

objectives set to 
enable process, 
manufacturability 
and sustainability 

targets whilst 
assuring quality List of possible process options 

identified and ranked with 
preferred process option 

selected for further investigation

Available model option(s) identified and ranked 
for each unit operation and equipment option 

identified for that unit operation

Models parameterised for 
each unit operation using 
scale-down experiments. 

Process options then 
evaluated using model 
predictions vs process 

objectives. Process options 
then ranked, and preferred 

options identified
Model parameters refined, 
process models validated, 
non-modelled phenomena 

that could affect the process 
investigated, and process 

operating constraints 
identified

Quality risk assessment done 
for highest priority process 
option(s) with provisional 

CMAs and CPPs identified

Practically operable design space 
optimised against process objectives, 
and CPPs that must be controlled to 

deliver required CMAs identified

A control strategy is defined that ensures 
equipment, process monitoring and 
analyses are able to run within the 

operating space and deliver material of 
required quality

Material produced and tested to 
determine if material meets 

relevant CQAs and/or CMAs. 
Process and model performance 

evaluated

Final drug product material 
analysed to determine if 

material meets QTPPs and 
model performance evaluated 

(not covered in this paper)

QbDD principles for product 
lifecycle management and 
continuous improvement 

established (not covered in 
this paper)

Figure 2: Workflow stages and outputs. 
• Point-to-Point Communication:

• Business Process Modeling Notation (BPMN) is a visual modeling 
language for business analysis applications and specifying process 
workflows

• BPMN is an open standard notation for graphical flowcharts
• Used to define process workflows. 

• Intuitive and simple graphics allow the models to be easily 
understood by all stakeholders

• users, analysts, software developers, and data architects
• Bridges the communication gap between process design and 

implementation

Business Process Modeling Notation (BPMN) 

• Camunda provides a workflow engine that helps automate 
business processes by defining workflows using BPMN

• It supports both human and system tasks, making it versatile 
for various use cases.

Camunda Workflow Automation

• Asynchronous Communication: Microservices 
communicate via a central message or event bus 
(e.g., Kafka). This allows for temporal decoupling and 
reduces direct dependencies between services

• Work Distribution by Workflow Engine: The workflow 
engine can manage the distribution of tasks across 
microservices, ensuring that each service performs its 
designated role within the overall process

Microservices interact directly using 
request/response mechanisms, often through 
REST APIs. This approach is simpler but can 
lead to tighter coupling

This work was funded as part of the Future 
Continuous Manufacturing and Advanced 
Crystallisation Research Hub EP/P006965/1 
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Advanced Formulation Mixture 
Rule Optimisation for Enhancing 

Predictability of Tablet 
Compressibility and Compactability

Theo Tait – CMAC,  
University of Strathclyde   

This poster will be available at the conference
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Developing a methodology for the 
use of sustainability objectives in API 
crystallisation process development 

and optimisation
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Understanding Punch Sticking in 
Pharmaceutical 

Tablet Compression  
Ishwari Wale1,2, John Robertson1,2, Aditya Bharadwaj Singaraju3, Daniel Markl1,2

1Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
2Centre for Continuous Manufacturing and Advanced Crystallisation, Technology and Innovation Centre,           

University of Strathclyde, 99 George Street, Glasgow , G1 1RD ,UK
3 Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN 46285, USA

Stages of Powder Adherence

Category Method Mechanism Specificity Time

Powder method Centrifugal method Centrifugal force I N M

Rheometry Adhesion - Cohesion forces I N S

Compaction method Punch tip weight Interaction between punch tip &  tablet material D N F

Compaction parameter analysis Interaction between punch tip &  tablet material I N M

Powder residual method HPLC - UV spectroscopy Chemical interaction D Y F

Tablet method Atomic Force Microscopy (AFM) Atomic-Level Stick-Slip D N F

Miscellaneous method Scanning Electron Microscopy Electromagnetic radiation D N F

Advanced methods Lasor Sensor based Infrared radiation D Y F

Methods to Assess Punch Sticking

 Based on adhesive 
and cohesive force

 Calculation of 
Sticking Index (SI) 

 Uses very low 
pressure , Lack of 
specificity

Rheometry Image analysis Raman spectroscopy

• Lack of specificity
• Restricted for 

monolayer 
adhesion

Morphology Directed Raman 
Spectroscopy

• Quantification and 
specificity is possible

• Non-destructive and 
no sample preparation

• Raman equipped with 
morphology

• New approach to assess sticking 
• Linking PSD to adhered material

Reflection on an Experimental Journey

Common Tablet Defects

Conclusion References

Quantitation

Abbreviations and Definitions: Indirect Method refers to characterizing the affinity between material and punch face (I - Indirect Method); Direct Method refers to characterizing the
amount of material (D - Direct Method); Time refers to the duration required to perform the experiment and analyze results (F - Fast (<5 minutes), M - Moderate (5 minutes to 1 hour),
S - Slow (>1 hour)); Specificity indicates the ability to identify components from the adhered material (Y - Yes, N - No).

Early detection of sticking in pharmaceutical tablet compression is
essential for reducing batch failures, minimizing wastage, and lowering
costs. Implementing reliable assessment methods and proactive
monitoring can help identify and address sticking issues promptly,
ensuring consistent and high-quality production of pharmaceutical
tablets.

1.Paul, S., Taylor, L.J., Murphy, B., Krzyzaniak, J., Dawson, N., Mullarney, M.P., Meenan, P. 
and Sun, C.C., 2017. Mechanism and kinetics of punch sticking of pharmaceuticals. Journal 
of pharmaceutical sciences, 106(1), pp.151-158.
2. Saddik, J.S. and Dave, R.H., 2021. Evaluation of powder rheology as a potential tool to 
predict tablet sticking. Powder Technology, 386, pp.298-306.

PSD – Particle Size Distribution

Punch tip

Weighing tip & HPLC analysis

• Traditional method 
• Provides qualitative & quantitative analysis
• Requires solvent compatibility with 

adhered material , time consuming

Step- 1

Step- 2
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