
GRAY CODING CUBIC PLANAR MAPS

SERGEY AVGUSTINOVICH, SERGEY KITAEV, VLADIMIR N. POTAPOV,
AND VINCENT VAJNOVSZKI

Abstract. The idea of (combinatorial) Gray codes is to list objects in ques-
tion in such a way that two successive objects differ in some pre-specified small

way. In this paper, we utilize β-description trees to cyclicly Gray code three

classes of cubic planar maps, namely, bicubic planar maps, 3-connected cubic
planar maps, and cubic non-separable planar maps.

1. Introduction

Gray codes. The problem of exhaustively listing the objects of a given class
is important for several fields of science such as computer science, hardware and
software, biology and (bio)chemistry. The idea of so-called Gray codes (or combi-
natorial Gray codes) is to list the objects in such a way that two successive objects
differ in some pre-specified small way; in addition, if the last and first objects in
the list differ in the same small way, then the Gray code is called cyclic. In [14] a
general definition is given, where a Gray code is defined as an infinite set of word-
lists with unbounded word-length such that the Hamming distance between any
two successive words is bounded independently of the word-length (the Hamming
distance is the number of positions in which the words differ).

Originally, a Gray code was used in a telegraph demonstrated by the French
engineer Émile Baudot in 1878. However, these days we normally say “the Gray
code” to refer to the reflected binary code introduced by Frank Gray in 1947 to
list all binary words of length n. Much has been discovered and written about the
Gray code (see for example [9] or [10, 5] for surveys) and it was used, for example,
in error corrections in digital communication and in solving puzzles like Tower
of Hanoi puzzle. On the other hand, the area of combinatorial Gray codes was
popularized by Herbert Wilf in 1988-89 and since then such codes were found for
many combinatorial structures, e.g. for involutions and fixed-point free involutions,
derangements and certain classes of pattern-avoiding permutations (see [6, 10] and
the references therein).

Existence of a (resp., cyclic) Gray code is often established via finding a Hamil-
tonian path (resp., Hamiltonian cycle) in a certain graph corresponding to the
objects in question. In such a graph two vertices are connected by an edge if and
only if the respective objects can follow each other in a Gray code. A Hamiltonian
path (resp., Hamiltonian cycle) in a graph is a path (resp., cycle) in the graph that
goes through each vertex exactly once.

Planar maps. A planar map is a connected graph, with loops and parallel edges
allowed, embedded in the sphere with no edge-crossings, and considered up to
orientation-preserving homeomorphism. A map has vertices, edges, and faces. A
vertex is a point on the sphere. An edge which is not a loop is an open curve
whose endpoints are its incident vertices. A loop is a closed curve which contains

Key words and phrases. planar map, bicubic planar map, cubic non-separable planar map,
3-connected cubic planar map, Gray code, description tree, β(0, 1)-tree.



2 S. AVGUSTINOVICH, S. KITAEV, V. N. POTAPOV, AND V. VAJNOVSZKI

its incident vertex. A face is a connected component of the complement of the
underlying graph in the sphere, and it is homeomorphic to an open disc.

The maps we consider shall be rooted, meaning that a directed edge has been
distinguished as the root. The root face is the face incident to the left side of the
root as seen by an observer facing in the direction of the orientation of the root,
so by continuing to walk around the boundary of the face, the observer traces this
boundary in the counter-clockwise direction.

A planar map in which each vertex is of degree 3 is cubic; it is bicubic if, in
addition, it is bipartite, that is, if its vertices can be colored using two colors, say,
black and white, so that adjacent vertices are assigned different colors. A map is
k-connected if there does not exist a set of k−1 vertices whose removal disconnects
the map. 2-connected maps are also known as non-separable maps.

For brevity, we omit the word “planar” in the classes of planar maps considered
in this paper.

Tutte [13, Chapter 10] founded the enumerative theory of planar maps in a series
of papers in the 1960s (see [12] and the references in [3]). In particular, the number
of bicubic maps and cubic non-separable maps on 2n vertices are, respectively,

3 · 2n−1(2n)!

n!(n+ 2)!
and

2n(3n)!

(n+ 1)!(2n+ 1)!
.

β(a, b)-trees and planar maps. A valuated tree is a rooted plane tree with non-
negative integer labels on its vertices. A description tree introduced by Cori et al.
in [2] is a valuated tree such that the label of each vertex v belongs to a set of values
that depends only on the labels of v’s sons according to a given rule. Description
trees give a framework for recursively decomposing several families of planar maps.
β-description trees, introduced next, are of interest in this paper.

A plane tree is a tree embedded in the plane as a map.

Definition 1. A β(a, b)-tree is a rooted plane tree whose vertices are labeled with
non-negative integers such that

(1) leaves have label a;
(2) the label of the root is the sum of its children’s labels;
(3) the label of any other vertex is at least a and at most b plus the sum of its

children’s labels.

It was shown in [2, 3] that the following objects are in one-to-one correspondence:

• β(0, 1)-trees and bicubic maps;
• β(1, 1)-trees and 3-connected cubic maps;
• β(2, 2)-trees and cubic non-separable maps; and
• β(1, 0)-trees and non-separable maps.

Also, it is straightforward to see that β(0, 0)-maps are in one-to-one correspon-
dence with rooted plane trees, since one can erase the labels in this case as all of
them are 0.

The main results in this paper. One can ask the following question: Is it
possible to Gray code a given class of maps? To our best knowledge, no results
are known in this direction possibly due to a rather complicated nature of (planar)
maps. Thus, one needs to encode the class of maps by words, and then to try to
list these words using specified criteria on the number of positions in which the
words can differ. Our approach is in encoding the β-description trees in question,
which are in a bijective correspondence with the maps of interest, on n vertices by
tuples of length 3n− 2; the first 2n− 2 elements of the tuple encode the shape of a



GRAY CODING CUBIC PLANAR MAPS 3

tree (using so-called Dyck words), and the remaining elements are used to encode
its labels. In either case, for convenience of presentation, we will consider Gray
coding shapes of trees separately, which will be given by a known result, while a
real challenge will be in (cyclicly) Gray coding β-description trees having the same
shape.

We note that β-description trees have already been used to obtain non-trivial
equidistribution results on planar maps, e.g. bicubic maps [1], and these trees are
a key object in this paper. We will present our results on β(0, 1)-trees, which will
give a Gray code for bicubic maps, and then discuss a straightforward extension
of that to β(a, b)-trees with b ≥ 1. The latter will give at once Gray codes for
cubic non-separable maps and 3-connected cubic maps. Thus, our focus will be
on β(0, 1)-trees. In particular, the only bijective correspondence we will explain in
this paper is that between β(0, 1)-trees and bicubic maps, to give an idea on how
bijections between maps and β-description trees corresponding to them could look
like; we refer to [2, 3] for bijections between β(1, 1)-trees (resp., β(2, 2)-trees) and
3-connected cubic maps (resp., cubic non-separable maps).

This paper is organized as follows. In Section 2 we discuss β(0, 1)-trees and
bicubic maps, in particular sketching a bijection between these sets of objects. In
Section 3.1 we discuss a key component in this paper, namely, Gray coding β(0, 1)-
trees having the same shape. Cyclic Gray coding β(0, 1)-trees having the same
shape is discussed in Section 3.2. Even though Gray coding cyclicly is what we are
actually interested in, we first present a Gray code for β(0, 1)-trees having the same
shape without the cyclic requirement to prepare the reader for the more involved
arguments in the cyclic case. The main results are presented in Section 3.3 along
with a definition of Dyck words and necessary results about them. Finally, in
Section 4 we provide several directions for further research.

2. β(0, 1)-trees and bicubic maps

Letting a = 0 and b = 1 in Definition 1 we will obtain a definition of a β(0, 1)-
tree. Note that the label of the root of a β(0, 1)-tree is defined uniquely from the
labels of its children, which allows us to modify this definition suit better to our
purposes. In this paper, we will consider two modifications of the definition. First,
we will re-define the root label to be one more than the sum of its children (as
was done in [1] for a better description of statistics preserved under the bijection
with bicubic maps to be described below), and then we will let the root label be
∗ (to allow two β(0, 1)-trees having the same shape to differ just in one label).
Thus, no matter which definition we use, we still have a class of trees in one-to-one
correspondence with the originally defined β(0, 1)-trees, and slightly abusing the
notation, which will not cause any confusion, we will refer to all of the “modified
β(0, 1)-trees” as β(0, 1)-trees.

We continue with stating a slightly modified definition of β(0, 1)-trees, which are
particular instances of β(a, b)-trees introduced in Definition 1.

Definition 2. A β(0, 1)-tree is a rooted plane tree whose vertices are labeled with
nonnegative integers such that

(1) leaves have label 0;
(2) the label of the root is one more than the sum of its children’s labels;
(3) the label of any other vertex exceeds the sum of its children’s labels by at

most 1.

The unique β(0, 1)-tree with exactly one vertex (and no edges) is called trivial;
the root of the trivial tree has label 0. Any other β(0, 1)-tree is called nontrivial.
In Figure 1, appearing in [1], we have listed all β(0, 1)-trees on 4 vertices. Let



4 S. AVGUSTINOVICH, S. KITAEV, V. N. POTAPOV, AND V. VAJNOVSZKI

0

0

0

1

0

0

1

2

0

1

0

1

0

1

1

2

0

1

2

3

0 0

0

1

0 0

1

2

0

0
0

1

0

1
0

2

0

0
0

1

0

1
0

2

0 0 0

1

Figure 1. All β(0, 1)-trees on 4 vertices.

root(T ) denote the root label of T , and let sub(T ) denote the number of children
of the root. We say that a β(0, 1)-tree T is reducible if sub(T ) > 1, and irreducible
otherwise. Any reducible tree can be written as a sum of irreducible ones, where
the sum U ⊕ V of two trees U and V is defined as the tree obtained by identifying
the roots of U and V into a new root with label root(U)+root(V )−1. See Figure 2,
taken from [1], for an example.

4

0 0 1 2

0 1

3

2

1

0

0

=
1

0

⊕ 1

0

⊕ 2

1

0

⊕ 3

2

1

3

2

1

0

0

Figure 2. Decomposing a reducible β(0, 1)-tree.

Note also that any irreducible tree with at least one edge is of the form λi(T ),
where 0 ≤ i ≤ root(T ) and λi(T ) is obtained from T by joining a new root via an
edge to the old root; the old root is given the label i, and the new root is given the
label i+ 1. For instance,

if T =
2

0
1

0

then λ0(T ) =
1

0

0
1

0

, λ1(T ) =
2

1

0
1

0

, and λ2(T ) =
3

2

0
1

0

.

The smallest bicubic map has two vertices and three edges joining them. It is
known [3] that the faces of a bicubic map can be colored using three colors so that
adjacent faces have distinct colors, say, colors 1, 2 and 3, in a counterclockwise
order around white vertices. We will assume that the root vertex is black and the
root face has color 3. There are exactly three different bicubic maps with 6 edges
and they are given in Figure 3 appearing in [1].

Following [1] we will now describe a bijection between bicubic maps and β(0, 1)-
trees. For any bicubic map M and i = 1, 2, 3, let Fi(M) be the set of i-colored faces
of M . Let R1 ∈ F1(M), R2 ∈ F2(M), and R3 ∈ F3(M) be the three faces around
the root vertex; in particular, R3 is the root face. In addition, let S1 ∈ F1(M) be



GRAY CODING CUBIC PLANAR MAPS 5

1

3

2
3

2

1

2

3

1

2

1

3

Figure 3. All bicubic maps with 4 vertices.

the 1-colored face that meets the vertex that the root edge points to:

R1 R2 S1

R3

We say that a face touches another face k times if there are k different edges each
belonging to the boundaries of both faces. Define the following two statistics:

f1r3(M) is the number of faces in F1(M) that touch R3;

s1r3(M) is the number of times S1 touches R3.

We say that M is irreducible if s1r3(M) = 1, or, in other words, if S1 touches R3

exactly once; we say that M is reducible otherwise. We shall introduce operations
on bicubic maps that correspond to λi and ⊕ of β(0, 1)-trees. This will induce the
desired bijection ψ between bicubic maps and β(0, 1)-trees.

To construct an irreducible bicubic map based on M , and having two more
vertices than M , we proceed in one of two ways. The first way (1) corresponds to
λi(T ) when i = root(T ); the second way (2) corresponds to λi(T ) when 0 ≤ i <
root(T ).

(1) We create a new 1-colored face touching the root face exactly once, so
f1r3(M ′) = f1r3(M) + 1, by removing the root edge from M and adding a
digon that we connect to the map as in Figure 4.

M3 7−→ M ′ = M

1

2

3

Figure 4. Creating an irreducible map.

(2) Assuming that f1r3(M) = k; that is, M has k (different) 1-colored faces
touching the root face, we can create an irreducible map M ′ such that
f1r3(M ′) = i, where 1 ≤ i ≤ k. To this end, we remove the root edge from
M . Starting at the root vertex and counting in clockwise direction, we also
remove the first edge of the ith 1-colored face that touches the root face. In
the picture below we schematically illustrate the case i = 3. Next we add
two more vertices and respective edges, and assign a new root as shown in
Figure 5.

Any irreducible bicubic map on n+2 vertices can be constructed from some bicubic
map on n vertices by applying operation (1) or (2) above.

We shall now describe how to create a reducible map based on irreducible maps
M1, M2, . . . , Mk. An illustration for k = 3 can be found in Figure 6. This
corresponds to the ⊕-operation on β(0, 1)-trees.



6 S. AVGUSTINOVICH, S. KITAEV, V. N. POTAPOV, AND V. VAJNOVSZKI

M3

1

1

1

1

7−→ M ′ = M

3

3

2

1

1

1

1

Figure 5. The other way to create an irreducible map.

(3) We begin by lining up the maps M1, M2, . . . , Mk. Next, in each map Mi,
we remove the first edge (in counter-clockwise direction) from the root edge
on the root face. Then we connect the maps as shown in Figure 6, and
define the root edge of the obtained map to be the root edge of Mk.

1

M1

3

1

M2

3

1

M3

3

7−→ M ′ = M3 M2

1

M1

3

Figure 6. Creating a reducible map.

Any reducible bicubic map on n vertices can be constructed by applying the
above operation (3) to some ordered list of irreducible bicubic maps whose total
number of vertices is n.

By defining operations on bicubic maps corresponding to the operations λi and
⊕ we have now completed the definition of the bijection ψ between bicubic maps
and β(0, 1)-trees. See [1] for examples of non-trivial applications of the bijection.

3. Gray codes

In this section, after introducing some notations, we will define a Gray code for
β(0, 1)-trees with the same underlying tree and extend it to a cyclic Gray code for
β(0, 1)-trees with arbitrary underlying trees. This will induce a cyclic Gray code for
bicubic maps. Then we will see that our construction can be easily extended to a
wider class of β-description trees inducing cyclic Gray codes for the corresponding
planar maps.

A list L for a set of length n tuples is a Gray code if L lists, with no repetitions
nor omissions, the tuples in the set so that the Hamming distance between two
successive tuples in L (i.e., the number of positions in which they differ) is bounded
by a constant, independent of n. And when we want to explicitly refer to this
constant, say k, we call such a list a k-Gray code. In addition, if the last and first
tuple in L differ in the same way, then the Gray code is cyclic.

If L is a list, then L is the list obtained by reversing L, and ifM is another list,
then L ◦M is the concatenation of the two lists. If α is a tuple, then α · L (resp.,
L · α) is the list obtained by appending (resp., postpending) α to each tuple of L,
and αk is the tuple obtained by concatening k copies of α. Often we refer to a list
by enumerating its elements, e.g. L = 〈α1, α2, α3, . . .〉.



GRAY CODING CUBIC PLANAR MAPS 7

Given a family {L1,L2, . . . ,Lm} of m lists, each Li, 1 ≤ i ≤ m, being a ki-
Gray code for a set Li of same length tuples, we define another family of lists
{N1,N2, . . . ,Nm} as follows: N1 is simply the list Lm, and for 2 ≤ i ≤ m,

Ni = e1 · Ni−1 ◦ e2 · Ni−1 ◦ e3 · Ni−1 . . . ,

where 〈e1, e2, e3, . . . , ej〉 is the list Lm−i+1, and the last term of the concatenation

defining Ni is either ej · Ni−1 or ej · Ni−1, depending on j being odd or even.
It is routine to prove the following proposition that we will use later.

Proposition 1. With the notations above, Nm is a k-Gray code for the product
set L1 × L2 × · · · × Lm, where k = max{k1, k2, . . . , km}.

3.1. Gray coding β(0, 1)-trees with the same underlying tree. Recall that
by definition, the label of the root of a β(0, 1)-tree is uniquely determined by the
labels of its children. In what follows, for convenience, we assume that the root of
any β(0, 1)-tree is labeled by ∗. That is, we amend (2) in Definition 2, obtaining a
class of trees, still called β(0, 1)-trees by us, which are in one-to-one correspondence
with β(0, 1)-trees defined either in Definition 1 or Definition 2. The rationale for
(again!) updating slightly our previous definitions is in allowing β(0, 1)-trees to be
of distance 1 from each other in the sense specified in Definition 6 below.

We are also interested in the following class of labeled trees, which are essentially
β(0, 1)-trees, but where the root is treated as any other internal vertex.

Definition 3. A β′(0, 1)-tree is a rooted plane tree whose vertices are labeled with
nonnegative integers such that

(1) leaves have label 0;
(2) the label of any other vertex exceeds the sum of its children’s labels by at

most 1.

Note that any β(0, 1)-tree discussed in Definition 2 is a β′(0, 1)-tree.

Definition 4. Let T be a β(0, 1)-tree or a β′(0, 1)-tree. Then u(T ) denotes the
underlying rooted tree, that is, the tree obtained by removing all labels in T . In
other words, u(T ) gives the shape of T .

For example, if T is the rightmost β(0, 1)-tree in the top row in Figure 1, then
u(T ) is given by

Definition 5. Let T be a β(0, 1)-tree or a β′(0, 1)-tree with n vertices. We let
`(T ) denote the n-tuple of T ’s labels obtained by traversing T by depth first search
using the leftmost option and reading each label exactly once.

For example, for the tree T in Figure 2, `(T ) = (4, 0, 0, 1, 0, 2, 1, 3, 2, 1, 0, 0); see
also Table 2 where the roots are labeled by *. Thus, `(T ) is an encoding of a given
β(0, 1)-tree T in the form of a tuple. Note that this encoding disregards the shape
of the tree.

Definition 6. For β(0, 1)-trees (with the root labeled by *), or β′(0, 1)-trees, T1
and T2 such that u(T1) = u(T2), the distance d(T1, T2) between the trees is the
number of positions in which `(T1) and `(T2) differ (or equivalently, the Hamming
distance between `(T1) and `(T2)).



8 S. AVGUSTINOVICH, S. KITAEV, V. N. POTAPOV, AND V. VAJNOVSZKI

For example, keeping in mind that we label the root of a β(0, 1)-tree by ∗, the
distance between the first and the fourth trees in the top row in Figure 1 is 2, while
the distance between the first and the second trees in the bottom row in that figure
is 1.

Definition 7. For a β′(0, 1)-tree T , we let L(T ) denote the set of encodings of all
β′(0, 1)-trees obtained by labeling properly u(T ).

Lemma 2. For any β′(0, 1)-tree T there is a 1-Gray code for L(T ).

Before giving a formal proof of Lemma 2, we explain its general idea, which is
presented graphically in Figure 7(a). Assuming the existence of a 1-Gray code for
smaller trees, we can extend such a code to trees obtained by adding the new root.
More precisely, each vertex in Figure 7(a) corresponds to a β′(0, 1)-tree having a
fixed shape (that is, underlying tree). Vertices on the same vertical line correspond
to β′(0, 1)-trees that differ only in the root label: the higher a vertex is, the larger
root label it corresponds to. Note that each vertical line must contain at least the
vertices corresponding to root labels 0 and 1, but it may or may not contain other
vertices.

Further, a1, a2, etc. in this figure form a Hamiltonian path corresponding to the
1-Gray code for the trees with root label equal to 0, whose existence we assumed.
Also, b1, b2, etc. is such a path for the trees with root label equal to 1. Thus, the
trees corresponding to ai and bi differ only in the root label. The desired Hamilton-
ian path through all the β′(0, 1)-trees (corresponding to the 1-Gray code for L(T ))
presented schematically in Figure 7(a) begins at a1 and goes in the direction of the
arrow.

Proof of Lemma 2. We proceed by induction on the number v of vertices in T .
The base cases, v = 1 (the single vertex β′(0, 1)-tree) and v = 2 (two single edge
β′(0, 1)-trees, which are on distance 1 from each other) obviously hold.

Suppose now that v ≥ 3, and the children of the root are the roots of subtrees
T1, T2, . . . , Tk from left to right, where k ≥ 1. Each Ti is a β′(0, 1)-tree and by
induction hypothesis, L(Ti) has a 1-Gray code. But then, by Proposition 1,

L(T1)× L(T2)× · · · × L(Tk)

also has a 1-Gray code, and it can be extended to a 1-Gray code of L(T ) obtained
by adding the new leftmost coordinate corresponding to T ’s root to each entry of
L(T1)× L(T2)× · · · × L(Tk) as explained below.

For an integer u ≥ 0 we define two lists of 1-tuples:

• γ(u) = 〈(0), (u), (u− 1), . . . , (2), (1)〉, and
• δ(u) = 〈(1), (u), (u− 1), . . . , (2), (0)〉.

In particular, γ(1) and δ(1) are the lists 〈(0), (1)〉 and 〈(1), (0)〉, respectively.
Let 〈α1, α2, . . .〉 be the 1-Gray code list for L(T1)×L(T2)× · · · ×L(Tk), so that

each αj is the concatenation of k tuples corresponding to the labels of the vertices
of the trees T1, T2, . . . , Tk, and let m(αj) be the sum of the labels of the roots of
these trees plus one. In other words, m(αj) is the maximal value of x, such that
(x) ·αj is a proper labeling of T . Thus m(αj) ≥ 1 and m(αj) = 1 if and only if the
root of each Ti is labeled by 0. Finally, let M be the list defined as

M =M1 ◦M2 ◦M3 ◦ · · ·
with

Mj =

{
γ(m(αj)) · αj if j is odd,
δ(m(αj)) · αj if j is even.



GRAY CODING CUBIC PLANAR MAPS 9

(a) (b)

Figure 7. Schematic approach in the proof of (a) Lemma 2, and
(b) Lemma 6.

Clearly, the underlying set of M is L(T ). In addition M is a 1-Gray code:
throughout each list Mj successive tuples differ in the first position, and the last
element ofMj differ from the first element ofMj+1 as αj differ from αj+1, that is
in a single position.

Thus, L(T ) has a 1-Gray code and the statement is proved by induction. �

Theorem 3. There exists a 1-Gray code for β(0, 1)-trees having the same under-
lying tree.

Proof. Suppose that the root of a β(0, 1)-tree T , labeled by ∗, has subtrees T1, . . . , Tk,
where k ≥ 1. Each Ti is a β′(0, 1)-tree, and thus, by Lemma 2, there is a 1-Gray
code for each L(Ti). But then, by Proposition 1, there is also a 1-Gray code for
L(T1)×L(T2)×· · ·×L(Tk) leading to the fact that L(T ) = {(∗)}×L(T1)×L(T2)×
· · · × L(Tk) has a 1-Gray code, as desired. �

Note that generally speaking the 1-Gray codes in Lemma 2 and Theorem 3 are
not cyclic, and below we discuss how cyclic 1-Gray codes in this context can be
obtained.

3.2. Gray coding cyclicly β(0, 1)-trees with the same underlying tree. The
results presented in the previous subsection can be generalized to cyclic Gray codes
in question. The goal of this subsection is to justify this, and in contrast with the
previous subsection, here the proofs will be rather existential than constructive.
First note that Proposition 1 can be generalized to the following proposition that is
easy to prove directly, but also it follows from more general results presented in [4].

Proposition 4. Suppose that L1, L2, . . . , Lm are sets, and each of them is a set of
same length tuples which is either a singleton, or there is a cyclic 1-Gray code for
it. Then there is a cyclic 1-Gray code for the product set L1 × L2 × · · · × Lm.

In what follows we will need the following easy to understand facts.

Fact 5. Let G be a 1-Gray code for a set of length k tuples.

• If r = (r1, . . . , rk) and s = (s1, . . . , sk) are consecutive tuples in G, then
there are no i and j, 1 ≤ i 6= j ≤ k, such that ri 6= si and rj 6= sj.

• If t = (t1, . . . , tk) is a third tuple, and r, s and t are consecutive (in this
order) in G and there is an i with si /∈ {ri, ti}, then ri 6= ti.

As mentioned before, the Gray code defined in Lemma 2 is not necessarily cyclic.
However, if the number of ais in the construction of the Hamiltonian path P in
Figure 7(a) is even, then the assumption of existence of a Hamiltonian cycle (or
equivalently, of a cyclic 1-Gray code) for smaller β′(0, 1)-trees would give us the
cyclicity of the path P , and so, the cyclicity of the Gray code defined in Lemma 2.



10 S. AVGUSTINOVICH, S. KITAEV, V. N. POTAPOV, AND V. VAJNOVSZKI

Indeed, in this case the first and the last vertices in P are a1 and am, where m is
the maximum index, and a1 and am are connected by an edge.

Thus, the difficult case is when the number of ais is odd, which is possible (e.g.
there are five β′(0, 1)-trees having the shape of a path on three vertices). To handle
this situation, we use the idea presented in Figure 7(b). Namely, we will prove
that essentially in all cases, there is an edge c1c2 between two β′(0, 1)-trees having
root label 2 such that the edges corresponding to it on levels “root label = 0”
and “root label = 1” are involved in the respective Hamiltonian cycles assumed by
the induction hypothesis (these edges are akak+1 and bkbk+1 in Figure 7(b)). The
existence of c1c2 allows us to change the turns taken from the two Hamiltonian
cycles making sure that the first and the last vertices in P will be a1 and am. In
what follows, for a given tree we will refer to a vertex different from the root or
a leaf as internal vertex. The two situations when c1c2 does not exist are easy to
handle. This happens when

• there are no internal vertices in a tree. For a given number of vertices, there
are only two such β′(0, 1)-trees, any listing of which gives a cyclic 1-Gray
code;

• there is exactly one internal vertex in a tree. One can easily check that, for
any tree T with exactly one internal vertex, there are five β′(0, 1)-trees with
the shape of T , and the number of such trees with root label 0 (equivalently,
1), which is the number of ai’s (equivalently, bi’s) is two, which is even, so
that the existence of a Hamiltonian cycle in this case is easy to establish
using the approach in Figure 7(a). For example, the (ordered) list below is
a cyclic 1-Gray code for the β′(0, 1)-trees of same shape on four vertices:

0 0

0

0

0 0

0

1

0 0

1

1

0 0

1

2

0 0

1

0

Recall from Definition 7 that for a β′(0, 1)-tree T , L(T ) denotes the set of encod-
ings of all β′(0, 1)-trees obtained by labeling properly u(T ). The following lemma
generalizes Lemma 2.

Lemma 6. For any β′(0, 1)-tree T there is a cyclic 1-Gray code for L(T ).

Proof. Based on the discussion preceding the statement of this lemma, the proof of
Lemma 2 can be used if we will prove the existence of an edge c1c2 in the situation
when T has at least two internal vertices. If the subtrees of T are T1, T2 . . . , Tk,
the existence of c1c2 is equivalent with the existence of two successive tuples in
the Gray code for the product set L(T1)× L(T2)× · · · × L(Tk) which both can be
extended to proper labeling of T by letting the root of T be 2. To this end, we
consider two subcases.

• The root of T has exactly one internal vertex v among its children. It follows
that, Tj , the subtree rooted in v in turn has at least one internal vertex
among its children. It is easily seen that the product set L(T1) × L(T2) ×
· · ·×L(Tk) collapses to (0, . . . , 0)·L(Tj)·(0, . . . , 0), for appropriate length 0s
prefix and suffix, and a Gray code for this product set is essentially a Gray
code for L(Tj). Let u be a tuple in L(Tj) representing a proper labeling of
Tj where the label of v (that is, the first entry of u) is a non-zero value.
Since Tj has at least one internal vertex it follows that there are at least
three such u, and we choose one which is not the last nor the first tuple
in the Gray code for L(Tj). The existence of this Gray code follows by
inductive hypothesis. By the second point of Fact 5, at least one among



GRAY CODING CUBIC PLANAR MAPS 11

the successor and the predecessor of u, in the Gray code for L(Tj), has a
non-zero value in the position corresponding to v, the root of Tj . It follows
that there are two successive tuples in the Gray code for L(Tj), and so for
the above product set, which can be extended to a proper labeling of T by
letting the root of T be 2, which is allowed by the rules of β′(0, 1)-trees;
and this extension will give us the desired edge c1c2.

• The root of T has at least two internal vertices among its children. Let i
and j be the positions corresponding to the labels of two of these vertices in
the tuples in L(T1)×L(T2)× · · · ×L(Tk). Clearly, 1 is an admissible value
for the entries in positions i and j. Let u be a tuple in L(T1) × L(T2) ×
· · · ×L(Tk) having 1 in both positions i and j. By the first point of Fact 5
it follows that if u is not the last tuple in the Gray code for the product
set L(T1) × L(T2) × · · · × L(Tk) (whose existence we assume by inductive
hypothesis and Proposition 4), then the successor of u has 1 in at least one
of these two positions. The reasoning is similar when u is the last tuple
by replacing “successor” by “predecessor”. And again, it follows that there
are two successive tuples in the Gray code for L(T1)×L(T2)× · · · ×L(Tk)
which can be extended to proper labeling of T by letting the label of the
root of T be 2.

Thus, in both cases there is a 1-Gray code for L(T ) with the first and last tuple
of the form (0, α1, α2, . . . ) and (0, ω1, ω2, . . . ), respectively, where(α1, α2, . . . ) and
(ω1, ω2, . . . ) are the first and last tuples in the cyclic Gray code for the product set
L(T1)× L(T2)× · · · × L(Tk), and the statement follows. �

Using Lemma 6, we can now generalize Theorem 3, which is the main result in
this subsection.

Theorem 7. There exists a cyclic 1-Gray code for β(0, 1)-trees having the same
underlying tree.

Proof. Suppose that the root of a β(0, 1)-tree T , labeled by ∗, has subtrees T1, . . . , Tk,
where k ≥ 1. Each Ti is a β′(0, 1)-tree, and thus, by Lemma 6, there is a
cyclic 1-Gray code for each L(Ti). But then, by Proposition 4, there is also
a cyclic 1-Gray code for L(T1) × L(T2) × · · · × L(Tk) leading to the fact that
L(T ) = {(∗)}×L(T1)×L(T2)×· · ·×L(Tk) has a cyclic 1-Gray code, as desired. �

Since the tuple (∗, 0, 0, . . . , 0) of appropriate length is always an admissible en-
coding of a β(0, 1)-trees, we have:

Corollary 8. There exists a 1-Gray code list for β(0, 1)-trees having the same
underlying tree which begins by (∗, 0, 0, . . . , 0) and ends by a tuple differing from
(∗, 0, 0, . . . , 0) in exactly one position.

3.3. Dyck words and Gray coding bicubic maps. For two integers k and m,
0 ≤ k ≤ m, we denote by Dm,k the set of binary tuples with m occurrences of 1 and
k occurrences of 0, satisfying the prefix property: no prefix contains more 0s than
1s. For example, (1, 0, 1, 1, 0, 1, 1, 0, 0) ∈ D5,4. The set Dm,m is known as the set of
Dyck words of length 2m. The number of elements in Dm,m is the well known mth

Catalan number Cm = 1
m+1

(
2m
m

)
. See Table 1 for the 14 length 8 Dyck words.

Traversing a plane tree by depth first search using the leftmost option and letting
1 represent a forward step and 0 represent a backward step, we obtain a one-to-one
correspondence between plane trees on n+1 vertices (and n edges) and Dyck words
of length 2n. We let w(T ) denote the Dyck word corresponding to a plane tree T
under this well known and easy to prove bijection. For example, for the tree T on
4 vertices illustrating Definition 4, w(T ) = (1, 1, 0, 1, 0, 0); see also Figure 2.



12 S. AVGUSTINOVICH, S. KITAEV, V. N. POTAPOV, AND V. VAJNOVSZKI

(1, 0, 1, 0, 1, 0, 1, 0)
(1, 1, 0, 0, 1, 0, 1, 0)
(1, 1, 1, 0, 0, 0, 1, 0)
(1, 1, 0, 1, 0, 0, 1, 0)
(1, 0, 1, 1, 0, 0, 1, 0)
(1, 0, 1, 1, 1, 0, 0, 0)
(1, 1, 0, 1, 1, 0, 0, 0)
(1, 1, 1, 0, 1, 0, 0, 0)
(1, 1, 1, 1, 0, 0, 0, 0)
(1, 0, 1, 1, 0, 1, 0, 0)
(1, 1, 0, 1, 0, 1, 0, 0)
(1, 1, 1, 0, 0, 1, 0, 0)
(1, 1, 0, 0, 1, 1, 0, 0)
(1, 0, 1, 0, 1, 1, 0, 0)

Table 1. The Gray code list D4,4 for the set of length 8 Dyck words.

Note that the Hamming distance between two same length Dyck words is always
even, and thus the minimum distance between two Dyck words is 2.

The following recursive description obtained in [11] gives a Gray code for Dm,k,
and, in particular, for the set of length 2m Dyck words; this description is a slight
variation of the code defined in [8]:

Dm,k =


(1)m if k = 0,

Dm,k−1 · (0) if m = k > 0,
Dm−1,k · (1) ◦ Dm,k−1 · (0) if m > k > 0.

(1)

See Table 1, showing D4,4, for an example. The following lemma was proved in [11].

Lemma 9. [11] The list Dm,k satisfies the following properties:

• The first tuple in Dm,k is (1, 0)k · (1)m−k;
• The last tuple in Dm,k is

– (1, 0)m−2 · (1, 1, 0, 0), if k = m > 1,
– (1, 0)k−1 · (1)m−k+1 · (0), if m > k ≥ 1 or m = k = 1,
– (1)m, if m > k = 0;

• Two successive tuples in Dm,k, including the last and the first one, differ
in exactly two positions, and thus Dm,k is a cyclic 2-Gray code.

In what follows, the Hamming distance between tuples is denoted by d, and the
next definition extends it to trees.

Definition 8. For β(0, 1)-trees T1 and T2 on the same number of vertices, the
distance d(T1, T2) between the trees is defined as

d(T1, T2) = d(`(T1), `(T2)) + d(w(u(T1)), w(u(T2))).

Theorem 10. There exists a cyclic 3-Gray code for β(0, 1)-trees (with the root
labeled by *) on n vertices, n ≥ 1, with respect to the distance given in Definition 8.

Proof. Any β(0, 1)-tree T on n vertices can be encoded by a (3n− 2)-tuple, which
is obtained by merging the (2n− 2)-tuples w(u(T )) and the n-tuples `(T ). Let

d1 · L(T (d1)) ◦ d2 · L(T (d2)) ◦ d3 · L(T (d3)) ◦ · · · (2)

be the list where di is the ith tuple in the list Dn−1,n−1 defined in relation (1),
T (di) is the tree encoded by di, and L(T (di)) the list assumed by Corollary 8 for
the β(0, 1)-trees having the shape T (di).



GRAY CODING CUBIC PLANAR MAPS 13

It is easy to see that in the list defined in relation (2) two successive tuples are
at distance at most 3. Indeed,

• for a fixed di, successive tuples in di · L(T (di)) differ in one position, and
• for two successive tuples di and di+1 in Dn−1,n−1 (including the last and the

first ones), the last tuple in di ·L(T (di)) and the first one in di+1 ·L(T (di+1))
differ in three positions.

�

Note that the Gray code stated in Theorem 10 for β(0, 1)-trees is minimal, in the
sense that, in general there are no cyclic 2-Gray codes for β(0, 1)-trees. See Table 2
for an example where β(0, 1)-trees, encoded by (1,1,0,0,*,0,0), (1,1,0,0,*,1,0) and
(1,0,1,0,*,0,0), cannot be listed cyclically so that the distance between successive
trees is at most 2. Also, the Gray code defined in (2) is “shape partitioned”, that
is, same shape β(0, 1)-trees are successive in it.

T

0

0

*

0

1

*

0 0

*

`(T ) (*,0,0) (*,1,0) (*,0,0)

w(u(T )) (1,1,0,0) (1,1,0,0) (1,0,1,0)

Table 2. The three β(0, 1)-trees on three vertices with the root
labeled by *, and the corresponding to them the depth first leftmost
option reading of the labels, and the Dyck words coding their
shape.

Our way to Gray code bicubic maps can be applied to any class of planar maps
that can be described in terms of β(a, b)-trees with b ≥ 1. Namely, generalizing the
notion of β′(0, 1)-trees to that of β′(a, b)-trees (by removing the condition on the
root in Definition 1), we can essentially copy/paste all our arguments for β′(0, 1)-
trees. Indeed, for such a β′(a, b)-tree T , the levels corresponding to the root’s
label a and a+ 1 will be isomorphic, so that induction can be used in the way we
used it for β′(0, 1)-trees. Thus, in particular, we can Gray code 3-connected cubic
planar maps and cubic non-separable planar maps corresponding to β(1, 1)-trees
and β(2, 2)-trees, respectively [2, 3].

Finally, note that having b ≥ 2 would simplify some of our arguments. In partic-
ular, in this case there is no need to prove the existence of the edge c1c2 in Lemma 6,
since we will have at least three isomorphic levels of vertices corresponding to the
root labels a, a+ 1 and a+ 2, so that existence of an edge with the right properties
will be given to us automatically (in fact, each edge from the Hamiltonian path on
level a+ 2 will have the right properties).

4. Concluding remarks

In this paper we have shown that classes of planar maps corresponding to β(a, b)-
trees with b ≥ 1 have cyclic 3-Gray codes, and these codes are minimal in the sense
of Hamming distance. We leave it as an open problem to determine whether there
exist (cyclic) k-Gray codes, for some k ≥ 1, for β(a, 0)-trees, where a ≥ 1. In the
case a = 1 such a code would induce a Gray code on non-separable planar maps
via the respective bijection [2].

It would also be interesting to Gray code so-called α-description trees (see [2] for
the definition) that would induce Gray coding of planar maps and Eulerian planar
maps [2].



14 S. AVGUSTINOVICH, S. KITAEV, V. N. POTAPOV, AND V. VAJNOVSZKI

Acknowledgments

The authors are grateful to the anonymous referee for reading carefully the man-
uscript and for providing many useful suggestions, in particular, on a proper in-
troduction of maps. The first and the third authors were supported by Grant
NSh-1939.2014.1 of President of Russia for Leading Scientific Schools. The sec-
ond author is grateful to London Mathematical Society and to the University of
Bourgogne for supporting his work on this paper.

References

[1] A. Claesson, S. Kitaev and A. de Mier. An involution on bicubic maps and beta(0,1)-trees,

Australasian J. Combin. 61(1) (2015) 1–18.
[2] R. Cori, B. Jacquard and G. Schaeffer. Description trees for some families of planar maps,

Formal Power Series and Algebraic Combinatorics (1997) 196–208. Proceedings of the 9th
Conference, Vienna.

[3] R. Cori and G. Schaeffer. Description trees and Tutte formulas, Theoret. Comput. Sci. 292

(1997), 165–183.
[4] V. V. Dimakopoulos, L. Palios and A. S. Poulakidas. On the Hamiltonicity of the Cartesian

product. Inform. Process. Lett. 96 (2005), no. 2, 49–53.

[5] R. W. Doran. The Gray code, J.UCS 13(11) (2007) 1573–1597.
[6] W. M. B. Dukes, M. F. Flanagan, T. Mansour and V. Vajnovszki. Combinatorial Gray codes

for classes of pattern avoiding permutations. Theoretical Computer Science 396 (2008) 35–49.

[7] S. Kitaev. Patterns in permutations and words, Springer-Verlag, 2011.
[8] F. Ruskey and A. Proskurowski. Generating binary trees by transpositions, Journal of Algo-

rithms 11 (1990) 68–84.

[9] F. Ruskey. Combinatorial gseneration, book in preparation.
[10] C. Savage. A survey of combinatorial Gray codes, SIAM Rev. 39(4) (2006) 605–629.

[11] V. Vajnovszki, Generating a Gray code for P–sequences, IJMA 1 (2002) 31–41.
[12] W. T. Tutte. A census of planar maps, Canad. J. Math. 67 (1963) 15, 249–271.

[13] W. T. Tutte. Graph Theory As I Have Known It, Oxford University Press, New York, 1998.

[14] T. Walsh. Generating Gray Codes in O(1) worst-case time per word, 4 th Discrete Mathe-
matics and Theoretical Computer Science Conference, Dijon-France, 7–12 July 2003 (LNCS,

2731, 73–88).

Sobolev Institute of Mathematics, 4 Acad. Koptyug Ave, 630090 Novosibirsk, Russia,

avgust@math.nsc.ru

Department of Computer and Information Sciences, University of Strathclyde, 26

Richmond Street, Glasgow G1 1XH, United Kingdom, sergey.kitaev@strath.ac.uk

Sobolev Institute of Mathematics, 4 Acad. Koptyug Ave, 630090 Novosibirsk, Russia,

vpotapov@math.nsc.ru

LE2I, Université de Bourgogne Franche-Comté, BP 47870, 21078 Dijon Cedex, France,

vvajnov@u-bourgogne.fr


