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Abstract

In the present thesis there are included three papers. In the first paper
we introduce the concepts of sets of prohibitions, complete sets and crucial
words. The basic purpose of the paper is to investigate the extremal lengths
of crucial words for four chosen sets of prohibitions. Two of these sets have
been considered in different branches of mathematics such as number theory,
algebra and dynamical systems. The other two papers are concerned with the
concept of morphism. Since there are many techniques to study sequences
generated by morphisms, it is reasonable to ask if a given sequence can
be obtained by iteration of a morphism. We consider two sequences that
have been used to solve different problems. These sequences are the Arshon
sequence and the sequence of 0. We prove that these sequences cannot be
defined by iteration of a morphism.
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Preface

Combinatorics on words is a relatively new subject. The reasons to study
it come from different branches of mathematics (algebra, discrete mathemat-
ics, number theory, dynamical systems and probability), computer science
(coding theory and complexity of formal languages), physics (structure of
quasicrystals) and biology (investigating DNA).

The goal of the subject is to study various combinatorial properties of
finite and infinite words on a finite set of symbols which usually is called an
alphabet.

The history of combinatorics on words begins with work of Axel Thue on
nonrepetitive sequences of symbols at the beginning of this century. However,
only in 1983, after the publication of Lothaire’s book (Combinatorics on
Words) has the field developed systematically and rapidly.

In the present thesis there are included three papers.

In the first paper we introduce the concepts of sets of prohibitions, com-
plete sets and crucial words.

A set of prohibitions S is a set of words in some alphabet A.

If there exists an infinite sequence that has no words from S as subword,
then the set of prohibitions S is called an incomplete set. Otherwise it is
called a complete set.

A crucial word X is a word in the alphabet A that has two properties:
1) X has no words from S as subwords
2) For any letter a € A the word Xa has a word from S as its subword (in
other words Xa is not free from S).

The notion of a complete set is related to the notion of unavoidable set
which appears in the literature.

The basic purpose of the paper is to investigate the extremal lengths
of crucial words for four chosen sets of prohibitions. These sets are ST, S7,
Sipktkn gk where the parameter n is the number of letters in an alphabet.



To be more precise, by ST we prohibit the repetition of two equal consecu-
tive subwords; by S7 we prohibit the repetition of two equal consecutive sub-
words that have the same number of occurrences of a; € A fori=1,...,n;
by S?’kl’""k” we prohibit words, in which the number of letters a; is congruent
with zero modulo k; for: = 1,...,n; by SZ’k we prohibit any two consecutive
subwords of the length greater then k such that the number of positions in
which these words differ is less then or equal to k.

The choice of these sets is not random. The interest in ST appeared in
number theory, algebra and dynamical systems. One was considering the
problems related to the question on existence or non-existence of infinite
sequences without repetitions.

The set of prohibitions S% is a generalisation of the first one. For a long
time one was not able to answer to the so called “New Problem of Four
Colours”. The problem was to construct in a four letter alphabet an infinite
sequence that avoids (has no subwords from) S5. A construction of such a
sequence was given in 1991, with the help of computer.

The remaining two sets do not seem to have appeared in the literature,
but they certainly have some combinatorial interest. For the set SZ’k and
any n > 3 we prove the theorem of incompleteness of this set of prohibitions.

The other two papers are concerned with the concept of morphism.

For those who are not familiar with this concept we recommend the book
by Salomaa “Jewels of Formal Language Theory”. This book is a nice intro-
duction to the subject under consideration.

Let 3 be an alphabet. A map ¢ : ¥* — ¥* is called a morphism, if we
have p(uv) = p(u)p(v) for any u,v € X*. It easy to see that a morphism ¢
can be defined by defining (i) for each i € X.

Since there are many techniques to study sequences generated by mor-
phisms, it is reasonable to ask if a given sequence can be obtained by iteration
of a morphism.

In these two papers we consider two sequences that were used to solve
different problems.

The Arshon sequence has the property that it is free from the set of
prohibitions ST. There exists a lot of sequences with this property, but the
Arshon sequence was the first one, constructed in 1937. This sequence is still
interesting from different points of view.

The sequence of o was used by Evdokimov to build chains of maximal
length in the n-dimensional unit cube in 1969. We note that this sequence
has at least two different definitions.
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In 1979, Berstel proved that the Arshon sequence can be generated by a
tag-system, but cannot be obtained by iteration of a morphism. He proved
the latter of these by proving a more general statement. In this thesis we give
an alternative proof of this fact. An interesting aspect of this proof is that
it includes a consideration of the letter frequencies in the Arshon sequence.

Finally, we prove that the sequence of o cannot be defined by iteration
of a morphism.

So far there are unfortunately no universal criteria to determine whether
a given sequence can be obtained by iteration of a morphism. The purpose
of the papers presented here is to demonstrate different approaches to this
problem.

il






Chapter 1

On Crucial Words for Some
Sets of Prohibitions






Abstract

Introduced the notation of a set of prohibitions; given definitions of a
complete set and a crucial word with respect to a given set of prohi-
bitions. Considered 4 particular sets which appear in different areas of
mathematics and for each of them examined the length of a crucial word.
One of these sets proved to be incomplete.

1.1 Introduction and Background

In defining or characterising sets of objects in discrete mathematics, ”lan-
guages of prohibitions” are often used to define a class of objects by listing
those prohibited subobjects that are not contained in the objects of the class.
To this end the notion of a subobject is defined in different ways. The notion
depends on the set under consideration. These sets are subwords for partially
bounded languages, subgraphs for families of graphs and so on. One of the
classes of interest that have appeared and are considered in different areas
of mathematics is the class of nonrecurrent symbolic sequences defined by
prohibiting strong periodicity in them, or, to be more exact, by prohibiting
the repetition of subwords in these symbolic sequences, for example of type
XX.

In this paper we consider 4 types of ”prohibitions” connected with a
generalisation of the notion of nonrecurrent symbolic sequences, and for each
of these sets we consider the structure of crucial words and find their lengths.

Let A = {a4,-...,a,} be an alphabet of n letters. A word in the alphabet
A is a finite sequence of letters of the alphabet. Any 7 consecutive letters of
a word X generate a subword of length 7. If X is a subword of a word Y, we
write X C Y.

The set A* is the set of all the words of the alphabet A. Let S C A*.
Then S is called a set of prohibited words. A word that does not contain any



words from S as its subwords is called free from S. The set of all words that

~

are free from S is denoted by S.

Example 1. Let A = {a, b}. The set of prohibitions is S = {aa, ba}.
The word abbb is in S.

R If there exists a k € N with the property that the length of any word in
S is less than k, then the set of prohibitions S is called a complete set.

Example 2. A = {1, 2, 3, 4}. The set of prohibitions is
S = {123, 13, 14, 11, 22, 33, 44 }.

Then S is incomplete, since the word 124124 ...124 is in S for any k.
3k

Example 3. A = {1,2,3}. The set of prohibitions is
S = {12, 23, 31, 32, 11, 22, 33}.
Simple sorting shows S to be complete.

A word X € Sis called a crucial word (with respect to S), if the word Xa;
contains a prohibited subword for any letter a; € A. This means that Xa;
has the structure BB;a;, where B is some word and B;a; € S. The subword
B; is called the i-ending of crucial word X. If for each letter of the alphabet
we consider minimal i-ending (with respect to inclusion) we obtain a system
of included i-endings, which we will use to investigate crucial words.

Example 4. A = {a, b, c}. The set of prohibitionsis S = {aa, cab, acac}.
The word abaca is crucial with respect to S.

A crucial word of minimal (maximal) length, if it exists, is called a min-
imal (mazimal) crucial word.

Example 5. A = {a, b, c¢}. The set of prohibitionsis S = {aa, cab, acac}.
The word aca is a minimal crucial word with respect to S. There do not exist
any maximal crucial words, since the word b...baca is crucial for all £ € N.
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Let Lyin(S)  (Lmaz(S)) denote of the length of a minimal (maximal)
crucial word with respect to S.

In this paper we consider four sets of prohibitions denoted S7, S7, Sg’kl""’k“,
S7*_ Here we use n for indicating of the number of letters of the alphabet
under consideration and k, kq, ..., k, are natural numbers.

We now give the definitions of these sets:

T ={XX | X € A*}, that is, we prohibit the repetition of two equal
consecutive subwords.

Sy = {XY | 7(X) = 7(Y)}, where 7(X) = (11 (X),...,v(X)) is the
content vector of X, in which v;(X) is the number of occurrences of the letter
a; in X. That is, we prohibit the repetition of two consecutive subwords of
the same content.

SpFtbn — LX 1 (X)) =0 (mod k), k; € N, i =1,...,n}, that is, we
prohibit words in which the number of letters a; is congruent to zero modulo
k; foreach i =1,...,n.

Sk = {XY | d(X,)Y) <k, |X|=1|Y|>k+ 1,k € N}, where d(X,Y) is
the number of letters in which the words X and Y differ (Hamming metric)
and | X| is the length of the word X. That is we prohibit any two consecutive
subwords of the length greater then k£ such that the number of positions in
which these words differ is less then or equal to k.

The proofs of Theorems 1-6 consist of the constructions of extremal cru-

cial words and of the proofs of their optimality, i. e. the lower bound for
Lin(S) and the upper bound for L., (S).

1.2 The Set of Prohibitions S}

Theorem 1. We have

Proof:
We define a crucial word X by induction:

5



X1 =a1, Xi=X; 10X 1, X =X,

From this construction it follows that |X| = 2" — 1. We will prove that
X is a minimal crucial word with respect to SY.

Let U be an arbitrary minimal crucial word. We show that U coincides
with the word X up to a permutation of letters in A.

From the definition of a crucial word it follows that in the word Ua; there
is a prohibited word of the form B;a;B;a;, where B; is a certain word and
B;a;B;a; is the ending of the word Ua; (the ending may coincide with Ua;).
In this case the i-ending is the subword B;a;B;. Let ¢; = B;a;B;.

We assume that ¢; C ¢y C ... C ¥£,, since we can make such ordering by
permuting the letters of the alphabet, which obviously does not affect the
cruciality and minimality of a word.

Note that the minimal crucial word U has the form

U = B,a, B, = Bpa,Y,a1,

where Y,, is a certain word. Actually, if on the right of B,a,B, there is a
certain word, then it contradicts the minimality of a crucial word, and if
instead of a; there stands ay (k > 1) then it contradicts 1 C #.

We show that ¢,_; coincides with B,. We have ¢,_1 = B,,_10,-1B,_1
and let a, B, be a subword of /,,_;. Now /,,_; has the form Ka,Pa,_1Ka,P,
where Ka,P = B,_;), but then

t, = Pa,_1Ka,Pa,_1Ka,P, where Pa,_1Ka,P = B,,

and the word U contains the prohibited subword a, Pa, P. This can not be
the case. It means that ¢, ; is a subword of the word B,,, and the word U
has the form:

U= En = Znﬂnflanznﬂnfla

where Z,, is a certain word. Since we explore a minimal crucial word, we have
Zn, = 0, and then B, = ¢,_;. In the same way we can show that B; = £;_;
foreachi=2,...,n—1and B; = 0.

Hence the structure of a minimal crucial word U coincides with that of
the word X as required.

Remark

From the proof of Theorem 1 it follows that the word X is the unique
minimal crucial word to within a transposition of the letters of the alphabet
A.



1.3 The Set of Prohibitions S}

Proposition 1.
A minimal crucial (with respect to Sy) word can not have three letters,
each of which appears twice in the word.

Proof:

Since the proposition is obviously true for |A| = 1,2, 3, we will consider
the case |A| > 4.

Let X be a minimal crucial word, and suppose the system of included
i-endings for it is ¢1 C ¢, C ... C ¢, = X. Suppose the letters a;,, a;,, ai;
occur twice in X and that i; < iy < i3 < n (the fact that iy, 14s,43 do not
equal n follows from the fact that a, must occur an odd number of times).

When we pass from £;, 1 to £;, (f;;,_1 is determined, since there are iy,
ip < i3) there must appear a letter a;,, and when we pass from ¢;; to £;, 1
(£i5+1 is determined, since i3 < n) there must appear one more letter a;,;
Hence, since there are two letters a;, in X, there are no letters a;, for 2 <
j < i3 in ¢; whence there are no letters a;, in the X to the left of ¢;, (both
letters a;, lie to the left respecting of ¢;,).

Obviously, the letter a;, must be in ¢;,. The second letter a;, appears
when we pass from /;, to ¢;,. Since there are only two letters a;,, there are
no letters a;, in the word X to the left of /;,.

If we write the letter a;,41 to the right of the word X we obtain a pro-
hibited word (a word from S%). Words from S} are divided into two parts
which have the same content. Obviously, the letters a;, must be in different
parts of the prohibited word, and letters a;, must be in different parts of the
same word which is impossible, since the letters a;, lie strictly to the left of
a;,, and this contradicts the assumption.

Remark.

From the proof of proposition 1 we have that if letters a; and a; occur
twice in a word X (in which ¢; C ¢, C ... C £, = X), then either i = j + 1
or j =1+ 1.

Theorem 2. For any n > 2 we have

Lunin(SP) = 4n — 7.



Proof:

Note that a natural approach to the construction of a crucial word is
possible. It consists of an algorithm of step-by-step optimisation: We ascribe
to a crucial word of an n-letter alphabet a minimum number of letters to
obtain a crucial word of an (n + 1)-letter alphabet.

The algorithm can be written recursively in the following way:

Xn = Bn—laan—l
Bn—l = Bn—3an—1Bn—3
Bl =a1,32 = G,Q,B_l = B() :X() = @

Some initial values when implementing the algorithm are:

Xl = ai,

Xo = a1azay,

X3 = agaza10004,

X4 = a1a3a104020301 0201,

X5 = (2040205010301040203010207 .

This is an algorithm by which the minimal crucial word X,, for the set
of prohibitions ST can be built. For SJ such a construction gives an upper
bound of the form ezp(n/2), or, to be more exact,

(3 — (nmod 2))2L"3) — 3,

We now give an upper bound that is a linear function.

We introduce, as before, a system of included i-endings: ¢; C lo C ... C
£, (we permute the letters of the alphabet if it is necessary). We show that
the passage from ¢;_; to ¢; is possible by adding only two symbols (letters of
alphabet A).

When we passed from ¢;_; to ¢; let there appear symbols y and z. ¢;_{
may be denoted by AB, where A is a certain word, B consists of the letters
of the word A (which are somehow mixed) and B contains one letter a; 1
less than A does. Let = be the last letter of the word A on the right. Then
/; may be denoted by yzKxzB, where A = Kx. From the definition of ¢; we
have the equation

yUzUK =BUxUa,;.

8



which from the definition of K and B is equivalent to
20 Ua; = yUzUa;.

It follows necessarily that x = a;_; and either y = a; 1, 2 =a; or y = a;,2 =
;1.

Suppose y = a;_1, 2 = a;.

For example, we have the following crucial word for a 6-letter alphabet:

a4a5a3a4a2a3a1a2|a6a4a3a2a1a2a3a4a6,

(the vertical line was drawn for a more convenient visual perception of the
word).

This word is crucial and its length is equal to 17.

We consider a case of an arbitrary n > 3 defining the word W as

W =ay, 20, 10y 305 2. ..0102]0p0, 2G5 3. ..02010G9 . .. Gy 305 20,.

Then (W|=2(n—-2)+n—-1+n—-2=4n-T.

Let us verify that the word W is crucial.

If we write the letters a;, as, a, to the right of the word W we will
obviously have prohibited subwords. Let 2 < ¢ < n. Then if we write the
letters a; we will have the prohibition

Ai—1Q; ...0109207,0p—2 .. . ai|ai_1 ...020109 . .. Qp_20y04;,

since the composition vectors of the left and right subwords with respect
to the vertical line are equal.

Before proving that W e ég‘ we make the following remark.

In the word W we have ¢, C ¢ C ... C £,_5 C {,_1. Substituting a; for
ay, ag for aq, ..., a, for a,_; we obtain another word

U=ap_10y...0003|a10y_1 - . .aA30203 . . . Gp_101,

for which ¢, C ¢, C ... C ¥,.

In both cases (before and after substitution of letters of the alphabet) we
have the construction of a crucial word (which will be proved below) hence
the same upper bound of the length of a minimal crucial word.

For W it is more convenient to show further that W & égl

We rewrite W making in it the marks (1),(2), ...,(2n-4), which number
the gaps between letters of a word like this:

9



(2n — 4)a,—2(2n —b)ay—1...(2)ar(1)az|anan_s .. .asa10z .. . ap_oay,.

In a possible prohibition we mark the left and right bounds. Note that
the length of a prohibition is an even number, and each letter must occur
an even number of times in a prohibition. The left bound of the prohibition
must lie to the right of the mark (2n-5), since the letter a,, 1 enters W once;

It must lie to the left of the mark (1), since to the right of the mark (1)
there is one letter a;.

Note that if m is even then (m) is not the left bound of the possible
prohibition. Actually in this case two variants are possible:

1) the prohibition does not cover the left letter a,.

2) the prohibition covers the left letter a,,.

In the second case we have not a prohibition, since if the prohibition
begins from the even mark, then it can not cover the second a,,.

In the first case the right bound of the prohibition lies to the left of a,,
hence the letter az ;1 enters the prohibition only once.

Suppose the prohibition begins from the mark (m) and m is odd.

There are two possible cases.

1) The prohibition does not cover the left letter a,, (this case is impossible
since the letter ajm| occurs the prohibition once).

2) The prohibition covers the left a,,. Then it covers the right a, too, and
the letter a|=| occurs an odd number of times in the prohibition. So W € é?
and hence Ly, (S5) < 4n — 7 for n > 2.

We give now a lower bound.

Since the length of a minimal crucial word must be odd, and the passage
from 4; to ;11 requires at least two letters, we have that a trivial lower bound
of the length of a minimal crucial word is 2n — 1.

Let us now improve the lower bound. Obviously a minimal crucial word
in which ¢; C ¢, C ... C ¢, has an even number of occurrences of the letter
a; for : = 1,...,n — 1 and an odd number of occurrences of the letter a,,.
The word U has two letters a;, two letters aq, one letter a,, and four of any
other letter. From proposition 1 we know that there does not exist a crucial
word that has the fewer number of letters, hence the word U gives us the
lower bound of the length of a minimal crucial word.

10



1.4 The Sets of Prohibitions S;** and S}*

Theorem 3. We have

n

Lonin(S547) = Y by = 1.

=1

Proof:

Let us give a lower bound.

Let X be a minimal crucial word. Considering a system of included -
endings gives us that X has at least k;t; letters a;, + = 1,...,n — 1 and
knt, — 1 letters a,, where t; € N, ¢ € {1,...,n} and hence:

mm Snkl, “ >Zk_1
An upper bound is given by the construction

Ap—-1Qp ... 0p Ap—20p—-1...0p—1...-A102...02071 ...041
N—— —_——— N N——
kn—1 kp—1—1 ko—1 k1—1

Obviously this word is crucial and its length equals 7 ; k; — 1.

Theorem 4. We have

Limin (ST*) = 2k + 1.

Proof:
For the set of prohibitions S}* we must have |A| = |B| > k + 1, where
AB is an arbitrary prohibition. So we have

Limin (S§%) > 2k 4 1.

An upper bound is given by the construction pips ... prTp1ps - - - Px, Where
z,p; €A i=1,...,k and x # p;.

11



Theorem 5. We have

Linaz (S§*0 Hk — 1.

Proof:

We give an upper bound.

Any word z; ...z free from *» has the property that all vectors
U(z1...2;) are dlﬂ'erent modulo k = (ky,...,k,) fori=1,2,..., ¢, since else,
if for example 7(z;...2;) =7(21...2;) and j > i, we have

Sn kla .y

v(ZH_l “en Z]) = 7(21 “en Z]') — 7(21 ce Zz) = 6 (mod k),
which contradicts the word z; ... z is free from Sj*1-#n.
The number of different words whose content vector is not congruent to
n

the zero vector modulo k is H k; — 1, hence
=1

Lynas (S5 < Hk ~ 1.
A lower bound is given by the construction

A1 =ai...0Q1 (kl — 1 letters al)
An = An_lanAn_l e An_lanAn_l (kn blocks An—l)-
n
This word is obviously crucial and its length is H k; — 1.
i=1
Remark.
The crucial word with respect to Si’k is unique and its length is 2k + 1.

Theorem 6. We have

Limas(ST*) = 3k + 3.

Proof:
Let

12



|1, ifa=2,
T 2 ifa=1.

Moreover, let us consider an arbitrary crucial word A, with respect to
Si’k, of length greater then 3%k + 3. It is easy to see that if aqas...ax+1 are
the first k41 letters of A then the next k+1 letters of A must be a1as ... ag11,
because otherwise the first 2k + 2 letters of A will form a prohibited subword.
By the same argument, we can show that

A= ajasg . .. ak+16_11(_L2 Ce ak+1a1a2 c. ak+1&1 e

Let us consider the subwords A; of A of the length 2k 4+ 4 which start
from the ith letter, where 1 <1 < k:

Ai = giaiﬂ . ak+1&1 e ai@i+1 e ZLk+1a1 e a’i-HJ

k2 K2
If a; = ;1 then the underbraced subwords of A; are the same in the first
and in the last positions, so they differ in at most £ positions, hence A; is

prohibited. So we must have a; = a;41 fort=1,... k.
Without loss of generality we can assume that a; =1, so

A=11...122...211...12....
S—— N~ ——

k+1 k+1 k+1

It is easy to see that if the length of A is greater then 3k + 3 then A has
a prohibited subword of length 2k + 4:

—f——
A=11...1122...211...122....
S—— S
k k+1 k+1

(here and then two braces above an word show us a disposition of a
prohibited subword and, in particular, a disposition of parts of this subword
that correspond to X and Y from the definition of the set of prohibitions
Sik).

S0 Limaz(S3*) < 3k + 3.

To prove the theorem it is sufficient to check that there are no prohibited
subwords in the word A =11...122...211...1.

NS AL AL Ly L
k+1 k+1 k+1

13



Obviously the left end of a possible prohibition can be only in the left
block 1...1:
N———r’

k+1
1...12...22..21...1
S—— N Y~
J i k—i+1 20+j—k—1
with
jHi>k+1 (1.1)

Two cases are possible:

1.j>k—i+1
2.j<k—i+1

In the first case there is non-coincidence between the left and right parts
of the prohibition in the first £ — 7 + 1 letters and in the last ¢ letters that is
non-coincidence in k + 1 letters. So this case is impossible.

In the second case we have non-coincidence in the first j letters and in the
last 2¢ + j — k — 1 letters. Hence we have non-coincidence in 2(i +j) —k — 1
letters, that according to (1) is greater than or equal to k + 1.

It follows that the word 1...12...21...1 does not contain a prohibition

L~

k+1  k+1 k+1
and thus the theorem is proved.

Theorem 7. [Incompleteness| The set of prohibitions SZ’k forn > 3 s in-
complete.

Proof:

Since the alphabet A is finite, there is no trivial solution of the problem
(such as taking all letters of A and obtaining an infinite sequence with the
properties needed). So to prove the incompleteness of the set SZ’k we have to
sho:v the existence of an infinite word which is free from the set of prohibitions
Sy”.

We consider the case n = 3 and the alphabet A = {1,2,3}, since the
incompleteness of the set of prohibitions SZ’k for the case n > 3 will follow
from the incompleteness of the set of prohibitions for the case n = 3.

Let B = {a, b, c} be an alphabet. B* is the set of all words of the alphabet
B.

14



We define the mapping f as follows:

1...1—>a,2...2—0b,3...3—>c
—— —— N—_——r

k+1 k+1 k+1
The domain of the mapping f is the set of words of the alphabet

C={1...1,2...2,3...3 }.
——— ) N———r
k+1 k+1 E+1

The image of the mapping f is the set B*.

Let the set of prohibitions S’ = {XX|X € B*}. Obviously, the set S’
coincides with the set S5 whenever A = B.

It is known [1] that for the alphabet B there exists the infinite sequence
L' which is free from the set of prohibitions S’. L' is built by iteration of
morphisms:

a — abe
b— ac
c—b

The morphism iteration procedure is as follows.

We start from the letter a. Then we substitute this letter with abc. Then
we substitute each letter in abc by the rule above. We obtain after this step
abcach. And so on. Executing this procedure an infinite number of times
gives us the sequence L'.

Let us prove that the sequence L = f~1(L') does not contain words
prohibited by S3*.

We are going to prove the statement by considering L and all possible
dispositions of words prohibited by S¥*.

The sequence L is built up from the letters of the alphabet C or in other
words from the blocks g ...z, where x € {1,2,3}. It means that there are

k+1
only three different cases for a disposition of a possible prohibition in L.

A\

—_————
Case 1. 2...2...y...Y2z...2...0 ...1;
—— 2

o~ "’
k+1 k41 k+1 k+1

A —_—
Case 2. x...272...2...y...Y2...2... ...tt... 1,
—— —— — N ——

i k—itl ki1 kHl k—itl i

15



where 0 <7 < k+1;

AN

——
Case3d.2..22...2...y...Yyy...y...t...t ... 1,
= K ) , o ——

i k—i+1 ¢ k—0+1 k—j+1 j
where 0 <1i,5,1 < k + 1.

Now we will consider these cases and show that each of them is impossible.

Case 1. Let P denote the prohibited subword (prohibition) under con-
sideration, R and L denote the right and the left parts of P respectively.

It is obvious that L and R have the same number of blocks. Moreover,
the sth block of L (from the left to the right) is equal to the ith block of
R, because otherwise we have non-coincidence of L and R in at least £ + 1
letters which contradicts the fact that P € Si’k. So we have that P = WW
for some W € C*.

Now, f(P) = f(W)f(W) is a subword of L'. But f(W)f(W) € S" which
is impossible by the properties of L'. So Case 1 is impossible.

Note. As an important consequence of Case 1 we have the following. If

T...xy...yis a subword of L then x # y.

b+l k41

Case 2. If there are no letters between z ...z and y ...y, that is
N—— —
k+1 k+1

—_—
P=2...zy...yz...21...1,

— ——

k—i+l  gy1 k1l k—itl
then we must have x = 2, because otherwise we have x # z and y # z which
gives us that L and R differ in the first £ + 1 positions, but this contradicts
P c S}

By the same argument we have y = ¢, so

S——
k—itl g1 kLl it

P=2...zy...y

But if we consider now f(L) = L’ then it has

IR el CRE .
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as a subword, which is impossible since P’ € S'.
So there is some non-empty subword in L between z...x and y. ..y, and
—— —

k+1 k+1
P can be written as

A

P=2...22:1...21...2p...2 y...y"z...zzl...zl...z o Zpt.. L.
oL ;o Tp ) pr-Aple -t

k—i+1 k41 k+1 k41 k+1 k41 k+1 kil

There are two possible subcases here.

1.z = 2.

Since x # x; we have 1 # z. If 1 # z; then L and R differ in k£ + 1
position starting from the (kK — ¢ + 2)th position, which is impossible since
P e Si*. Sox; = 2.

In the same way, for each of x5, x3, ... 7,, y, we can obtain that

AN A\
7

P=¢z...221...20...2p...2p ... 42...221...21.. . Zp... Zpl...1
S\ , ———— —— , N————r
E—itl 11 b1 k1 k1 k+1 o1 k—itl

which leads us to the fact that L has a subword WW for some W € C*,
hence L’ has a subword f(W)f(W) which is impossible.

So the subcase 1 is impossible.

2. T # 2.

If z;1 # 2z then L and R differ in £ + 1 position starting from the first
position, which is impossible since P € Si’k. So x1 = z.

If 25 # 2z then L and R differ in k+ 1 position starting from the (k+2)th
position, what is impossible by the same arguments as above. So x, = 2;.
And so on.

We have
P=2...2z...221...20...2p...2p2 ... 221 ... 21 ... 2p-..2pt...1
S~ — —— N—— ———’
k—i+1  k+1 k+1 k+1 k+1 k+1 k+1 k—i+1

z)f(zlzl)f(zpzp)‘ff(z

k+1 k+1 k+1 k+1 k+1 k41

which is prohibited in L' by S'.
We have got that subcase 2 is impossible and hence Case 2 is impossible.
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Case 3. We can assume that £ # 0 and ¢ # k 4 1, because otherwise we
deal with either Case 1 or Case 2 which are impossible.
We suppose that ¢ > ¢ (the case i < £ can be considered in the same
way).
If there are no letters between y ...y and {...%, then we have either
— N——
k—f+1 k—j+1

’_/\_\/_/—
P=2...zy...yy...yt...t
R Y yy Y ,
k—i+1 ¢ k—t+1 k—j+1

or

A

——N—
P=2...zz...2y...9y...yt...1 .
—_ . SN————r

k—i+1  k+1 ¢ k—f+1 k—j+1

In the first of these cases we have that x # y and y # t which gives us that
L and R have non-coincidence in at least k + 1 letters, but this contradicts
P e S}

In the second case we must have z = ¢, because otherwise since z # y
and t # y, L and R have non-coincidence in the last & + 1 letters which is
impossible. So in the second case we have

A

P=gz...zft...ty...yy...yt...t .
k

S~ —
—i+1  k+1 ) k—t+1 k—j+1

If x # y then L and R have non-coincidence in the first £ — ¢+ 1 positions
and in the last ¢ positions, that is they have non-coincidence in at least £+ 1

positions which is impossible. So z = y.
Now applying f to L gives us that L' has a subword

A A\

P =T(x..x)f(t...1) f(

N——" N——
k+1 k+ k+1 k+1
which is impossible.
So there is some non-empty subword in R between ...y and ¢...%, and
— S——

k—e+1 k—j+1
P can be written in the form

P=gz..zL...Lyy...yy...yRi...Ry¢t... 1,
k—i+1 ¢ k—f+1 k—j+1
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where Ly, R,, € C,for1 <s<p,1 <m <p,and eitherp=p'orp=p+1.

We define A(L;) = x5 if Ly = x5...x,. In the same way we define
N—_——
k+1

A(Rp).

Let us consider two cases:

1. p=p'. There are two subcases here:

a) x = y; Since A(L;) # = we must have L; = R, because otherwise L
and R have non-coincidence in the £+ 1 letters starting from the (k—i+2)th
position, which is impossible.

Since A(Ly) # A(Ly), that is A(Ls) # A(R;), we must have Ly = Ry,
because otherwise L and R have non-coincidence in the k + 1 letters starting
from the (2k — 7 + 3)th position, which is impossible. And so on. For each
of of L, ..., L, we have that

P=y...yR1...pr...yy...le...Rpt....t .
k—i+1 0 k=41 k—j+1

So we have got that L has WIWW as a subword, where W =y...y R, ... R,,
k+1
but it means that L' has f(W)f(W) as a subword which is impossible.
b) = # y; There are two special subcases here, namely either A(Ly) =y
or L1 = Rl.

When A(L;) = y it must be that Ly = R;, because otherwise, since
A(Ry) # y, L and R have non-coincidence in the k + 1 letters starting from
the (k — I + 2)th position, which is impossible.

By similar reasoning for L, ..., L, we have that

A A
N7

P=gz...zy..yRi.. Ry1y...yy...yR.. . Ryt...1 .

k—itl gy £ k—t+1 k—j+1

Again, L has WW as a subword, where W =y...y Ry ... Ry_;, which is
——
k+1
impossible by the same reasons as above.
So L1 = Rl.
Using the same technique of as above we can easily obtain that in this
case

AN A\
7

P=g..z2R..Ryy...yy...yRi...Ryt... 1 .
k—i+1 ¢ k—0+1 k—j+1
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If y # ¢ then L and R have non-coincidence in the first £k — £+ 1 positions
and in the last £ positions, so they have non-coincidence in k£ + 1 positions
which contradicts P € S3*.

If y =1 then

7~

P:x....le...pr...yy...le. Ryy...y
k—i+1 £ k—f41 k—j+1

A\

and L has WW as a subword, where W = R, ... R,y ...y which is impossi-
———"
k+1
ble.
2. p=p' + 1. There are two subcases here:

a) z = y; It must be that L; = R;, because otherwise L and R differ
in k£ + 1 positions starting from the (k — i 4+ 2)th position. Then we consider
Ly, L, ...,L,.
We can see that in this subcase

Y

P=y..yRi...Ryt...ty...yy...yRi...Ry{... 1,

k—it+1 k+1 L k—t+1 k—j+1
and L has WWW as a subword, where W = y...yR,... Ry ...t which is
—— S——
k+1 k+1

impossible.
b) x # y; There are two special subcases here, namely either A(L;) =y
or L1 = Rl.
If A(Ly) =y then

P:x.i.xy...le...Rp:y...yy...le...Rp,t....t,
k—itl g 6 k—t+1 k—j+1
and L has WW as a subword, where W = y...y R, ... Ry which is impos-
—

k+1
sible.
So Li = R;. In this case we have

P=g..zR, .. Ryt...ty...yy...yRy...Ry}...t .
k—i+1 k+1 ¢ k—0+1 k—j+1

Since y # x, y # A(R;) and y # t, L and R have non-coincidence in the
first k—I[+1 positions and in the last [ positions, so they have non-coincidence
in k + 1 positions which contradicts P € S¥*.
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We have got that Case 3 is impossible.

We have proved that the infinite word L contains no word from the set
Si’k as a subword, therefore SZ’k is incomplete for n > 3.
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On Non-Existence of an
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Defines the Arshon Sequence
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Abstract

In [2], Berstel proved that the Arshon sequence cannot be obtained by
iteration of a morphism. An alternative proof of this fact is given here.

2.1 Introduction and Background

In 1937, Arshon gave a construction of a symbolic sequence w, which in the
alphabet {1, 2, 3} is built as follows: Let wy = 1. For k > 1, w1 is obtained
by replacing the letters of wy in odd positions thus:

1— 123, 2 — 231, 3 — 312
and in even positions thus:
1— 321, 2—> 132, 3 — 213.

Then
wy = 123, w3 = 123132312,

and each w; is the initial subword of w; 1, so the infinite symbolic sequence

w= nll>n010 wy, is well defined. It is called the Arshon sequence.

This method of constructing w is called the Arshon Method (AM), and
1 will denote the indicated map of the letters 1, 2, 3, according to position
as described above.

We will denote the natural decomposition of w in 3-blocks by lower braces:

w=123132312

The paper by Arshon [1] was published in connection with the problem of
building a nonrepetitive sequence in a 3-letter alphabet, that is, a sequence
that does not contain any subwords of the type XX = X?, where X is any
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word of a 3-letter alphabet. The sequence w has that property. The question
of the existence of such a sequence was studied in algebra, discrete analysis
and in dynamical systems.

Let ¥ be an alphabet and X* be the set of all words of ¥. A map
@ X% — ¥* is called a morphism, if we have p(uv) = ¢(u)p(v) for any
u,v € X*. It easy to see that a morphism ¢ can be defined by defining ¢(7)
for each 7 € X.

Suppose a word ¢(a) begins with a for some a € ¥, and that the length of
©*(a) increases without bounds. The symbolic sequence klgglo ©*(a) is called

a fized point of the morphism .

We now study classes of sequences, that are defined by iterative schemes.
There are many techniques to study sequences generated by morphisms. So
it is reasonable to try to determine if a sequence under consideration can be
obtained by iteration of a morphism.

Let us consider the following classical sequence as an example of such a
sequence. This sequence has two different definitions (actually it has at least
4 different definitions).

The Thue-Morse sequence t:
th tl, t2a t3a s
is defined by the conditions:
tO = Oa
tont1 =tp +1  (mod 2),
t2n - tn
So the initial letters of t are
0110100110010110....
This sequence is defined by the morphism o:
o(0) =01,
o(1)=10.
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Since the construction of the Arshon sequence w is similar to the iteration
morphism scheme, and because w is constructed by two morphisms f; and
f2, applied depending on whether the letter position is even or odd, we might
expect that there exists a morphism f which generates w.

But this turns out not to be true, due to the following theorem.

2.2 The Theorem

Theorem. There does not exist a morphism, whose fixed point is the Arshon
sequence.

Note. A corollary of this theorem is the non-existence of a morphism
which defines the Arshon sequence. In fact, if such a morphism exists, it must
have the property that is 1 mapped to 1X by the action of the morphism,
where X is some word, and from this it follows that the Arshon sequence is
a fixed point of this morphism.

Proof ( of the theorem ):

It is enough to prove the non-existence of a morphism f with the property
w = f(w), since from the definition of a fixed point we have that if w is a fixed
point of the morphism f then w = f(w). Suppose there exists a morphism
f such that

f) =X, f(2)=Y, f(3) =Z and w = f(w).

From all such morphisms we choose a morphism with minimal length of
X.

The morphism f is not an erasing morphism, that is |X| > 1, [Y] > 1,
|Z| > 1, since otherwise w = f(w) contains a subword of the type PP (where
P is some word) which cannot belong to w. Now |X| + |Y| + |Z| # 3, since
otherwise |f!(1)| = 1 for [ = 1,2..., and w is not a fixed point of the morphism
f.

flw)=w=XYZXZYZXY..

Hence X consists of | X| of the first letters of w, Y is |Y| of the following
letters, and Z is | Z| of the letters following that.
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We will use upper braces to show the decomposition of w into f-blocks
(that is, to show the disposition of the words X, Y and Z in w). We have

X Y Z X

e
A

w= 123132 .. .a|X| a|X‘+1 .. .a|X|+m a|X‘+|y|+1 .. .a‘X|+|y|+|Z| a|X‘+|y|+‘Z|+1 ......

R iy

where all g; are letters of the alphabet {1, 2, 3}.

Lemma 1. We have | X[+ |Y|+|Z|=0 (mod 3).

Proof: From the structure of w, the frequencies of 1, 2, 3 in w coincide,
hence the frequencies of these letters in f(w) = w coincide as well. But this
is only possible when |X|+ |Y|+ |[Z| =0 (mod 3), since otherwise there
are two letters, whose frequencies in f(w) = w do not coincide.

Lemma 2. The situation | X|=|Y|=|Z|=0 (mod 3) is impossible.

Proof: Suppose | X|=|Y|=|Z|=0 (mod 3). Then X, Y and Z consist of
a whole number of 3-blocks. Hence we can consider the words X' = ¢ ~1(X),
Y' =4 1Y), Z' =+ 1(Z). The properties of 1 give

w=1 Yw)=XY'ZX'ZY'ZXY'.
so there exists a morphism f’ which maps 1 to X', 2 to Y, 3 to Z’ and

w = f'"(w). Since |X'| = |X|/3, we have |X’| < |X|. This contradicts the
choice of the morphism f.

Lemma 3. With the assumption of the existence of the morphism f,
| X] < 5.

Proof: Suppose |X| > 6, that is, X = 123132.... If [X| =2 (mod 3)
(|X] =1 (mod 3)), then |X| > 7 and using Lemma 1 we consider the 4th
f-block X =12313... (X =1231323...). This contradicts the AM. Hence
=~ s

|IX| =0 (mod 3).

It follows from Lemma 2 that the situation |Y| =0 (mod 3) is impos-
sible. If [Y| =1 (mod3) (]Y| =2 (mod 3)), then we consider the 10th
(3rd) f-block X = 123132... and it brings us to a contradiction with the

AM. Hence if | X| > 6 then the morphism f can not exist.
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Lemma 4. With the assumption of the existence of the morphism f,
| X[ # 1.

Proof: If | X| = 1, then X = 1 and the length of the words f*(1) for
k=1,2,... does not increase, whence w is not a fixed point of the morphism
f. This is a contradiction.

Lemma 5. With the assumption of the existence of the morphism f,
X # 2.

Proof: Suppose | X| =2, that is X = 12.

We have | X| =2 (mod 3), hence, using Lemma 1, we have |Y|+|Z| =1
(mod 3).

We consider the 2nd f-block X and the f-block Z next after it. It can be
seen that Z begins with 3. We consider the 4th f-block X and Y preceding it
and find that Y ends with 3. But then, considering Y Z, which is a subword
of w, we see, that 33 is a subword of w, which is impossible. That is for
| X | = 2 the morphism f cannot exist.

The 3-blocks 123, 231, 312 are said to be odd 3-blocks. All other 3-blocks
are said to be even.

Lemma 6. With the assumption of the existence of the morphism f,
| X] # 3.

Proof: Suppose | X| = 3, that is X = 123.

We have |[X|=0 (mod 3), hence, using Lemma 1 we have |Y|+|Z| =0
(mod 3). Considering the AM, the 2nd f-block X must be an odd 3-block,
hence [Y|+|Z| =1 (mod 2).

Let |Z| > 2. Then the 2nd f-block Z begins with an even 3-block, and
the 3rd Z begins with an odd 3-block. This is impossible since 2 letters define
the evenness of the 3-block unambiguously. Thus |Z| = 1.

Let Y] > 2. In XY Z (or in an arbitrary permutation of these letters)
there is an even number of 3-blocks, so the 9th f-block Y begins with an odd
3-block, but the 1st Y begins with an even 3-block. Hence |Y| = 1.
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This is a contradiction with |Y|+ |Z| =0 (mod 3) (and also a contra-
diction with |Y|+ |Z]| =1 (mod 2)). That is for |X| = 3 the morphism f
cannot exist.

Lemma 7. With the assumption of the existence of the morphism f,
| X| # 4.

Proof: Suppose | X| =4, that is X = 1231.

We have | X[ =1 (mod 3), hence, using Lemma 1, we have |Y|+|Z| = 2
(mod 3).

We have |Y| > 2, since otherwise Y = 3 and hence XY X which is a
subword of w, contains 3131, which is impossible. Hence Y = 32.... We
consider ZX and ZY and see that Z ends with 2. Now |Z| > 2, since
otherwise Z = 2 and X ZX which is a subword of w, contains 1212, which
is impossible. Hence Z = ...32, or Z = ...12. The former is impossible
since 3232 is contained in ZY, and hence in w. The latter is impossible
too, since considering the 9th f-block Z and the f-block X following it, we
obtain ZX = ...121 231, which contradicts the AM. That is for |X| =4 the

morphism f cannot exist.

Lemma 8. With the assumption of the existence of the morphism f,
1X| # 5.

Proof: Suppose |X| =5, that is X = 12313.

We have | X| =2 (mod 3), hence, using Lemma 1, we have |Y|+|Z| =1
(mod 3). Then the 4th f-block is X = 12 313, which is a contradiction with
the AM. That is if | X| = 5 then the morphism f cannot exist.

From Lemmas 3 - 8 we have a contradiction with the assumption of the
existence of the morphism f. This proves the Theorem.
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Abstract

The sequence of o was constructed by Evdokimov in order to build chains
of maximal length in the n-dimensional unit cube. We prove that the
sequence can not be defined by iteration of a morphism.

3.1 Introduction and Background

Any natural number n can be presented unambiguously as n = 2'(4s + o),
where 0 < 4, and ¢ is the greatest natural number such that 2! divides n. If
n runs through the natural numbers then ¢ runs through the sequence that
we will call the sequence of 0. We let w denote that sequence. Obviously, w
consists of 1s and 3s. The initial letters of w are 11311331113313.. ..

Defining a morphism we will follow [4].

Let X be an alphabet and X* be the set of all words of X. A map
¢ X* — X* is called a morphism, if we have p(uv) = ¢(u)p(v) for any
u,v € X*. It easy to see that a morphism ¢ can be defined by defining ¢(7)
for each 7 € X.

A sequence « is defined by the iteration of a morphism ¢, if a = kli)rgo ©*(a),

where ¢ is the first letter of .

In [1], Evdokimov built chains of maximal length in the n-dimensional
unit cube using the sequence of o. Naturally a question arises as to the
possibility of constructing w using the iteration of a morphism, since the
possibility of such a constructing could help us with studying of w.

We now give an alternative definition of the sequence w, by the following
inductive scheme:



Ckt1 = CglDy,  Dyyy = Cp3Dy
k=1,2,...

and w = lim Cj.
k—o00

3.2 The Theorem

Theorem. There does not exist a morphism whose iteration defines the
sequence w.

Proof ( of the theorem ): Suppose there exists a morphism f, such that
fAQ)=X, f3) =Y and w = klim f%(1). Obviously, X consists of the first
—00

| X | letters of w, where | X]| is the length of X.

Lemma 1. The subsequence of w consisting of the letters in odd posi-
tions is the alternating sequence of 1s and 3s: 1313131 ....

Proof: The odd positions of w correspond to the odd numbers n = 2°(4s +
o) = 4s + o, so cleary o alternates between 1 and 3.

Lemma 2. If there exists a morphism f whose iteration gives w then
|IX| =0 (mod 4).

Proof: It is easy to see that f(1) = 1X(1) where | X™| > 1, since otherwise
If5(1)] =1, for k=1,2,3..., so w cannot be obtained by iterating f.

Suppose |X()| = 1, that is f(1) = 11. But then w consists of 1s only,
which is impossible, hence f(1) = 11X where [ X®)| > 1.

Suppose |X®)| = 1, that is f(1) = 113. Since w has the subword 111,
then w has a subword f(111) = 113113113. If f(111) begins with a letter
in an odd position, then the marked letters 113113113, read from left to
right will make up consecutive letters of w in odd positions. This contradicts
Lemma 1. If f(111) begins with a letter in an even position, then marking
letters in odd positions will lead to the same contradiction with Lemma 1,
hence f(1) = 113X®), where | X®)| > 1.

Suppose |[X®)| = 1, that is f(1) = 1131. Then f2(1) = 11311131Y1131
and the marked letter does not coincide with the letter of w standing in the
same place, hence f(1) = 1131X® where | X®)| > 1.
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If | X| is odd, then the marked letters in f2(1) = 1131X®1131.X® ...
are two consecutive letters in odd places. This contradicts Lemma 1. Hence
| X | is even.

We have f2(1) = XX ... = X1131X® ... whence the next-to-last letter
of X is in an odd position and is equal to 3, since otherwise two consequent 1
in w stand at odd places, which contradicts Lemma 1. The natural number
which corresponds to the next-to-last letter of X is written as 2°(4s+3), the
next number is equal to |X| and to 2°(4s+3)+1=4(s+1) =0 (mod 4).

The following Lemma is straightforword to prove.

Lemma 3. If n; = 2" (4s; + 1), ny = 2%2(4sy + 1), n3 = 2#(4s3 + 3) and
ny = 2% (4s4 + 3) then niny, ngny can be written as 2'(4s + 1), and nyny as
2'(4s + 3).

It follows from Lemma 2 that |X| = 4t.

Suppose X ends with 1 (the case when X ends with 3 is similar), that is
at the (4¢)th position in X we have 1. According to the multiplication by 2
does not change o, so at the (2¢)th position in X we have 1.

Consider f2(1) = XX.... The letters of the marked X occupy the po-
sitions of f2(1) from (4¢ 4+ 1)th to (8¢)th. Since X = X, then at the (6¢)th
place we have 1. But 6¢ = 3(2t), whence, by Lemma 3, at the (2¢)th and the
(6t)th places there must stand different letters. This is a contradiction and
the Theorem is proved.
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