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Abstract

This paper is continuation of the systematic study of distribution of quadrant
marked mesh patterns initiated in [7]. We study quadrant marked mesh patterns on
up-down and down-up permutations, also known as alternating and reverse alternat-
ing permutations, respectively. In particular, we refine classic enumeration results
of André [1, 2] on alternating permutations by showing that the distribution of the
quadrant marked mesh pattern of interest is given by (sec(xt))1/x on up-down per-

mutations of even length and by
∫ t
0 (sec(xz))1+

1
x dz on down-up permutations of odd

length.

Keywords: permutation statistics, marked mesh pattern, distribution

1 Introduction

The notion of mesh patterns was introduced by Brändén and Claesson [4] to provide explicit
expansions for certain permutation statistics as, possibly infinite, linear combinations of
(classical) permutation patterns (see [6] for a comprehensive introduction to the theory of
permutation patterns). This notion was further studied in [3, 5, 7, 9, 10, 13].

Let σ = σ1 . . . σn be a permutation in the symmetric group Sn written in one-line
notation. Then we will consider the graph of σ, G(σ), to be the set of points (i, σi) for
i = 1, . . . , n. For example, the graph of the permutation σ = 471569283 is pictured in
Figure 1. Then if we draw a coordinate system centered at a point (i, σi), we will be
interested in the points that lie in the four quadrants I, II, III, and IV of that coordinate
system as pictured in Figure 1. For any a, b, c, d ∈ N where N = {0, 1, 2, . . .} is the set of
natural numbers and any σ = σ1 . . . σn ∈ Sn, we say that σi matches the quadrant marked
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mesh pattern MMP (a, b, c, d) in σ if in G(σ) relative to the coordinate system which has the
point (i, σi) as its origin, there are ≥ a points in quadrant I, ≥ b points in quadrant II, ≥ c

points in quadrant III, and ≥ d points in quadrant IV. For example, if σ = 471569283, the
point σ4 = 5 matches the quadrant marked mesh pattern MMP (2, 1, 2, 1) since relative
to the coordinate system with origin (4, 5), there are 3 points in G(σ) in quadrant I, 1
point in G(σ) in quadrant II, 2 points in G(σ) in quadrant III, and 2 points in G(σ) in
quadrant IV. Note that if a coordinate in MMP (a, b, c, d) is 0, then there is no condition
imposed on the points in the corresponding quadrant. In addition, one can consider patterns
MMP (a, b, c, d) where a, b, c, d ∈ N∪ {∅}. Here when one of the parameters a, b, c, or d in
MMP (a, b, c, d) is the empty set, then for σi to match MMP (a, b, c, d) in σ = σ1 . . . σn ∈
Sn, it must be the case that there are no points in G(σ) relative to coordinate system with
origin (i, σi) in the corresponding quadrant. For example, if σ = 471569283, the point
σ3 = 1 matches the marked mesh pattern MMP (4, 2, ∅, ∅) since relative to the coordinate
system with origin (3, 1), there are 6 points in G(σ) in quadrant I, 2 points in G(σ) in
quadrant II, no points in G(σ) in quadrant III, and no points in G(σ) in quadrant IV. We
let mmp(a,b,c,d)(σ) denote the number of i such that σi matches the marked mesh pattern
MMP (a, b, c, d) in σ.
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Figure 1: The graph of σ = 471569283.

Note how the (two-dimensional) notation of Úlfarsson [13] for marked mesh patterns
corresponds to our (one-line) notation for quadrant marked mesh patterns. For example,

MMP (0, 0, k, 0) =
k

, MMP (k, 0, 0, 0) =
k

,

MMP (0, a, b, c) =
a

b c

and MMP (0, 0, ∅, k) =
k

.

Kitaev and Remmel [7] studied the distribution of quadrant marked mesh patterns in the
symmetric group Sn and Kitaev, Remmel, and Tiefenbruck [9, 10] studied the distribution of
quadrant marked mesh patterns in 132-avoiding permutations in Sn. The main goal of this
paper is to study the distribution of the statistics mmp(1,0,0,0), mmp(0,1,0,0), mmp(0,0,1,0), and
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mmp(0,0,0,1) in the set of up-down and down-up permutations. We say that σ = σ1 . . . σn ∈ Sn

is an up-down permutation if it is of the form

σ1 < σ2 > σ3 < σ4 > σ5 < · · · ,

and σ is a down-up permutation if it is of the form

σ1 > σ2 < σ3 > σ4 < σ5 > · · · .

Let UDn denote the set of all up-down permutations in Sn and DUn denote the set of
all down-up permutations in Sn. Given a permutation σ = σ1 . . . σn ∈ Sn, we define the
reverse of σ, σr, to be σnσn−1 . . . σ1 and the complement of σ, σc, to be (n + 1 − σ1)(n +
1 − σ2) . . . (n + 1 − σn). For n ≥ 1, we let

A2n(x) =
∑

σ∈UD2n

xmmp(1,0,0,0)(σ), B2n−1(x) =
∑

σ∈UD2n−1

xmmp(1,0,0,0)(σ),

C2n(x) =
∑

σ∈DU2n

xmmp(1,0,0,0)(σ), and D2n−1(x) =
∑

σ∈DU2n−1

xmmp(1,0,0,0)(σ).

We then have the following simple proposition.

Proposition 1. For all n ≥ 1,

(1) A2n(x) =
∑

σ∈DU2n

xmmp(0,1,0,0)(σ) =
∑

σ∈DU2n

xmmp(0,0,0,1)(σ) =
∑

σ∈UD2n

xmmp(0,0,1,0)(σ),

(2) C2n(x) =
∑

σ∈UD2n

xmmp(0,1,0,0)(σ) =
∑

σ∈UD2n

xmmp(0,0,0,1)(σ) =
∑

σ∈DU2n

xmmp(0,0,1,0)(σ),

(3) B2n−1(x) =
∑

σ∈UD2n−1

xmmp(0,1,0,0)(σ) =
∑

σ∈DU2n−1

xmmp(0,0,0,1)(σ) =
∑

σ∈DU2n−1

xmmp(0,0,1,0)(σ),

and

(4) D2n−1(x) =
∑

σ∈DU2n−1

xmmp(0,1,0,0)(σ) =
∑

σ∈UD2n−1

xmmp(0,0,0,1)(σ) =
∑

σ∈UD2n−1

xmmp(0,0,1,0)(σ).

Proof. It is easy to see that for any σ ∈ Sn,

mmp(1,0,0,0)(σ) = mmp(0,1,0,0)(σr) = mmp(0,0,0,1)(σc) = mmp(0,0,1,0)((σr)c).

Then part 1 easily follows since

σ ∈ UD2n ⇐⇒ σr ∈ DU2n ⇐⇒ σc ∈ DU2n ⇐⇒ (σr)c ∈ UD2n.

Parts 2, 3, and 4 are proved in a similar manner.

3



It follows from Propostion 1 that the study of the distribution of the statistics mmp(1,0,0,0),
mmp(0,1,0,0), mmp(0,0,1,0), and mmp(0,0,0,1) in the set of up-down and down-up permutations
can be reduced to the study of the following generating functions:

A(t, x) = 1 +
∑

n≥1

A2n(x)
t2n

(2n)!
,

B(t, x) =
∑

n≥1

B2n−1(x)
t2n−1

(2n − 1)!
,

C(t, x) = 1 +
∑

n≥1

C2n(x)
t2n

(2n)!
, and

D(t, x) =
∑

n≥1

D2n−1(x)
t2n−1

(2n − 1)!
.

In the case when x = 1, these generating functions are well known. That is, the
operation of complementation shows that A2n(1) = C2n(1) and B2n−1(1) = D2n−1(1) for all
n ≥ 1 and André [1, 2] proved that

∑

n≥0

A2n(1)
t2n

(2n)!
= sec(t)

and
∑

n≥1

B2n−1(1)
t2n−1

(2n − 1)!
= tan(t).

Thus, the number of up-down permutations is given by the following exponential generating
function

sec(t) + tan(t) = tan

(

t

2
+

π

4

)

. (1)

We shall prove the following theorem.

Theorem 1. We have

A(t, x) = (sec(xt))1/x,

B(t, x) = (sec(xt))1/x

∫ t

0

(sec(xz))−1/xdz,

C(t, x) = 1 +

∫ t

0

(sec(xy))1+ 1
x

∫ y

0

(sec(xz))1/xdz dy, and

D(t, x) =

∫ t

0

(sec(xz))1+ 1
x dz.

As an immediate corollary to Theorem 1 we get, for example, that the number of
up-down permutations by occurrences of MMP (1, 0, 0, 0) is given by

A(t, x) + B(t, x) = (sec(xt))1/x

(

1 +

∫ t

0

(sec(xz))−1/xdz

)
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which refines (1).
One can use these generating functions to find some initial values of the polynomials

A2n(x), B2n−1(x), C2n(x), and D2n−1(x). For example, we have used Mathematica to com-
pute the following tables.

n A2n(x)
0 1
1 x
2 x2(3 + 2x)
3 x3 (15 + 30x + 16x2)
4 x4 (105 + 420x + 588x2 + 272x3)
5 x5 (945 + 6300x + 16380x2 + 18960x3 + 7936x4)
6 x6 (10395 + 103950x + 429660x2 + 893640x3 + 911328x4 + 353792x5)

n B2n−1(x)
1 1
2 2x
3 8x2(1 + x)
4 16x3 (3 + 8x + 6x2)
5 128x4 (3 + 15x + 27x2 + 17x3)
6 256x5 (15 + 120x + 381x2 + 556x3 + 310x4)
7 1024x6 (45 + 525x + 2562x2 + 6420x3 + 8146x4 + 4146x5)

n C2n(x)
0 1
1 1
2 x(2 + 3x)
3 x2 (8 + 28x + 25x2)
4 x3 (48 + 296x + 614x2 + 427x3)
5 x4 (384 + 3648x + 13104x2 + 20920x3 + 12465x4)
6 x5 (3840 + 51840x + 282336x2 + 769072x3 + 1039946x4 + 555731x5)

n D2n−1(x)
1 1
2 x(1 + x)
3 x2 (3 + 8x + 5x2)
4 x3 (15 + 75x + 121x2 + 61x3)
5 x4 (105 + 840x + 2478x2 + 3128x3 + 1385x4)
6 x5 (945 + 11025x + 51030x2 + 115350x3 + 124921x4 + 50521x5)
7 x6 (10395 + 166320x + 1105335x2 + 3859680x3 + 7365633x4 + 7158128x5 + 2702765x6)
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The outline of this paper is as follows. In Section 2, we shall prove Theorem 1. Then in
Section 3, we shall study the entries of the tables above explaining them either explicitly
or through recursions.

2 Proof of Theorem 1

The proof of all parts of Theorem 1 proceed in the same manner. That is, there are simple
recursions satisfied by the polynomials A2n(x), B2n+1(x), C2n(x), and D2n+1(x) based on
the position of the largest value in the permutation.

2.1 The generating function A(t, x)

If σ = σ1 . . . σ2n ∈ UD2n, then 2n must occur in one of the positions 2, 4, . . . , 2n. Let
UD

(2k)
2n denote the set of permutations σ ∈ UD2n such that σ2k = 2n. A schematic diagram

of an element in UD
(2k)
2n is pictured in Figure 2.

position
2k

2k−1 2n−2k

2n

Figure 2: The graph of a σ ∈ UD
(2k)
2n .

Note that there are
(

2n−1
2k−1

)

ways to pick the elements which occur to the left of position
2k in such σ and there are B2k−1(1) ways to order them since the elements to the left of
position 2k form an up-down permutation of length 2k − 1. Each of the elements to the
left of position 2k contributes to mmp(1,0,0,0)(σ). Thus the contribution of the elements

to the left of position 2k in
∑

σ∈UD
(2k)
2n

xmmp(1,0,0,0)(σ) is B2k−1(1)x2k−1. There are A2n−2k(1)

ways to order the elements to the right of position 2k since they must form an up-down
permutation of length 2n − 2k. Since the elements to the left of position 2k have no effect
on whether an element to the right of position 2k contributes to mmp(1,0,0,0)(σ), it follows

that the contribution of the elements to the right of position 2k in
∑

σ∈UD
(2k)
2n

xmmp(1,0,0,0)(σ)

is A2n−2k(x). It thus follows that

A2n(x) =
n
∑

k=1

(

2n − 1

2k − 1

)

B2k−1(1)x2k−1A2n−2k(x)
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or, equivalently,
A2n(x)

(2n − 1)!
=

n
∑

k=1

B2k−1(1)x2k−1

(2k − 1)!

A2n−2k(x)

(2n − 2k)!
. (2)

Multiplying both sides of (2) by t2n−1 and summing for n ≥ 1, we see that

∑

n≥1

A2n(x)t2n−1

(2n − 1)!
=

(

∑

n≥1

B2n−1(1)x2n−1t2n−1

(2n − 1)!

)(

∑

n≥0

A2n(x)t2n

(2n)!

)

.

By André’s result,
∑

n≥1

B2n−1(1)x2n−1t2n−1

(2n − 1)!
= tan(xt)

so that
∂

∂t
A(t, x) = tan(xt)A(t, x).

Our initial condition is that A(0, x) = 1. It is easy to check that the solution to this
differential equation is

A(t, x) = (sec(xt))1/x.

2.2 The generating function B(t, x)

If σ = σ1 . . . σ2n+1 ∈ UD2n+1, then 2n+1 must occur in one of the positions 2, 4, . . . , 2n. Let

UD
(2k)
2n+1 denote the set of permutations σ ∈ UD2n+1 such that σ2k = 2n + 1. A schematic

diagram of an element in UD
(2k)
2n is pictured in Figure 3.

position
2k

2k−1 2n−2k+1

2n+1

Figure 3: The graph of a σ ∈ UD
(2k)
2n+1.

Again there are
(

2n
2k−1

)

ways to pick the elements which occur to the left of posi-
tion 2k in such σ and the contribution of the elements to the left of position 2k in
∑

σ∈UD
(2k)
2n+1

xmmp(1,0,0,0)(σ) is B2k−1(1)x2k−1. There are B2n−2k+1(1) ways to order the ele-

ments to the right of position 2k since they must form an up-down permutation of length
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2n − 2k + 1. Since the elements to the left of position 2k have no effect on whether an
element to the right of position 2k contributes to mmp(1,0,0,0)(σ), it follows that the contri-

bution of the elements to the right of position 2k in
∑

σ∈UD
(2k)
2n+1

xmmp(1,0,0,0)(σ) is B2n−2k+1(x).

It thus follows that if n ≥ 1, then

B2n+1(x) =

n
∑

k=1

(

2n

2k − 1

)

B2k−1(1)x2k−1B2n−2k+1(x).

Hence for n ≥ 1,
B2n+1(x)

(2n)!
=

n
∑

k=1

B2k−1(1)x2k−1

(2k − 1)!

B2n−2k+1(x)

(2n − 2k + 1)!
. (3)

Multiplying both sides of (3) by t2n, summing for n ≥ 1, and taking into account that
B1(x) = 1, we see that

∑

n≥0

B2n+1(x)t2n

(2n)!
= 1 +

(

∑

n≥0

B2n+1(1)x2n+1t2n+1

(2n + 1)!

)(

∑

n≥0

B2n+1(x)t2n+1

(2n + 1)!

)

.

Since
∑

n≥1

B2n−1(1)x2n−1t2n−1

(2n − 1)!
= tan(xt),

we see that
∂

∂t
B(t, x) = 1 + tan(xt)B(t, x).

Our initial condition is that B(0, x) = 0. It is easy to check that the solution to this
differential equation is

B(t, x) = (sec(xt))1/x

∫ t

0

(sec(xz))−1/xdz.

2.3 The generating function C(t, x)

If σ = σ1 . . . σ2n ∈ DU2n, then 2n must occur in one of the positions 1, 3, . . . , 2n − 1. Let
DU

(2k+1)
2n denote the set of permutations σ ∈ DU2n such that σ2k+1 = 2n. A schematic

diagram of an element in DU
(2k+1)
2n is pictured in Figure 4.

Note that there are
(

2n−1
2k

)

ways to pick the elements which occur to the left of position
2k + 1 in such σ and there are C2k(1) = A2k(1) ways to order them since the elements to
the left of position 2k + 1 form a down-up permutation of length 2k. Each of the elements
to the left of position 2k + 1 contributes to mmp(1,0,0,0)(σ). Thus the contribution of the

elements to the left of position 2k+1 in
∑

σ ∈ UD
(2k)
2n xmmp(1,0,0,0)(σ) is A2k(1)x2k. There are

B2n−2k−1(1) ways to order the elements to the right of position 2k+1 since they must form
an up-down permutation of length 2n − 2k + 1. Since the elements to the left of position
2k + 1 have no effect on whether an element to the right of position 2k + 1 contributes to
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position

2n

2k+1

2k 2n−2k−1

Figure 4: The graph of a σ ∈ DU
(2k+1)
2n .

mmp(1,0,0,0)(σ), it follows that the contribution of the elements to the right of position 2k

in
∑

σ∈UD
(2k)
2n

xmmp(1,0,0,0)(σ) is B2n−2k−1(x). It thus follows that

C2n(x) =

n−1
∑

k=0

(

2n − 1

2k

)

A2k(1)x2kB2n−2k−1(x),

or, equivalently,

C2n(x)

(2n − 1)!
=

n−1
∑

k=0

A2k(1)x2k

(2k)!

B2n−2k−1(x)

(2n − 2k − 1)!
. (4)

Multiplying both sides of (4) by t2n−1 and summing for n ≥ 1, we see that

∑

n≥1

C2n(x)t2n−1

(2n − 1)!
=

(

∑

n≥1

B2n−1(1)x2n−1t2n−1

(2n − 1)!

)(

∑

n≥0

A2n(x)t2n

(2n)!

)

.

By André’s result,
∑

n≥0

A2n(1)x2nt2n

(2n)!
= sec(xt)

so that
∂

∂t
C(t, x) = sec(xt)B(t, x) = (sec(xt))1+ 1

x

∫ t

0

(sec(xz))
−1
x dz. (5)

Our initial condition is that C(0, x) = 1. Both Maple and Mathematica will solve this
differential equation but the final expressions are complicated and not particularly useful
for enumeration purposes. Thus we actually used the RHS of (5) to find the entries of the
table for the initial values of C2n(x) given in the introduction. Nevertheless, we can record
the solution of (5) as

C(t, x) = 1 +

∫ t

0

(sec(xy))1+ 1
x

∫ y

0

(sec(xz))
−1
x dz dy.
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2.4 The generating function D(t, x)

If σ = σ1 . . . σ2n+1 ∈ DU2n+1, then 2n+1 must occur in one of the positions 1, 3, . . . , 2n+1.

Let DU
(2k+1)
2n+1 denote the set of permutations σ ∈ DU2n+1 such that σ2k+1 = 2n + 1. A

schematic diagram of an element in DU
(2k+1)
2n+1 is pictured in Figure 5.

position

2n+1

2k

2k+1

2n−2k

Figure 5: The graph of a σ ∈ DU
(2k+1)
2n+1 .

Note that there are
(

2n
2k

)

ways to pick the elements which occur to the left of position
2k + 1 in such σ and there are C2k(1) = A2k(1) ways to order them since the elements to
the right of position 2k+1 form a down-up permutation of length 2k. Each of the elements
to the left of position 2k + 1 contributes to mmp(1,0,0,0)(σ). Thus the contribution of the

elements to the left of position 2k + 1 in
∑

σ∈DU
(2k+1)
2n+1

xmmp(1,0,0,0)(σ) is A2k(1)x2k. There

are A2n−2k(1) ways to order the elements to the right of position 2k + 1 since they must
form an up-down permutation of length 2n− 2k. Since the elements to the left of position
2k + 1 have no effect on whether an element to the right of position 2k + 1 contributes
to mmp(1,0,0,0)(σ), it follows that the contribution of the elements to the right of position

2k + 1 in
∑

σ∈DU
(2k+1)
2n+1

xmmp(1,0,0,0)(σ) is A2n−2k(x). It thus follows that if n ≥ 1, then

D2n+1(x) =

n
∑

k=0

(

2n

2k

)

A2k(1)x2kA2n−2k(x).

Hence for n ≥ 1,
D2n+1(x)

(2n)!
=

n
∑

k=0

A2k(1)x2k

(2k)!

A2n−2k(x)

(2n − 2k)!
. (6)

Multiplying both sides of (6) by t2n and summing for n ≥ 0, we see that

∑

n≥0

D2n+1(x)t2n

(2n)!
=

(

∑

n≥0

A2n(1)x2nt2n

(2n)!

)(

∑

n≥0

A2n(x)t2n

(2n)!

)

so that
∂

∂t
D(t, x) = sec(x, t)A(t, x) = (sec(xt))1+ 1

x .
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Our initial condition is that D(0, x) = 0 so that the solution to this differential equation is

D(t, x) =

∫ t

0

(sec(xz))1+ 1
x dz.

2.5 A remark on MMP (k, 0, 0, 0) for k ≥ 2

We note that we cannot apply the same techniques to find the distribution of marked mesh
patterns MMP (k, 0, 0, 0) in up-down and down-up permutations when k ≥ 2. For example,

suppose that we try to develop a recursion for A
(2,0,0,0)
2n (x) =

∑

σ∈UD2n
xmmp(2,0,0,0)(σ). Then if

we consider the permutations σ = σ1 . . . σ2n ∈ UD2n such that σ2k = 2n, we still have
(

2n−1
2k−1

)

ways to pick the elements for σ1 . . . σ2k−1. However, in this case the question of whether
some σi with i < 2k matches the marked mesh pattern MMP (2, 0, 0, 0) in σ is dependent
on what values occur in σ2k+1 . . . σ2n. For example, if 2n − 1 ∈ {σ2k+1, . . . , σ2n}, then
every σi with i ≤ k will match the marked mesh pattern MMP (2, 0, 0, 0) in σ. However,
if 2n − 1 ∈ {σ1, . . . , σ2k−1}, this will not be the case. Thus we cannot develop a simple

recursion for A
(2,0,0,0)
2n (x).

3 The coefficients of the polynomials A2n(x), B2n+1(x),

C2n(x), and D2n+1(x).

The main goal of this section is to explain several of the coefficients of the polynomials
A2n(x), B2n+1(x), C2n(x), and D2n+1(x). First it is easy to understand the coefficients of
the lowest power of x in each of these polynomials. That is, we have the following theorem,
where 0!! = 1 and, for n ≥ 1, (2n)!! =

∏n
i=1(2i) and (2n − 1)!! =

∏n
i=1(2i − 1).

Theorem 2.

(1) For all n ≥ 1,

A2n(x)|xk =

{

0 if 0 ≤ k < n

(2n − 1)!! if k = n.

(2) For all n ≥ 1,

B2n+1(x)|xk =

{

0 if 0 ≤ k < n

(2n)!! if k = n.

(3) For all n ≥ 1,

C2n(x)|xk =

{

0 if 0 ≤ k < n − 1

(2(n − 1))!! if k = n − 1.

(4) For all n ≥ 1,

D2n+1(x)|xk =

{

0 if 0 ≤ k < n

(2n − 1)!! if k = n.

11



Proof. For (1), note that if σ = σ1 . . . σ2n ∈ UD2n, then σ2i+1 matches the pattern
MMP (1, 0, 0, 0) for i = 0, . . . , n − 1. Thus mpp(1,0,0,0)(σ) ≥ n. We now proceed by in-
duction to prove that A2n(x)|xn = (2n − 1)!! for all n ≥ 1. This is clear for n = 1
since A2(x) = x. Now suppose that σ = σ1 . . . σ2n ∈ UD2n and mpp(1,0,0,0)(σ) = n.
It is then easy to see that it must be the case that σ2 = 2n (otherwise σ2 is an un-
wanted occurrence of the pattern MMP (1, 0, 0, 0)). Moreover, if τ = red(σ3 . . . σ2n), then
τ ∈ UD2n−2 and mmp(1,0,0,0)(τ) = n − 1. Thus since we are assuming by induction that
A2n−2(x)|xn−1 = (2n− 3)!!, we have 2n− 1 choices of σ1 and (2n− 3)!! choices for τ . Hence
A2n(x)|xn = (2n − 1)!!.

For (2), note that if σ = σ1 . . . σ2n+1 ∈ UD2n+1, then σ2i+1 matches the pattern
MMP (1, 0, 0, 0) for i = 0, . . . , n − 1. Thus mpp(1,0,0,0)(σ) ≥ n. We now proceed by in-
duction to prove that B2n+1(x)|xn = (2n)!! for all n ≥ 1. This is clear for n = 1 since
B3(x) = 2x. Now suppose that σ = σ1 . . . σ2n+1 ∈ UD2n+1 and mpp(1,0,0,0)(σ) = n. It is
then easy to see that it must be the case that σ2 = 2n+1. Moreover if, τ = red(σ3 . . . σ2n+1),
then τ ∈ UD2n−1 and mmp(1,0,0,0)(τ) = n − 1. Thus since we are assuming by induction
that B2n−1(x)|xn−1 = (2n−2)!!, we have 2n choices of σ1 and (2n−2)!! choices for τ . Hence
B2n+1(x)|xn = (2n)!! for n ≥ 1.

For (3), note that if σ = σ1 . . . σ2n ∈ DU2n, then σ2i matches the pattern MMP (1, 0, 0, 0)
for i = 1, . . . , n − 1. Thus mpp(1,0,0,0)(σ) ≥ n − 1. Suppose that mpp(1,0,0,0)(σ) = n − 1. It
is then easy to see that it must be the case that σ1 = 2n. Moreover, if τ = σ2 . . . σ2n, then
τ ∈ UD2n−1 and mmp(1,0,0,0)(τ) = n − 1. Thus we have (2(n − 1))!! choices for τ by part
(2). Hence C2n(x)|xn−1 = (2(n − 1))!!.

For (4), note that if σ = σ1 . . . σ2n+1 ∈ DU2n+1, then σ2i matches MMP (1, 0, 0, 0) for
i = 1, . . . , n. Thus mpp(1,0,0,0)(σ) ≥ n. Suppose that mpp(1,0,0,0)(σ) = n. It is then easy
to see that it must be the case that σ1 = 2n + 1. Moreover, if τ = σ2 . . . σ2n+1, then
τ ∈ UD2n and mmp(1,0,0,0)(τ) = n. Thus we have (2n−1)!! choices for τ by part (1). Hence
D2n+1(x)|xn = (2n − 1)!! for n ≥ 1.

We can easily explain the coefficients of the highest power of x in each of the polynomials
A2n(x), B2n+1(x), C2n(x), and D2n+1(x). That is, we have the following proposition.

Proposition 2.

(1) For all n ≥ 1, the highest power of x that appears in A2n(x) is x2n−1 which appears

with coefficient B2n−1(1).

(2) For all n ≥ 1, the highest power of x that appears in B2n+1(x) is x2n−1 which appears

with coefficient (2n)B2n−1(1).

(3) For all n ≥ 1, the highest power of x that appears in C2n(x) is x2n−2 which appears

with coefficient (2n − 1)A2n−2(1).

(4) For all n ≥ 1, the highest power of x that appears in D2n+1(x) is x2n which appears

with coefficient A2n(1).
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Proof. For (1), it is easy to see that mmp(1,0,0,0)(σ) is maximized for a σ = σ1 . . . σ2n ∈ UD2n

when σ2n = 2n. In such a case mmp(1,0,0,0)(σ) = 2n−1 and σ1 . . . σ2n−1 can be any element
of UD2n−1.

For (2), it is easy to see that mmp(1,0,0,0)(σ) is maximized for a σ = σ1 . . . σ2n+1 ∈
UD2n+1 when σ2n = 2n + 1. In such a case mmp(1,0,0,0)(σ) = 2n − 1. We then have 2n
choices for σ2n+1 and red(σ1 . . . σ2n−1) can be any element of UD2n−1. Thus B2n+1(x)|x2n−1 =
(2n)B2n−1(1).

For (3), it is easy to see that mmp(1,0,0,0)(σ) is maximized for a σ = σ1 . . . σ2n ∈ DU2n

when σ2n−1 = 2n. In such a case mmp(1,0,0,0)(σ) = 2n−2. We then have 2n−1 choices for σ2n

and red(σ1 . . . σ2n−2) can be any element of DU2n−2. Thus C2n(x)|x2n−2 = (2n−1)C2n−2(1) =
(2n − 1)A2n−2(1).

For (4), it is easy to see that mmp(1,0,0,0)(σ) is maximized for a σ = σ1 . . . σ2n+1 ∈ DU2n+1

when σ2n+1 = 2n + 1. In such a case mmp(1,0,0,0)(σ) = 2n. Then σ1 . . . σ2n can be any
element of DU2n. Thus D2n+1(x)|x2n = C2n(1) = A2n(1).

3.1 Recursions on up-down permutations of even length

By Theorem 2, the lowest power of x that appears with a non-zero coefficient in A2n(x) is
xn. Next we consider A2n(x)|xn+k for fixed k. That is, we let

A=n+k
2n = |{σ ∈ UD2n : mmp(1,0,0,0)(σ) = n + k}|

for fixed k ≥ 1. Our goal is to show that A=n+k
2n = pk(n)(2n−1)!! for some fixed polynomial

pk(n) in n. That is, we shall prove the following theorem, where we let

(x) ↓n= x(x − 1) · · · (x − n + 1) if n ≥ 1 and (x) ↓0= 1.

Theorem 3. There is a sequence of polynomials p0(x), p1(x), . . . such that for all k ≥ 0,

A=n+k
2n = pk(n)(2n − 1)!! for all n ≥ k + 1.

Moreover for k ≥ 1, the values pk(n) are defined by the recursion

pk(n) =
B2k+1(1)

(2k + 1)!!
+

k
∑

j=1

n
∑

t=k+2

B2j+1(1)2j(t − 1) ↓j

(2j + 1)!
pk−j(t − j − 1) (7)

where p0(x) = 1.

Proof. We proceed by induction on k. For k = 0, we know by Theorem 2 that A=n
2n =

(2n − 1)!! for all n ≥ 1 so that we can let p0(x) = 1.
Now assume that k ≥ 1 and the theorem is true for s < k. That is, assume that for

0 ≤ s < k, there is a polynomial ps(x) such that for n ≥ s + 1, A=n+s
2n = ps(n)(2n − 1)!!.

It is easy to see that for σ = σ1 . . . σ2n ∈ UD2n, mmp(1,0,0,0)(σ) > n + k if σ2j = 2n
where j ≥ k + 2 because then σ2, σ4, . . . , σ2k+2 as well as σ2i+1 such that i = 0, . . . , n − 1
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will match the pattern MMP (1, 0, 0, 0) in σ. Thus if mmp(1,0,0,0)(σ) = n + k, then 2n ∈
{σ2, σ4, . . . , σ2k+2}. Now suppose that j ≤ k + 1 and σ2j = 2n. Then we have

(

2n−1
2j−1

)

ways

to choose the elements σ1, . . . , σ2j−1 and we have B2j−1(1) ways to order them. Then we
know that σi matches the marked mesh pattern MMP (1, 0, 0, 0) in σ for i odd and for
i ∈ {2, 4, . . . , 2j − 2}. Hence, it must be the case that mmp(1,0,0,0)(red(σ2j+1 . . . σ2n)) =
n − j + k − j + 1. Thus it follows that for n ≥ k + 1,

A=n+k
2n =

k+1
∑

j=1

(

2n − 1

2j − 1

)

B2j−1(1)A
=(n−j)+k−j+1
2(n−j) . (8)

Now define pk(n) =
A=n+k

2n

(2n−1)!!
for n ≥ k + 1. Note that A

(k+1)+k
2k+2 = B2k+1(1) since for a

τ = τ1 . . . τ2k+2 ∈ UD2k+2 to have mmp(1,0,0,0)(τ) = 2k +1, it must be the case that τ2k+2 =

2k + 2 and, hence, we have B2k+1(1) choices for τ1 . . . τ2k+1. Hence, pk(k + 1) =
B2k+1(1)

(2k+1)!!
.

We can rewrite (8) as

pk(n)(2n − 1)!! = (2n − 1)pk(n − 1)(2n − 3)!! +
k+1
∑

j=2

∏2j−2
i=0 (2n − 1 − j)

(2j − 1)!
B2j−1(1)pk−j+1(n − j)(2n − 2j − 1)!!. (9)

Dividing (9) by (2n − 1)!!, we obtain that

pk(n) − pk(n − 1) =

k+1
∑

j=2

B2j−1(1)
∏j−1

s=1(2n − 2s)

(2j − 1)!
pk−j+1(n − j)

=

k
∑

j=1

B2j+1(1)2j(n − 1) ↓j

(2j + 1)!
pk−j(n − j − 1).

Hence for n ≥ k + 1,

pk(n) − pk(k + 1) =
n
∑

t=k+2

pk(t) − pk(t − 1)

=

n
∑

t=k+2

k
∑

j=1

B2j+1(1)2j(t − 1) ↓j

(2j + 1)!
pk−j(t − j − 1).

It follows that for n ≥ k + 1,

pk(n) =
B2k+1(1)

(2k + 1)!!
+

k
∑

j=1

n
∑

t=k+2

B2j+1(1)2j(t − 1) ↓j

(2j + 1)!
pk−j(t − j − 1).

This proves (7).
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Since ps(x) is a polynomial for s < k, it is easy to see that

n
∑

t=k+2

B2j+1(1)2j(t − 1) ↓j

(2j + 1)!
pk−j(t − j − 1)

is a polynomial in n for j = 1, . . . , k. Thus pk(n) is a polynomial in n.

One can use Mathematica and (7) to compute the first few expressions for pk(n). For
example, we have computed that

p0(n) = 1,

p1(n) =
2

3

(

n

2

)

,

p2(n) =
n(2 + 7n − 14n2 + 5n3)

90
, and

p3(n) =
n(192 − 478n + 213n2 + 227n3 − 198n4 + 35n5)

5670
.

3.2 Recursions on up-down permutations of odd length

Theorem 4. There is a sequence of polynomials q0(x), q1(x), . . . such that for all k ≥ 0,

B=n+k
2n+1 = qk(n)(2n)!! for all n ≥ k + 1.

Moreover for k ≥ 1, the values qk(n) are defined by the recursion

qk(n) =
B2k+1(1)

(2k)!!
+

k
∑

j=1

n
∑

t=k+2

B2j+1(1)
∏j−1

s=0(2t − 1 − 2s)

(2j + 1)!
qk−j(t − j − 1) (10)

where q0(x) = 1.

Proof. We proceed by induction on k. For k = 0, we know by Theorem 2 that B=n
2n+1 =

(2n)!! for all n ≥ 1 so that we can let q0(x) = 1.
Now assume that k ≥ 1 and the theorem is true for s < k. That is, assume that for

0 ≤ s < k, there is a polynomial qs(x) such that for n ≥ s + 1, B=n+s
2n+1 = qs(n)(2n)!!.

We can argue as in Theorem 3 that if mmp(1,0,0,0)(σ) = n+k, then 2n ∈ {σ2, σ4, . . . , σ2k+2}.
Now suppose that j ≤ k+1 and σ2j = 2n. Then we have

(

2n
2j−1

)

ways to choose the elements

σ1, . . . , σ2j−1 and we have B2j−1(1) ways to order them. Then we know that σi matches the
marked mesh pattern MMP (1, 0, 0, 0) in σ for i ∈ {2, 4, . . . , 2j − 2} ∪ {1, 3, . . . , 2n − 1}.
Hence, it must be the case that mmp(1,0,0,0)(red(σ2j+1 . . . σ2n+1)) = n− j + k − j + 1. Thus
it follows that for n ≥ k + 2,

B=n+k
2n+1 =

k+1
∑

j=1

(

2n

2j − 1

)

B2j−1(1)B
=(n−j)+k−j+1
2(n−j)+1 . (11)
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Now define qk(n) =
B=n+k

2n+1

(2n)!!
for n ≥ k + 1. Note that B

(k+1)+k
2k+3 = (2k + 2)B2k+1(1) since

for a τ = τ1 . . . τ2k+3 ∈ UD2k+3 to have mmp(1,0,0,0)(τ) = 2k + 1, it must be the case
that τ2k+2 = 2k + 3 and, hence, we have 2k + 2 choices for τ2k+3 and B2k+1(1) choices for

τ1 . . . τ2k+1. Thus, qk(k + 1) =
(2k+2)B2k+1(1)

(2k+2)!!
=

B2k+1(1)

(2k)!!
.

We can rewrite (11) as

qk(n)(2n)!! = (2n)qk(n − 1)(2n − 2)!! +
k+1
∑

j=2

∏2j−2
i=0 (2n − j)

(2j − 1)!
B2j−1(1)qk−j+1(n − j)(2n − 2j)!!. (12)

Dividing (12) by (2n)!!, we obtain that

qk(n) − qk(n − 1) =
k+1
∑

j=2

B2j−1(1)
∏j−1

s=1(2n − 2s − 1)

(2j − 1)!
qk−j+1(n − j). (13)

Hence for n ≥ k + 2,

qk(n) − qk(k + 1) =
n
∑

t=k+2

qk(t) − qk(t − 1)

=

n
∑

t=k+2

k
∑

j=1

B2j+1(1)2j
∏j−1

s=1(2n − 2s − 1)

(2j + 1)!
qk−j(t − j − 1).

It follows that for n ≥ k + 1,

qk(n) =
B2k+1(1)

(2k)!!
+

k
∑

j=1

n
∑

t=k+2

B2j+1(1)2j
∏j−1

s=1(2n − 2s − 1)

(2j + 1)!
qk−j(t − j − 1). (14)

This proves (10).
Since qs(x) is a polynomial for s < k, it is easy to see that

∑n
t=k+2

B2j+1(1)
Qj−1

s=1(2n−2s−1)

(2j+1)!
qk−j(t− j −1) is a polynomial in n for j = 1, . . . , k. Thus qk(n)

is a polynomial in n.

One can use Mathematica and (10) to compute the first few examples of qk(n). For
example, we have computed that

q0(n) = 1,

q1(n) =
n2 − 1

3
,

q2(n) =
(n − 2)(n − 1)(5n2 + n − 3)

90
, and

q3(n) =
35n6 − 84n5 − 193n4 + 345n3 + 140n2 − 81n + 198

5670
.

16



3.3 Recursions on down-up permutations

Similar results hold for down-up permutations.

Theorem 5. There are sequences of polynomials r0(x), r1(x), . . . and s0(x), s1(x), . . . such

that for all k ≥ 0,
C=n−1+k

2n = rk(n)(2n − 2)!! for all n ≥ k + 1. (15)

and

D=n−1+k
2n+1 = sk(n)(2n − 1)!! for all n ≥ k + 1. (16)

Proof. By Theorem 2, C=n−1
2n = (2n − 2)!! and D=n

2n+1 = (2n − 1)!! for all n ≥ 1. Thus we
can let r0(x) = s0(x) = 1.

For a permutation σ = σ1 . . . σ2n ∈ DU2n to have mmp(1,0,0,0)(σ) = n − 1 + k, it must
be the case that 2n ∈ {σ1, σ3, . . . , σ2k+1}. If σ2j+1 = 2n where j ∈ {0, 1, . . . , k}, then there
are

(

2n−1
2j

)

ways to pick the elements of σ1 . . . σ2j and C2j(1) ways to order them. Then

red(σ2j+2 . . . σ2n) ∈ UD2(n−j−1)+1 and must have n−1+k−(2j) matches of MMP (1, 0, 0, 0).

Thus we have B
=(n−j−1)+k−j
2(n−j−1)+1 ways to order σ2j+2 . . . σ2n. It follows that for n ≥ k + 1,

C=n−1+k
2n =

k
∑

j=0

(

2n − 1

2j

)

C2j(1)B=n−j−1+k−j
2(n−j−1)+1 . (17)

But C2j(1) = A2j(1) and B
=n−j−1+k−j
2(n−j−1)+1 = (2(n− j−1))!!qk−j(n− j−1). Thus for n ≥ k+1,

C=n−1+k
2n =

k
∑

j=0

(

2n − 1

2j

)

A2j(1)(2(n − j − 1))!!qk−j(n − j − 1)

= (2n − 2)!!
k
∑

j=0

A2j(1)
∏j

s=1(2n + 1 − 2s)

(2j)!
(2(n − j − 1))!!qk−j(n − j − 1).

Thus C=n−1+k
2n = (2n − 2)!!rk(n) where

rk(n) =

k
∑

j=0

A2j(1)
∏j

s=1(2n + 1 − 2s)

(2j)!
qk−j(n − j − 1). (18)

A similar argument will show that for n ≥ k + 1,

D=n+k
2n+1 =

k
∑

j=0

(

2n

2j

)

C2j(1)A=n−j+k−j
2(n−j) .

Since A
=n−j+k−j
2(n−j) = (2(n − j) − 1)!!pk−j(n − j), we obtain that

D=n+k
2n+1 =

k
∑

j=0

(

2n

2j

)

A2j(1)(2(n − j) − 1)!!pk−j(n − j)

= (2n − 1)!!

k
∑

j=0

A2j(1)
∏j

s=1(2n + 2 − 2s)

(2j)!
pk−j(n − j).
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Thus D=n+k
2n+1 = (2n − 2)!!sk(n) where

sk(n) =

k
∑

j=0

A2j(1)
∏j

s=1(2n + 2 − 2s)

(2j)!
pk−j(n − j). (19)

One can use (18) and (19) to compute rk(n) and sk(n) for the first few values of k. For
example, we have that

r0(n) = 1,

r1(n) =
2n2 + 2n − 3

6
,

r2(n) =
20n4 + 24n3 − 128n2 − 12n + 45

360
, and

r3(n) =
280n6 + 168n5 − 4820n4 + 3168n3 + 8734n2 − 6702n + 2835

45360
.

Similarly, we have

s0(n) = 1,

s1(n) =
n(n + 2)

3
,

s2(n) =
n(5n3 + 16n2 − 68n + 47)

90
, and

s3(n) =
n(35n5 + 126n4 − 340n3 − 417n2 + 656n − 60)

5760
.

4 Conclusion

In this paper, we have shown that one can find the generating functions for the distribution
of the quadrant marked mesh patterns MMP (1, 0, 0, 0), MMP (0, 1, 0, 0), MMP (0, 0, 1, 0),
and MMP (0, 0, 0, 1) in both up-down and down-up permutations by proving simple re-
cursions based on the position of the largest element in a permutation. As noted in
Subsection 2.5, these simple type of recursions no longer hold for the distribution of the
quadrant marked mesh patterns MMP (k, 0, 0, 0), MMP (0, k, 0, 0), MMP (0, 0, k, 0), and
MMP (0, 0, 0, k) in both up-down and down-up permutations when k ≥ 2. However, our
techniques can be used to study the distribution of other quadrant marked mesh patterns in
up-down and down-up permutations. For example, in [8], we have proved similar recursions
based on the position of the smallest element in a permutation to study the distribution of
the quadrant marked mesh patterns MMP (1, 0, ∅, 0), MMP (0, 1, 0, ∅), MMP (∅, 0, 1, 0),
and MMP (0, ∅, 0, 1) in both up-down and down-up permutations. In this case, the recur-
sions are a bit more subtle and the corresponding generating functions are not always as
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simple as the results of this paper. For example, if we let

A(1,0,∅,0)(x, t) = 1 +
∑

n≥1

t2n

(2n)!

∑

σ∈UD2n

xmmp(1,0,∅,0)(σ) and

B(1,0,∅,0)(x, t) =
∑

n≥0

t2n+1

(2n + 1)!

∑

σ∈UD2n+1

xmmp(1,0,∅,0)(σ),

then we can show that

A(1,0,∅,0)(t, x) = (sec(t))x,

B(1,0,∅,0)(t, x) =
sin(t) cos(t)(1 − x + sec(t))

x + (1 − x) cos(t)
×

(

(1 − x) 2F1

(

1

2
,
1 + x

2
;
3

2
; sin

(

t2
)

)

+ x 2F1

(

1

2
,
2 + x

2
;
3

2
; sin

(

t2
)

))

where 2F1(a, b; c; z) =
∑∞

n=0
(a)n(b)n

(c)n

zn

n!
and (x)n = x(x − 1) · · · (x − n + 1) if n ≥ 1 and

(x)0 = 1.
There are several directions for further research that are suggested by the results of

this paper. First, one can study the distribution in up-down and down-up permutations of
other quadrant marked meshed patterns MMP (a, b, c, d) in the case where a, b, c, d ∈ {∅, 1}.
More generally, one can study the distribution of quadrant marked mesh patterns on other
classes of pattern-restricted permutations such as 2-stack-sortable permutations or vexillary

permutations (see [6] for definitions of these) and many other permutation classes having
nice properties. Finally, we conjecture that the polynomials A2n(x), B2n+1(x), C2n(x), and
D2n+1(x) are unimodal for all n ≥ 1. This is certainly true for small values of n.
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