
Counting ordered patterns in words generated by morphisms

Sergey Kitaev
Reykjav́ık University

Kringlan 1
103 Reykjav́ık, ICELAND

e-mail: sergey@ru.is

Toufik Mansour
Department of Mathematics

Haifa University
31905 Haifa, ISRAEL

e-mail: toufik@math.haifa.ac.il

Patrice Séébold ‖

LIRMM, Univ. Montpellier 2, CNRS
161 rue Ada

34392 Montpellier, FRANCE
e-mail: Patrice.Seebold@lirmm.fr

September 21, 2007

Abstract

We start a general study of counting the number of occurrences of ordered patterns in words
generated by morphisms. We consider certain patterns with gaps (classical patterns) and that with
no gaps (consecutive patterns). Occurrences of the patterns are known, in the literature, as rises,
descents, (non-)inversions, squares and p-repetitions. We give recurrence formulas in the general case,
then deducing exact formulas for particular families of morphisms. Many (classical or new) examples
are given illustrating the techniques and showing their interest.

Keywords: morphisms, ordered patterns, rises, descents, inversions, repetitions

‖Département Mathématiques Informatique et Applications, Université Paul Valéry, Route de Mende, 34199 Montpellier
Cédex 5, France

1

1 Introduction

Different notions of pattern can be encountered in several domains of combinatorics.
In algebraic combinatorics, an occurrence of a pattern p in a permutation π is a subsequence of π

(of the same length as the length of p) whose elements are in the same relative order as those in p.
For example, the permutation π = 536241 contains an occurrence of the pattern p = 2431 : indeed the
elements of the subsequence 3641 of π are in the same relative order as those in p. Examples of results
concern permutations avoiding a pattern of length 3 in the symmetric group Sn (see [18, 28]).

Motivated by the study of Mahonian statistics, Babson and Steingŕımsson introduced a generalization
where two adjacent elements of the pattern must also be adjacent in the permutation [4]. In Claeson,
2001 [11] this generalisation provides interesting results related to set partitions, Dyck paths, Motzkin
paths, or involutions.

In combinatorics on words, an occurrence of a pattern p in a word u is a factor of u having the same
shape as p, i.e., for which there exists a nonerasing morphism transforming p in this factor. For example
the word u = abaabaaabab contains an occurrence of the pattern p = ααβααβ : indeed the morphism
f(α) = a, f(β) = ba transforms the pattern p in aabaaaba which is a factor of u. The main question
is to determine whether or not a given pattern is unavoidable, that is if it is possible to construct an
infinite word containing no occurrence of the pattern. The interested reader should refer to Chapter 3 of
Lothaire, 2002 [21].

In Burstein, 1998 [7], and Burstein and Mansour, 2002, 2003 [8, 9, 10] the authors realized a “mixing”
of these two notions. They consider ordered alphabets. Here, an occurrence of a pattern in a word is
a factor or a subsequence having the same shape, and in which the relative order of the letters is the
same as in the pattern. For example, on the alphabet {a, b} with a < b, the word u = abaaabab contains
an occurrence of the pattern 2111 (the factor baaa) but not of the pattern 1222 (abbb is not a factor of
u). However, the word u contains an occurrence of the pattern with gaps 1#2#2#2 because abbb is a
subsequence of u (here # means that the letters corresponding to 1 and 2 may be not consecutive). To
avoid confusion with previous notions we call these patterns ordered patterns (with gaps if there is at
least one #, with no gaps if there is no #).

In Kitaev, Mansour and Séébold, 2004 [17] we computed the number of occurrences of a lot of ordered
patterns in the Peano words (words corresponding to finite approximations of the Peano space filling
curve). An interesting property of these words is that they are generated by a tag-system, i.e., by
applying two morphisms. A motivation for this choice is the interest in studying classes of words defined
by iterative schemes, in particular with morphisms that are a fundamental tool of formal languages
[2, 21, 25].

In the present paper we start a general study of counting the number of occurrences of ordered patterns
in words generated by morphisms. After some preliminaries (Section 2), we give in Section 3 some general
results (recurrence formulas) on counting elementary ordered patterns with gaps ((non-)inversions and p-
repetitions) in words generated by morphisms, and applications to two well known binary words. Section
4 is dedicated to more precise results (exact formulas) in the case of a particular family of morphisms,
and in Section 5 we give many examples of morphisms belonging to this family. Section 6 is dedicated to
counting elementary ordered patterns with no gaps (rises, descents, and squares) in words generated by
morphisms and giving some examples.

2 Preliminaries

2.1 Definitions and notations

The terminology and notations are mainly those of Lothaire, 2002 [21].
Let A be a finite set called alphabet and A∗ the free monoid generated by A. The elements of A are

called letters and those of A∗ are called words. The empty word ε is the neutral element of A∗ for the
concatenation of words (the concatenation of two words u and v is the word uv), and we denote by A+

the semigroup A∗ \ {ε}.
The length of a word u, denoted by |u|, is the number of occurrences of letters in u. In particular

|ε| = 0. If n is a nonnegative integer, un is the word obtained by concatenating n occurrences of the word
u. Of course, |un| = n · |u|. The cases n = 2, and n = 3 deserve a particular attention in what follows. A
word u2 (resp. u3), with u 6= ε, is called a square (resp. a cube).

A word w is called a factor (resp. a prefix) of u if there exist words x, y such that u = xwy (resp.
u = wy). The factor (resp. the prefix) is proper if xy 6= ε (resp. y 6= ε). The number of distinct

2

occurrences of w in u is denoted by |u|w. A word u is a subsequence of the word v if there exist words
u1, . . . , un, v1, . . . , vn, vn+1 such that u = u1 · · ·un and v = v1u1v2u2 · · · vnunvn+1.

An infinite word (or sequence) over A is an application a : IN → A. It is written a = a0a1 · · · ai · · · , i ∈
IN, ai ∈ A.

The notion of factor is extended to infinite words as follows: a (finite) word u is a factor (resp. prefix)
of an infinite word a over A if there exist n ∈ IN (resp. n = 0) and m ∈ IN (m = |u|) such that
u = an · · · an+m−1 (by convention an · · · an−1 = ε).

In what follows, we will consider morphisms on A. Let B be an alphabet (often, B = A).
A morphism on A is an application f : A∗ → B∗ such that f(uv) = f(u)f(v) for all u, v ∈ A∗.

It is uniquely determined by its value on the alphabet A. A morphism f on A is a literal morphism if
|f(a)| = 1 for all a ∈ A.

Now A = B. Let n be a non-negative integer. The incidence matrix of fn is the k × k matrix

M(fn) = (mn,i,j)1≤i,j≤k

where mn,i,j is the number of occurrences of the letter ai in the word fn(aj), i.e., mn,i,j = |fn(aj)|ai
.

For details on the incidence matrix of a morphism see, e.g., [2], chapter 8, in which is given the following.

Property 1 For every n ∈ IN, M(f)n = M(fn).

A morphism is nonerasing if f(a) 6= ε for all a ∈ A. It is prolongable on x0, x0 ∈ A+, if there exists
u ∈ A+ such that f(x0) = x0u. In this case, for all n ∈ IN the word fn(x0) is a proper prefix of the word
fn+1(x0) and this defines a unique infinite word

x = x0uf(u)f2(u) · · · fn(u) · · ·

which is the limit of the sequence (fn(x0))n≥0. We write x = fω(x0) and say that x is generated by f.
A (finite or infinite) word u over A is square-free (resp. cube-free) if none of its factors is a square (resp.

a cube). A morphism f on A is square-free if the word f(u) is square-free whenever u is a square-free
word. The morphism f is weakly square-free if f generates a square-free infinite word.

A tag-system is a quintuple T = (A, u, f, g, B) where A and B are alphabets, u ∈ A+, f is a nonerasing
morphism on A, prolongable on u, and g is a morphism from A onto B. An infinite word y is generated
by G if y = g((fk)ω(u)) for some k ∈ IN.

Remark that what we call here a tag-system is sometimes called a HD0L-system. The terminology of
tag-system comes from the fundamental study of Cobham [12]. Chapter 5 of [24] is dedicated to a deep
study of D0L-systems.

2.2 Ordered patterns

Let A be a totally ordered alphabet and let ℵ be the ordered alphabet whose letters are the first n positive
integers in the usual order (thus ℵ = {1, 2, . . . , n}).

An ordered pattern is any word1 over ℵ∪{#}, # 6∈ ℵ, without two consecutive #. If a pattern contains
at least one #, not at the very beginning or at the very end, it is an ordered pattern with gaps; otherwise
it is an ordered pattern with no gaps2. Moreover, in this paper the ordered patterns u, #u, u#, and
#u# are considered to be the same. In particular, if x is a word over ℵ, we will write (x#)` or (#x)` to
represent the ordered pattern x#x# · · ·#x containing l occurrences of the word x.

A word v over A contains an occurrence of the ordered pattern u = u1#u2# · · ·#un, ui ∈ ℵ+ and n ≥
1, (or, equivalently the ordered pattern u occurs in v) if v = w0v1w1v2w2 · · ·wn−1vnwn and there exists
a literal morphism f : ℵ∗ → A∗ such that f(ui) = vi, 1 ≤ i ≤ n, and if x, y ∈ ℵ, x < y ⇒ f(x) < f(y).
Thus the word v contains an occurrence of the ordered pattern u if v contains a subsequence v′ which
is equal to f(u′) where u′ is obtained from u by deleting all the occurrences of #, with the additional
condition that two adjacent (not separated by #) letters in u must be adjacent in v. The number of
different occurrences of u as an ordered pattern in v is denoted by |v|u.

1In algebraic combinatorics when defining a pattern it is claimed that each letter from the interval [k] must occur at
least once. This requirement is not useful here, what is important is the relative value of each letter because this gives the
order. However it will be often implicit that these letters (which are only formal representations of the pattern) are taken
in the order from 1.

2Our choice here is to use terminology of combinatorics on words. For example, our notion of pattern with no gaps is
often referred to as pattern without internal dashes or consecutive pattern in the literature about algebraic combinatorics
(see, e.g., Kitaev, 2003 [16]). However this terminology does not seem to be solid since Burstein and Mansour used subword
pattern without hyphens [10], and segmented pattern is also encountered.

3

Example. Let A = {a, b, c, d, e, f} with a < b < c < d < e < f. The word v = eafdbc contains
one occurrence of the ordered pattern 2#31, namely the subsequence efd (|e afd b c|2#31 = 1). In v,
the ordered pattern 2#3#1 occurs in three occurrences: efd, ef b, and efc (|e afd b c|2#3#1 = 3); the
ordered pattern 231 does not occur in v (|e afd b c|231 = 0).

3 Ordered patterns with gaps and morphisms

Let k be an integer (k ≥ 2) and A the k-letter ordered alphabet A = {a1 < a2 < · · · < ak}.
Let f be any morphism on A: for 1 ≤ i ≤ k, f(ai) = ai1 . . . aipi

with pi ≥ 0 (pi = 0 if and only if
f(ai) = ε).

3.1 Inversions, non-inversions, and repetitions with gaps of fn

In what follows we are interested in some particular forms of ordered patterns. In accordance with
permutations theory, an inversion (resp. non-inversion) is an occurrence of the ordered pattern 2#1
(resp. 1#2). Repetitions with gaps of one letter is occurrences of the ordered patterns (1#)p, p ≥ 1.

3.1.1 Inversions and non-inversions

Let n be a non-negative integer.
The vector of non-inversions of fn is the k vector whose i-th entry is the number of occurrences of

the ordered pattern 1#2 in the word fn(ai), i.e.,

RG(fn) = (|fn(ai)|1#2)1≤i≤k.

The vector of inversions of fn is the k vector whose i-th entry is the number of occurrences of the
ordered pattern 2#1 in the word fn(ai), i.e.,

DG(fn) = (|fn(ai)|2#1)1≤i≤k.

Our goal is to obtain recurrence formulas giving the entries of RG(fn+1) and DG(fn+1). Since fn+1 =
fn ◦ f = f ◦ fn, we have two different ways to compute RG(fn+1) and DG(fn+1).

Let ` be an integer, 1 ≤ ` ≤ k. Either |fn+1(a`)|1#2 (resp. |fn+1(a`)|2#1) will be obtained from the
value of f(a`) and the entries of RG(fn) (resp. DG(fn)) (see 1. below), or it will be computed from the
values of RG(f) (resp. DG(f)) and fn(a`) (see 2. below).

1. From fn+1 = fn ◦ f.

Since f(a`) = a`1 . . . a`p`
, the number of occurrences of the ordered pattern 1#2 in fn+1(a`) =

fn(f(a`)) = fn(a`1 . . . a`p`
) is obtained by adding two values:

• the number of occurrences of the ordered pattern 1#2 in each fn(a`i
), 1 ≤ i ≤ p`. Since the

`-th column of the incidence matrix of f indicates which letters appear in f(a`) (and how
many times), this number is obtained by multiplying the vector RG(fn) by the `-th column
of M(f), i.e., it is equal to

∑k
t=1 |fn(at)|1#2 ·m1,t,` ,

• the number of occurrences of the ordered pattern 1#2 in each of the fn(a`i
a`j

), 1 ≤ i < j ≤ p`,
where the letter corresponding to 1 is in fn(a`i) and the letter corresponding to 2 is in fn(a`j).
In what follows we will call such an occurrence of 1#2 in fn(a`ia`j) an external occurrence of
the ordered pattern 1#2 in fn(a`i

a`j
), and denote it |fn(a`i

a`j
)|ext

1#2.

The value of |fn(a`i
a`j

)|ext
1#2 is obtained by adding, for all the integers r, 1 ≤ r ≤ k − 1, the

product of the number of occurrences of the letter ar in fn(a`i
) (|fn(a`i

)|ar
) by the number

of occurrences of all the letters of fn(a`j
) greater than ar (|fn(a`j

)|as
, r + 1 ≤ s ≤ k). This

gives
∑k−1

r=1(mn,r,`i
·
∑k

s=r+1 mn,s,`j
).

The number of external occurrences of 1#2 in all the fn(a`i
a`j

), 1 ≤ i < j ≤ p`, is thus given
by
∑

1≤i<j≤p`
|fn(a`i

a`j
)|ext

1#2 =
∑

1≤i<j≤p`
(
∑k−1

r=1(mn,r,`i
·
∑k

s=r+1 mn,s,`j
)).

2. From fn+1 = f ◦ fn.

Let q` = |fn(a`)| : fn+1(a`) = f(fn(a`)) = f(a`′1
. . . a`′q`

). Here the number of occurrences of the
ordered pattern 1#2 in fn+1(a`) is obtained by adding

4

• the number of occurrences of the ordered pattern 1#2 in each f(a`′i
), 1 ≤ i ≤ q`. Since the

`-th column of the incidence matrix of fn indicates which letters appear in fn(a`) (and how
many times), this number is obtained by multiplying the vector RG(f) by the `-th column of
M(fn), i.e., it is equal to

∑k
t=1 |f(at)|1#2 ·mn,t,` ,

• the number of external occurrences of the ordered pattern 1#2 in each of the f(a`′i
a`′j

), 1 ≤
i < j ≤ q`. This number is obtained by adding, for all the integers r, 1 ≤ r ≤ k − 1, the
product of the number of occurrences of the letter ar in f(a`′i

) (|f(a`′i
)|ar

) by the number of
occurrences of all the letters of f(a`′j

) greater than ar (|f(a`′j
)|as , r + 1 ≤ s ≤ k). This gives∑k−1

r=1(m1,r,`′i
·
∑k

s=r+1 m1,s,`′j
).

The number of external occurrences of 1#2 in all the f(a`′i
a`′j

), 1 ≤ i < j ≤ q`, is thus given

by
∑

1≤i<j≤q`
|f(a`′i

a`′j
)|ext

1#2 =
∑

1≤i<j≤q`
(
∑k−1

r=1(m1,r,`′i
·
∑k

s=r+1 m1,s,`′j
)).

The same reasoning applies for calculating the entries of DG(fn+1), replacing 1#2 by 2#1 and
“greater” by “smaller”.

Thus we have the following.

Proposition 1 For each letter a` ∈ A, let p` and q` be such that f(a`) = a`1 . . . a`p`
and fn(a`) =

a`′1
. . . a`′q`

. Then, for all n ∈ IN,

|fn+1(a`)|1#2 =
∑

1≤i<j≤p`

(
k−1∑
r=1

(mn,r,`i ·
k∑

s=r+1

mn,s,`j)) +
k∑

t=1

|fn(at)|1#2 ·m1,t,` , (1)

=
∑

1≤i<j≤q`

(
k−1∑
r=1

(m1,r,`′i
·

k∑
s=r+1

m1,s,`′j
)) +

k∑
t=1

|f(at)|1#2 ·mn,t,` , (2)

|fn+1(a`)|2#1 =
∑

1≤i<j≤p`

(
k∑

r=2

(mn,r,`i ·
r−1∑
s=1

mn,s,`j)) +
k∑

t=1

|fn(at)|2#1 ·m1,t,` , (3)

=
∑

1≤i<j≤q`

(
k∑

r=2

(m1,r,`′i
·

r−1∑
s=1

m1,s,`′j
)) +

k∑
t=1

|f(at)|2#1 ·mn,t,` . (4)

Of course, the analysis we have done above could be realized to compute more complex ordered
patterns with gaps, such as 1#23, 1#2#3, · · · The only difficulty is to adapt the computation of external
inversions and non-inversions.

3.1.2 Repetitions of one letter

Let n be a non-negative integer and p a positive integer. The vector of p-repetitions with gaps of one
letter of fn is the k vector whose i-th entry is the number of occurrences of the ordered pattern (1#)p in
the word fn(ai), i.e.,

RpG(fn) = (|fn(ai)|(1#)p)1≤i≤k.

The following is obvious.

Proposition 2 For each letter a` ∈ A and for all n ∈ IN,

|fn(a`)|(1#)p =
k∑

t=1

(
mn,t,`

p

)
. (5)

3.2 Some examples in the binary case

Since equations (1) to (5) are recurrence formulas they are not always suitable to produce exact formulas
giving the entries of RG(fn), DG(fn), and RpG(fn). However, in some particular cases we obtained such
exact formulas. This is in particular the case for the following two classical morphisms on the two-letter
ordered alphabet {a1 < a2}.

5

3.2.1 The Thue-Morse morphism

The Thue-Morse morphism µ was introduced in 1912 by Thue [29], although it was hinted at sixty years
earlier by Prouhet [23]. It was discovered independently in 1921 by Morse [22]. This morphism is defined
by µ(a1) = a1a2, µ(a2) = a2a1. It generates the famous Thue-Morse sequence t = µω(a1) which has been
widely studied (see, e.g., Lothaire, 1983 [20], or Allouche and Shallit, 2003 [2], and references therein).

For every positive integers n, the incidence matrix of µn is

M(µn) =
[

2n−1 2n−1

2n−1 2n−1

]
.

Thus, from equations (1), (3), and (5) we obtain

|µn+1(a1)|1#2 = |µn+1(a2)|1#2 = 22(n−1) + |µn(a1)|1#2 + |µn(a2)|1#2,
|µn+1(a1)|2#1 = |µn+1(a2)|2#1 = 22(n−1) + |µn(a1)|2#1 + |µn(a2)|2#1,

|µn(a1)|(1#)p = |µn(a2)|(1#)p = 2 ·
(
2n−1

p

)
.

Since RG(µ) =
[

1 0
]

and DG(µ) =
[

0 1
]
, we obtain from Proposition 1 the following well

known result.

Corollary 1 For any integer n ≥ 2,

RG(µn) = DG(µn) =
[

22n−3 22n−3
]

and RpG(µn) =
[

2 ·
(
2n−1

p

)
2 ·
(
2n−1

p

)]
.

3.2.2 The Fibonacci morphism

The Fibonacci morphism ϕ is defined by ϕ(a1) = a1a2, ϕ(a2) = a1. It generates the well known Fibonacci
sequence f = ϕω(a1) which has numerous remarkable properties and is the prototype of a Sturmian word
(see, e.g., chapter 2 of Lothaire, 2002 [21]).

Let (Fn)n≥−1 be the sequence of Fibonacci numbers: F−1 = 0, F0 = 1, Fn = Fn−1 + Fn−2 for n ≥ 1.
The following property of Fibonacci numbers will be useful below.

Property 2 For every positive integer n,

Fn.Fn−2 = F 2
n−1 +

{
1 if n is even,

−1 if n is odd.

An easy computation gives that, for every positive integer n, the incidence matrix of ϕn is

M(ϕn) =
[

Fn Fn−1

Fn−1 Fn−2

]
.

The vector of non-inversions of ϕ is RG(ϕ) =
[

1 0
]
. Moreover, from equation (1), we obtain for

n ≥ 1

|ϕn+1(a1)|1#2 = mn,1,1 ·mn,2,2 + |ϕn(a1)|1#2 + |ϕn(a2)|1#2

= Fn.Fn−2 + |ϕn(a1)|1#2 + |ϕn(a2)|1#2

= F 2
n−1 + |ϕn(a1)|1#2 + |ϕn(a2)|1#2 +

{
1 if n is even,

−1 if n is odd (see Property 2).

The vector of inversions of ϕ is DG(ϕ) =
[

0 0
]
. Moreover, from equation (3), we obtain for n ≥ 1

|ϕn+1(a1)|2#1 = mn,2,1 ·mn,1,2 + |ϕn(a1)|2#1 + |ϕn(a2)|2#1

= F 2
n−1 + |ϕn(a1)|2#1 + |ϕn(a2)|2#1.

Now, |ϕn+1(a2)|1#2 = |ϕn(a1)|1#2 and |ϕn+1(a2)|2#1 = |ϕn(a1)|2#1 because ϕ(a2) = a1.

From this we obtain direct formulas to compute, for every n ≥ 0, |ϕn+2(a1)|1#2 and |ϕn+2(a1)|2#1

from the sequence of Fibonacci numbers.

6

Corollary 2 For every integer n ≥ 0,

|ϕn+2(a1)|2#1 =
∑n

p=0 FpF
2
n−p ,

|ϕn+2(a1)|1#2 = |ϕn+2(a1)|2#1 + Fn +
{

1 if n is odd,
−1 if n is even.

Proof. Since F0 = 1 and ϕ2(a1) = a1a2a1, the result is obviously true if n = 0.

Also, since F0 = 1, F1 = 1, and ϕ3(a1) = a1a2a1a1a2, the result is true for n = 1.

Now suppose the assertions are true for all m < n. We prove they are true for n.

• We first compute |ϕn+2(a1)|2#1.

|ϕn+2(a1)|2#1 = F 2
n + |ϕn+1(a1)|2#1 + |ϕn(a1)|2#1

= F 2
n +

∑n−1
p=0 FpF

2
n−1−p +

∑n−2
p=0 FpF

2
n−2−p.

But
∑n−2

p=0 FpF
2
n−2−p =

∑n−1
p=1 Fp−1F

2
n−2−(p−1)

=
∑n−1

p=1 Fp−1F
2
n−1−p.

Thus |ϕn+2(a1)|2#1 = F 2
n + F0F

2
n−1 +

∑n−1
p=1 (Fp + Fp−1)F 2

n−1−p

= F 2
n + F 2

n−1 +
∑n−1

p=1 Fp+1F
2
n−(p+1)

= F 2
n + F 2

n−1 +
∑n

p=2 FpF
2
n−p

=
∑n

p=0 FpF
2
n−p (because F0 = F1 = 1).

• For |ϕn+2(a1)|1#2, we remark that if n is even then n− 2 is even, and n− 1, n + 1 are odd. And if
n is odd then n− 2 is odd, and n− 1, n + 1 are even. Consequently,

|ϕn+2(a1)|1#2 = F 2
n + |ϕn+1(a1)|1#2 + |ϕn(a2)|1#2 +

{
1 if n + 1 is even (n odd),

−1 if n + 1 is odd (n even)

= F 2
n +

∑n−1
p=0 FpF

2
n−1−p + Fn−1 + 1 +

∑n−2
p=0 FpF

2
n−2−p + Fn−2 − 1 +

{
1 if n is odd,

−1 if n is even

=
∑n

p=0 FpF
2
n−p + Fn−1 + Fn−2 +

{
1 if n is odd,

−1 if n is even

=
∑n

p=0 FpF
2
n−p + Fn +

{
1 if n is odd,

−1 if n is even.

Regarding repetitions of one letter, RpG(ϕ) =
[(

1
p

)
+
(
1
p

) (
1
p

)]
and, for n ≥ 0, the vector RpG(ϕn+2)

is obtained from equation (5).

Corollary 3 For any integer n ≥ 0,

RpG(ϕn+2) =
[(

Fn+2
p

)
+
(
Fn+1

p

) (
Fn+1

p

)
+
(
Fn

p

)]
.

4 A particular family of morphisms

Let k be an integer (k ≥ 2) and A the k-letter ordered alphabet A = {a1 < a2 < · · · < ak}. In this section
we are interested in morphisms f having the following particularities:

1. there exists a positive integer m such that |f(a1)|ai
= m, 1 ≤ i ≤ k ,

2. there exists a positive integer d such that |f(a2 . . . ak)|ai = d, 1 ≤ i ≤ k ,

3. for every i, j, 1 ≤ i, j ≤ k, |f(aiaj)|ext
1#2 = |f(ajai)|ext

1#2.

(Conditions 1. and 2. are particular cases of the more general situation, considered in Theorem 1 below,
in which the alphabet A is partitioned in sets A1, A2, . . ., An such that, for each Ai, the sum of the
number of occurrences of each letter in the images of letters of Ai is the same.)

In this case we are able to give direct formulas to compute |fn+1(a1)|1#2 and others from m, d, and n.

7

Proposition 3 For every positive integer n,

|fn+1(a1)|1#2 = m(d + m)n−1
∑k

i=1 |f(ai)|1#2 + [m(d+m)n−1−1]m(d+m)n−1

2

∑k
j=1 |f(ajaj)|ext

1#2

+m2(d + m)2n−2
∑

1≤i<j≤k |f(aiaj)|ext
1#2 ,

|fn+1(a2 . . . ak)|1#2 = d(d + m)n−1
∑k

i=1 |f(ai)|1#2 + [d(d+m)n−1−1]d(d+m)n−1

2

∑k
j=1 |f(ajaj)|ext

1#2

+d2(d + m)2n−2
∑

1≤i<j≤k |f(aiaj)|ext
1#2 .

Proof. Let n ≥ 1. As in Proposition 1, let fn(a1) = a1′1
. . . a1′q1

. Equation (2) gives

|fn+1(a1)|1#2 =
∑

1≤i<j≤q1
(
∑k−1

r=1(m1,r,1′i
·
∑k

s=r+1 m1,s,1′j
)) +

∑k
t=1 |f(at)|1#2 ·mn,t,1

=
∑

1≤i<j≤q1
|f(a1′i

a1′j
)|ext

1#2 +
∑k

t=1 |f(at)|1#2 · |fn(a1)|at .

Now, conditions 1. to 3. above imply that the incidence matrix of fn is rather special. From 1. and
2., |fn(a1)|at

= m(d + m)n−1 for each t, 1 ≤ t ≤ k.

This implies that
∑k

t=1 |f(at)|1#2 · |fn(a1)|at
= m(d + m)n−1

∑k
i=1 |f(ai)|1#2 .

This also implies that q1 = km(d + m)n−1.

But, from 3., the computation of
∑

1≤i<j≤km(d+m)n−1 |f(a1′i
a1′j

)|ext
1#2, realized from the word fn(a1)

which contains m(d + m)n−1 occurrences of each letter, can be equivalently realized from the word
a

m(d+m)n−1

1 a
m(d+m)n−1

2 · · · am(d+m)n−1

k .

Then the first letter a1 (i = 1) gives [m(d+m)n−1−1]·|f(a1a1)|ext
1#2+

∑k
j=2 m(d+m)n−1|f(a1aj)|ext

1#2.

The second letter a1 (i = 2) gives [m(d+m)n−1−2] · |f(a1a1)|ext
1#2 +

∑k
j=2 m(d+m)n−1|f(a1aj)|ext

1#2.

...

The last but one letter a1 (i = m(d+m)n−1−1) gives 1·|f(a1a1)|ext
1#2+

∑k
j=2 m(d+m)n−1|f(a1aj)|ext

1#2.

The last letter a1 (i = m(d + m)n−1) gives 0 · |f(a1a1)|ext
1#2 +

∑k
j=2 m(d + m)n−1|f(a1aj)|ext

1#2.

The first letter a2 (i = m(d + m)n−1 + 1) gives [m(d + m)n−1 − 1] · |f(a2a2)|ext
1#2 +

∑k
j=3 m(d +

m)n−1|f(a2aj)|ext
1#2.

And so on.

Consequently
∑

1≤i<j≤km(d+m)n−1 |f(a1′i
a1′j

)|ext
1#2

=
∑m(d+m)n−1−1

i=0 i ·
∑k

j=1 |f(ajaj)|ext
1#2 + m(d + m)n−1

∑k−1
i=1

∑k
j=i+1 m(d + m)n−1|f(aiaj)|ext

1#2

= [m(d+m)n−1−1]m(d+m)n−1

2

∑k
j=1 |f(ajaj)|ext

1#2 + m2(d + m)2n−2
∑

1≤i<j≤k |f(aiaj)|ext
1#2 .

Thus |fn+1(a1)|1#2 = m(d + m)n−1
∑k

i=1 |f(ai)|1#2 + [m(d+m)n−1−1]m(d+m)n−1

2

∑k
j=1 |f(ajaj)|ext

1#2 +
m2(d + m)2n−2

∑
1≤i<j≤k |f(aiaj)|ext

1#2 .

Now, for |fn+1(a2 . . . ak)|1#2, equation (2) gives

|fn+1(a2 . . . ak)|1#2 =
∑k

`=2(
∑

1≤i<j≤q`
|f(a`′i

a`′j
)|ext

1#2 +
∑k

t=1 |f(at)|1#2 · |fn(a`)|at
)

=
∑k

`=2

∑
1≤i<j≤q`

|f(a`′i
a`′j

)|ext
1#2 +

∑k
t=1

∑k
`=2 |f(at)|1#2 · |fn(a`)|at

.

Again from 1. and 2.,
∑k

`=2 |fn(a`)|at = d(d + m)n−1 for each t, 1 ≤ t ≤ k.

In particular,
∑k

`=2

∑
1≤i<j≤q`

|f(a`′i
a`′j

)|ext
1#2 =

∑
1≤i<j≤kd(d+m)n−1 |f(a`′i

a`′j
)|ext

1#2 .

8

As above, the computation can be realized from the word a
d(d+m)n−1

1 a
d(d+m)n−1

2 · · · ad(d+m)n−1

k .

This gives
∑

1≤i<j≤kd(d+m)n−1 |f(a`′i
a`′j

)|ext
1#2

=
∑d(d+m)n−1−1

i=0 i ·
∑k

j=1 |f(ajaj)|ext
1#2 + d(d + m)n−1

∑k−1
i=1

∑k
j=i+1 d(d + m)n−1|f(aiaj)|ext

1#2

= [d(d+m)n−1−1]d(d+m)n−1

2

∑k
j=1 |f(ajaj)|ext

1#2 + d2(d + m)2n−2
∑

1≤i<j≤k |f(aiaj)|ext
1#2 .

Now the same reasoning can be applied for |fn+1(a1)|2#1 and |fn+1(a2 . . . ak)|2#1, because of the
following obvious property.

Property 3 Let f be a morphism on A. For every non-negative integer n, and for every integers i, j,
1 ≤ i, j ≤ k, |fn(aiaj)|ext

1#2 = |fn(ajai)|ext
2#1.

Thus, using equation (4), we have the following.

Proposition 4 For every positive integer n,

|fn+1(a1)|2#1 = m(d + m)n−1l
∑k

i=1 |f(ai)|2#1 + [m(d+m)n−1−1]m(d+m)n−1

2

∑k
j=1 |f(ajaj)|ext

2#1

+m2(d + m)2n−2
∑

1≤i<j≤k |f(aiaj)|ext
2#1 ,

|fn+1(a2 . . . ak)|2#1 = d(d + m)n−1l
∑k

i=1 |f(ai)|2#1 + [d(d+m)n−1−1]d(d+m)n−1

2

∑k
j=1 |f(ajaj)|ext

2#1

+d2(d + m)2n−2
∑

1≤i<j≤k |f(aiaj)|ext
2#1 .

The previous reasoning can of course be applied if conditions 1. and 2. are verified for any partition
of the alphabet (in Propositions 3 and 4 the partition is in two sets A = {a1} ∪ {a2 . . . ak}). Then we
obtain the following general result.

Theorem 1 Let k be an integer (k ≥ 2), and A the k-letter ordered alphabet A = {a1 < a2 < . . . < ak}.
Let f be a morphism on A fulfilling the following conditions:

• there exist a positive integer p and a set of p positive integers {m1, . . . ,mp} such that A can be
partitioned into p subsets A1, . . . , Ap with

∑
a∈A`

|f(a)|ai
= m`, 1 ≤ i ≤ k,

• for every i, j, 1 ≤ i, j ≤ k, |f(aiaj)|ext
1#2 = |f(ajai)|ext

1#2.

Let M = m1 + . . . + mp and let u = 1#2 or u = 2#1. Then, for every positive integer n and for each A`,
1 ≤ ` ≤ p,∑

a∈A`
|fn+1(a)|u = m`M

n−1
∑k

i=1 |f(ai)|u + (m`Mn−1−1)m`Mn−1

2

∑k
j=1 |f(ajaj)|ext

u

+m2
`M

2n−2
∑

1≤i<j≤k |f(aiaj)|ext
u .

5 Examples

In this section we give a series of examples of application of Theorem 1. The first ones (5.1 to 5.4) are
related to the well known Thue-Morse morphism and they give results that of course can be found with
some other techniques, but they are presented in order to make the results more comprehensible. The
last ones are original; they illustrate some general representative situations.

5.1 The Thue-Morse morphism

The Thue-Morse morphism (see Section 3.2) is the simplest example of a morphism fulfilling conditions 1.
to 3. above. Indeed m = d = 1, and |µ(a1a2)|ext

1#2 = |a1a2a2a1|ext
1#2 = 1 = |a2a1a1a2|ext

1#2 = |µ(a2a1)|ext
1#2,

|µ(a1a1)|ext
1#2 = |µ(a2a2)|ext

1#2 = 1. Since |µ(a1)|1#2 = |µ(a2)|2#1 = 1, and |µ(a1)|2#1 = |µ(a2)|1#2 = 0, we
obtain from Propositions 3 and 4 that |µn+1(a1)|1#2 = |µn+1(a1)|2#1 = |µn+1(a2)|1#2 = |µn+1(a2)|2#1 =
22n−1 (see Corollary 1 above).

9

5.2 The Istrail morphism

In Istrail, 1977 [14] is given the following well known example of a weakly square-free morphism. The
morphism h is defined on the three-letter ordered alphabet A = {a1 < a2 < a3} by

h(a1) = a1a2a3, h(a2) = a1a3, h(a3) = a2

(remark that h generates a square-free infinite word, hω(a1), but is not a square-free morphism: h(a1a2a1) =
a1a2a3a1a3a1a2a3 contains the square a3a1a3a1).

The word hω(a1) is closely related to the Thue-Morse word t. Indeed, let B be the two-letter alphabet
B = {a1, a2}, and consider the morphism

δ : A∗ → B∗

a1 7→ a1

a2 7→ a1a2

a3 7→ a1a2a2

Then t = δ(hω(a1)).
Here again the morphism h fulfills conditions 1. to 3. with m = d = 1. Moreover |h(a1)|1#2 =

|h(a1a1)|ext
1#2 = 3, |h(a2)|1#2 = |h(a2a2)|ext

1#2 = 1, |h(a3)|1#2 = |h(a3a3)|ext
1#2 = 0, and |h(a1a2)|ext

1#2 = 2,
|h(a1a3)|ext

1#2 = |h(a2a3)|ext
1#2 = 1. Then, from Proposition 3, for every integer n ≥ 1, |hn+1(a1)|1#2 =

|hn+1(a2a3)|1#2 = 3 · 22n−1 + 2n.
From Property 3, the values for 2#1 are the same as for 1#2, except for |h(ai)|2#1, 1 ≤ i ≤ 3.

Here |h(a1)|2#1 = |h(a2)|2#1 = |h(a3)|2#1 = 0. Thus, from Proposition 4, for every integer n ≥ 1,
|hn+1(a1)|2#1 = |hn+1(a2a3)|2#1 = 3 · 22n−1 − 2n.

5.3 The Prouhet morphisms

In 1851, Prouhet ([23]) gave an algorithm to realize an arithmetic construction. This algorithm produces
intermediate infinite words that are a generalization of the Thue-Morse word (see above). It was proved
in Séébold, 2002 [26] that these words can be generated by morphisms (see also allouche and Shallit, 2000
[1]).

Let k ≥ 2, and let A be the k-letter ordered alphabet A = {a1 < · · · < ak}. The Prouhet morphism
πk is defined on A by

πk(ai) = aiai+1 . . . aka1 . . . ai−1, 1 ≤ i ≤ k.

Example. Let k = 6. The morphism π6 is given by

a1 7→ a1a2a3a4a5a6

a2 7→ a2a3a4a5a6a1

a3 7→ a3a4a5a6a1a2

a4 7→ a4a5a6a1a2a3

a5 7→ a5a6a1a2a3a4

a6 7→ a6a1a2a3a4a5

For every k the morphism πk fulfills the conditions of Theorem 1. Since, for every i, 1 ≤ i ≤ k, the
word πk(ai) contains exactly one occurrence of each letter of A, there are a lot of possibilities to choose
the partition of A. Here we choose p = k and A = A1 ∪ . . . ∪Ak, Ai = {ai}, 1 ≤ i ≤ k. This implies that
mi = 1, 1 ≤ i ≤ k and, of course, M = k.

Also, for every i, j, 1 ≤ i, j ≤ k, |πk(aiaj)|ext
1#2 = |πk(aiaj)|ext

2#1 = k(k−1)
2 .

Now it is easy to verify that, due to the particular form of the images of the letters by πk, one has
for every `, 1 ≤ ` ≤ k, |πk(a`)|1#2 = [k−(`−1)](k−`)

2 + (`−1)(`−2)
2 and |πk(a`)|2#1 = (`− 1)[k − (`− 1)].

Thus we obtain the following corollary of Theorem 1.

Corollary 4 For every i, 1 ≤ i ≤ k, and for every positive integer n,

|πn+1
k (ai)|1#2 =

kn−1

4

(
kn+2 · (k − 1) +

k∑
`=1

(`− 1)(`− 2)

)
,

10

|πn+1
k (ai)|2#1 =

kn−1

4

(
kn+2 · (k − 1)−

k∑
`=1

(`− 1)(`− 2)

)
.

Proof. From Theorem 1 and from what precedes,

|πn+1
k (ai)|1#2 = kn−1 ·

∑k
`=1

(
[k−(`−1)](k−`)

2 + (`−1)(`−2)
2

)
+ (kn−1−1)kn−1

2

∑k
j=1

k(k−1)
2

+k2n−2 ·
∑

1≤j<`≤k
k(k−1)

2

= kn−1 ·
[∑k

`=1

(
[k−(`−1)](k−`)

2 + (`−1)(`−2)
2

)
+ (kn−1−1)

2 · k2(k−1)
2 + kn−1 ·

[
k(k−1)

2

]2]
= kn−1 ·

[∑k
`=1

(
[k−(`−1)](k−`)

2 + (`−1)(`−2)
2

)
− k2(k−1)

4 + kn−1 ·
(

k2(k−1)
4 + k2(k−1)2

4

)]
.

Since
∑k

`=1

(
[k−(`−1)](k−`)

2 + (`−1)(`−2)
2

)
− k2(k−1)

4 = 1
2

∑k
`=1

(`−1)(`−2)
2 , we obtain

|πn+1
k (ai)|1#2 = kn−1 ·

[
kn−1 ·

(
k2(k−1)+k2(k−1)2

4

)
+ 1

4

∑k
`=1(`− 1)(`− 2)

]
= kn−1

4 ·
[
kn+2 · (k − 1) +

∑k
`=1(`− 1)(`− 2)

]

The proof is the same for |πn+1
k (ai)|2#1, using

∑k
`=1(`−1)[k−(`−1)]− k2(k−1)

4 = − 1
2

∑k
`=1

(`−1)(`−2)
2 .

Example (continued).

|π6(a1)|1#2 = 15, |π6(a1)|2#1 = 0,
|π6(a2)|1#2 = 10, |π6(a2)|2#1 = 5,
|π6(a3)|1#2 = 7, |π6(a3)|2#1 = 8,
|π6(a4)|1#2 = 6, |π6(a4)|2#1 = 9,
|π6(a5)|1#2 = 7, |π6(a5)|2#1 = 8,
|π6(a6)|1#2 = 10, |π6(a6)|2#1 = 5.

For every i, 1 ≤ i ≤ k, and for every n ≥ 1,

|πn+1
6 (ai)|1#2 = 6n−1

4 ·
(
6n+2 · 5 +

∑6
`=1(`− 1)(`− 2)

)
= 6n−1 · (45 · 6n + 10),

|πn+1
6 (ai)|2#1 = 6n−1 · (45 · 6n − 10).

5.4 The Arshon morphisms

In a paper written in 1937 [3], Arshon gives an algorithm to construct for each integer n, n ≥ 3, an infinite
square-free word over an n-letter alphabet, and in the case of two letters a cube-free word. It appears
now that this construction is closely connected to the use of Prouhet morphisms. In the case of two
letters the Arshon word is the Thue-Morse word and Arshon’s algorithm gives exactly the Thue-Morse
morphism which is a particular case of Prouhet morphism.

The Arshon words were proved to be, in the odd case, an example of infinite words that can be
generated by a tag-system but not by a morphism (Berstel, 1980 [5], Currie, 2002 [13], Kitaev, 2003 [15]).
In Séébold, 2003 [27] is given a family of morphisms which generates the even case Arshon words (see
also Currie, 2002 [13], Kitaev, 2003 [15]). These morphisms are the following.

Let k be any even positive integer. The morphism βk is defined, for every r, 1 ≤ r ≤ k/2, by

a2r−1 7→ a2r−1a2r . . . ak−1aka1a2 . . . a2r−3a2r−2,
a2r 7→ a2r−1a2r−2 . . . a2a1akak−1 . . . a2r+1a2r.

(Remark that, again, though they generate square-free infinite words, the morphisms βk are not square-
free morphisms.)

11

Example. Let k = 6. The morphism β6 is given by

a1 7→ a1a2a3a4a5a6

a2 7→ a1a6a5a4a3a2

a3 7→ a3a4a5a6a1a2

a4 7→ a3a2a1a6a5a4

a5 7→ a5a6a1a2a3a4

a6 7→ a5a4a3a2a1a6

Of course, since it is obtained from πk in an obvious manner, the morphism βk fulfills the conditions of
Theorem 1 for every even k. Since, for every i, 1 ≤ i ≤ k, the word βk(ai) contains exactly one occurrence
of each letter of A, there are again a lot of possibilities to choose the partition of A. Here we choose also
p = k and A = A1 ∪ . . . ∪ Ak, Ai = {ai}, 1 ≤ i ≤ k. This implies that mi = 1, 1 ≤ i ≤ k and, of course,
M = k.

Also, for every i, j, 1 ≤ i, j ≤ k, |βk(aiaj)|ext
1#2 = |βk(aiaj)|ext

2#1 = k(k−1)
2 .

Now, again because βk is directly obtained from πk, one has for every r, 1 ≤ r ≤ k
2 ,

|βk(a2r−1)|1#2 = [k−(2r−2)][k−(2r−1)]
2 + (2r−2)(2r−3)

2 ,

|βk(a2r)|1#2 = (2r − 1)[k − (2r − 1)],

|βk(a2r−1)|2#1 = (2r − 2)[k − (2r − 2)],

|βk(a2r)|2#1 = [k−(2r−1)](k−2r)
2 + (2r−1)(2r−2)

2 .

Thus we obtain another corollary of Theorem 1.

Corollary 5 Let k be any even positive integer. For every i, 1 ≤ i ≤ k, and for every positive integer n,

|βn+1
k (ai)|1#2 =

kn−1

4
[
kn+2 · (k − 1) + 2k

]
,

|βn+1
k (ai)|2#1 =

kn−1

4
[
kn+2 · (k − 1)− 2k

]
.

Proof. As for the proof of Corollary 4, we obtain from Theorem 1 and from what precedes,

|βn+1
k (ai)|1#2 = kn−1 ·

[∑k
`=1 |βk(a`)|1#2 − k2(k−1)

4

]
+ kn−1 ·

[
kn+2·(k−1)

4

]
.

But
∑k

`=1 |βk(a`)|1#2 =
∑k/2

r=1 [|βk(a2r−1)|1#2 + |βk(a2r)|1#2] = k2(k−1)
4 + k

2 , and the result follows.

The proof is the same for |βn+1
k (ai)|2#1, using

∑k
`=1 |βk(a`)|2#1 = k2(k−1)

4 − k
2 .

Example (continued).

|β6(a1)|1#2 = 15, |β6(a1)|2#1 = 0,
|β6(a2)|1#2 = 5, |β6(a2)|2#1 = 10,
|β6(a3)|1#2 = 7, |β6(a3)|2#1 = 8,
|β6(a4)|1#2 = 9, |β6(a4)|2#1 = 6,
|β6(a5)|1#2 = 7, |β6(a5)|2#1 = 8,
|β6(a6)|1#2 = 5, |β6(a6)|2#1 = 10.

For every i, 1 ≤ i ≤ k, and for every n ≥ 1,

|βn+1
6 (ai)|1#2 = 6n−1

4 ·
(
6n+2 · 5 + 2 · 6

)
= 6n−1 · (45 · 6n + 3),

|βn+1
6 (ai)|2#1 = 6n−1 · (45 · 6n − 3).

12

5.5 Three other examples

To end this list of examples, we give three morphisms that fulfill the conditions of Theorem 1, but are not
linked with the Thue-Morse morphism. Moreover they are interesting because the first one is an erasing
morphism, the second gives a non trivial partition of the alphabet when applying Theorem 1, and the
third is an example of a ternary square-free morphism fulfilling the conditions..

1. Let A be the four-letter ordered alphabet A = {a1 < a2 < a3 < a4}. Define the morphism f by

f : A∗ → A∗

a1 7→ a1a3a2a4

a2 7→ ε
a3 7→ a1a4

a4 7→ a2a3

The morphism f fulfills the conditions of Theorem 1. Here we choose p = 3, A = A1 ∪ A2 ∪ A3 with
A1 = {a1}, A2 = {a2}, A3 = {a3, a4}, and m1 = m3 = 1, m2 = 0, thus M = 2.

One has |f(a1)|1#2 = 5, |f(a3)|1#2 = |f(a4)|1#2 = 1, |f(a1)|2#1 = 1, |f(a3)|2#1 = |f(a4)|2#1 = 0,
|f(a1a1)|ext

1#2 = |f(a1a1)|ext
2#1 = 6, |f(a3a3)|ext

1#2 = |f(a3a3)|ext
2#1 = |f(a4a4)|ext

1#2 = |f(a4a4)|ext
2#1 = 1,

|f(a1a3)|ext
1#2 = |f(a1a3)|ext

2#1 = |f(a1a4)|ext
1#2 = |f(a1a4)|ext

2#1 = 3, |f(a3a4)|ext
1#2 = |f(a3a4)|ext

2#1 = 2. All the
values with a2 are of course 0.

Then we have the following corollary of Theorem 1.

Corollary 6 For every positive integer n,

|fn+1(a1)|1#2 = |fn+1(a3a4)|1#2 = 3 · 2n−1 · (2n+1 + 1),

|fn+1(a1)|2#1 = |fn+1(a3a4)|2#1 = 3 · 2n−1 · (2n+1 − 1),

|fn+1(a2)|1#2 = |fn+1(a2)|2#1 = 0.

2. Let A be the five-letter ordered alphabet A = {a1 < a2 < a3 < a4 < a5}. Define the morphism g by

g : A∗ → A∗

a1 7→ a1a3a5a4a2

a2 7→ a4a2a3

a3 7→ a5a1

a4 7→ a1a5

a5 7→ a2a3a4

The morphism g fulfills the conditions of Theorem 1. Here we choose p = 3, A = A1 ∪ A2 ∪ A3 with
A1 = {a1}, A2 = {a2, a4}, A3 = {a3, a5}, and m1 = m2 = m3 = 1, thus M = 3.

One has |g(a1)|1#2 = 6, |g(a2)|1#2 = |g(a4)|1#2 = 1, |g(a3)|1#2 = 0, |g(a5)|1#2 = 3,
|g(a1)|2#1 = 4, |g(a2)|2#1 = 2, |g(a3)|2#1 = 1, |g(a4)|2#1 = |g(a5)|2#1 = 0,
|g(a1a1)|ext

1#2 = 10, |g(a2a2)|ext
1#2 = |g(a5a5)|ext

1#2 = 3, |g(a3a3)|ext
1#2 = |g(a4a4)|ext

1#2 = 1,

|g(a1a2)|ext
1#2 = |g(a1a5)|ext

1#2 = 6, |g(a1a3)|ext
1#2 = |g(a1a4)|ext

1#2 = 4, |g(a2a3)|ext
1#2 = |g(a2a4)|ext

1#2 =
|g(a2a5)|ext

1#2 = |g(a3a5)|ext
1#2 = |g(a4a5)|ext

1#2 = 3, |g(a3a4)|ext
1#2 = 1.

To end we recall that, with the second condition of Theorem 1 and property 3, one has for every
integers i, j, 1 ≤ i, j ≤ k, |g(aiaj)|ext

1#2 = |g(aiaj)|ext
2#1.

Then we have the following corollary of Theorem 1.

Corollary 7 For every positive integer n,

|gn+1(a1)|1#2 = |gn+1(a2a4)|1#2 = |gn+1(a3a5)|1#2 = 3n−1 · (5 · 3n+1 + 2),

|gn+1(a1)|2#1 = |gn+1(a2a4)|2#1 = |gn+1(a3a5)|2#1 = 3n−1 · (5 · 3n+1 − 2).

13

3. Let A be the three-letter ordered alphabet A = {a < b < c}. Define the morphism h by

h : A∗ → A∗

a 7→ aba cab cac bab cba cbc
b 7→ aba cab cac bca bcb abc
c 7→ aba cab cba cbc acb abc

This morphism was given to be square-free by Brandenburg in [6]. It fulfills the conditions of Theorem
1 with p = 3, A = A1 ∪ A2 ∪ A3 with A1 = {a}, A2 = {b}, A3 = {c}, and m1 = m2 = m3 = 6, thus
M = 18.

One has |h(a)|1#2 = 70, |h(b)|1#2 = |h(c)|1#2 = 66, |h(a)|2#1 = 38, |h(b)|2#1 = |h(c)|2#1 = 42.

Moreover, due to the particular form of the morphism h (it is uniform, i.e., |h(a)| = |h(b| = |h(c)|,
and for every x, y ∈ A, |h(x)|y = 6), one has |h(xy)|ext

1#2 = |h(xy)|ext
2#1 = 108 for every x, y ∈ A.

Then we have the following corollary of Theorem 1.

Corollary 8 For every x ∈ A and for every positive integer n,

|hn+1(x)|1#2 = 6 · 18n−1 · (9 · 18n+1 + 40),

|hn+1(x)|2#1 = 6 · 18n−1 · (9 · 18n+1 − 40).

6 Ordered patterns with no gaps and morphisms

In this last section we consider the problem of counting consecutive patterns in words generated by
morphisms. Here the things are a little bit more complicated than in Section 3. Indeed the computation
of external occurrences of such a pattern can be distorted by the fact that morphisms are allowed to be
erasing. For example if A = {a1 < a2 < a3} and f(a1) = a2a1, f(a2) = ε, f(a3) = a3 then the word
f(a1a2a3) contains an occurrence of the consecutive pattern 12 while f(a1a2) and f(a2a3) do not contain
such an occurrence. Thus we have a priori to study more than only words of the form f(aiaj) which were
enough in the case of classical patterns. The result of this study is presented in Proposition 5 in which
are given recurrence formulas for rises (occurrences of the ordered pattern 12), descents (occurrences of
21), and squares of one letter (occurrences of 11). We end again with some examples illustrating that
our technique can provide exact formulas when the morphism is given.

6.1 Rises, descents, and squares of fn

Let k be an integer (k ≥ 2) and A the k-letter ordered alphabet A = {a1 < a2 < · · · < ak}.
Let f be any morphism on A: for 1 ≤ i ≤ k, f(ai) = ai1 . . . aipi

with pi ≥ 0 (pi = 0 if and only if
f(ai) = ε).

The vector of rises of fn is the k vector whose i-th entry is the number of occurrences of the ordered
pattern 12 in the word fn(ai), i.e.,

R(fn) = (|fn(ai)|12)1≤i≤k.

The vector of descents of fn is the k vector whose i-th entry is the number of occurrences of the
ordered pattern 21 in the word fn(ai), i.e.,

D(fn) = (|fn(ai)|21)1≤i≤k.

The vector of squares of one letter of fn is the k vector whose i-th entry is the number of occurrences
of the ordered pattern 11 in the word fn(ai), i.e.,

R2(fn) = (|fn(ai)|11)1≤i≤k.

Here again, as in Section 3, our goal is to obtain recurrence formulas giving the entries of R(fn+1),
D(fn+1), and R2(fn+1).

We define two sequences of k vectors, (F (fn))n∈IN and (L(fn))n∈IN, where F (fn)[i] is the first letter
of fn(ai) and L(fn)[i] is the last letter of fn(ai) if fn(ai) 6= ε, and F (fn)[i] = L(fn)[i] = 0 if fn(ai) = ε.

14

Of course these two sequences take their values in a finite set: they are ultimately periodic. Thus they
can be computed a priori from f.

Given a non-negative integer n, let ℵ′ be the subset of ℵ such that, for each i ∈ ℵ, fn(ai) 6= ε if and
only if i ∈ ℵ′. We associate to the two vectors F (fn) and L(fn) an application C12

n : ℵ′ × ℵ′ → {0, 1}
defined by

C12
n (i, j) =

{
1, if L(fn)[i] < F (fn)[j]
0, if L(fn)[i] ≥ F (fn)[j].

Similarly we define

C21
n (i, j) =

{
1, if L(fn)[i] > F (fn)[j]
0, if L(fn)[i] ≤ F (fn)[j],

and

C11
n (i, j) =

{
1, if L(fn)[i] = F (fn)[j]
0, if L(fn)[i] 6= F (fn)[j].

For any morphism f on A, there exists a least integer Mf (Mf ≤ k and Mf depends only on f) such
that, for every positive integer n and every a ∈ A, fn(a) = ε if and only if fMf (a) = ε. By convention, if
f is a nonerasing morphism then Mf = 0. The integer Mf is known in the literature about L-systems as
the mortality exponent of f (see, e.g., Levé and Richomme, 2005 [19]).

Now let ` be an integer, 1 ≤ ` ≤ k. One has f(a`) = a`1 . . . a`p`
and we denote by `′1 . . . `′p′`

the
subsequence of `1 . . . `p`

such that fn+1(a`) = fn(a`′1
. . . a`′

p′
`

) for every n ≥ Mf . This means that, for

every n ≥ Mf , a letter a`i appears in a`1 . . . a`p`
but not in a`′1

. . . a`′
p′

`

if and only if fn(a`i) = ε. Of

course p′` ≤ p`, and if Mf = 0 then p′` = p` for each 1 ≤ ` ≤ k.
Here also, as in Section 3, the number of occurrences of the ordered pattern 12 in fn+1(a`) =

fn(a`1 . . . a`p`
) = fn(a`′1

. . . a`′
p′

`

) (n ≥ Mf) is obtained by adding two values:

• the number of occurrences of the ordered pattern 12 in each fn(a`i
), 1 ≤ i ≤ p`. As in the previous

case, this number is equal to
∑k

t=1 |fn(at)|12 ·m1,t,`,

• the number of external occurrences of the ordered pattern 12 in fn(a`′i
a`′j

) for each subsequence
a`′i

a`′j
of f(a`), 1 ≤ i < j ≤ p′`. But the only possibility for 12 to be an external occurrence in

fn(a`′i
a`′j

) is that j = i + 1 and the last letter of fn(a`′i
) is smaller than the first letter of fn(a`′j

).
Thus, the number of occurrences of such patterns is only the number of times L(fn)[i] < F (fn)[i+1]
with i + 1 ≤ p′`, i.e., the number of times C12

n (`′i, `
′
i+1) = 1 for 1 ≤ i ≤ p′` − 1.

We proceed similarly with the patterns 21 and 11. Consequently we have the following proposition.

Proposition 5 For each letter a` ∈ A, f(a`) = a`1 . . . a`p`
, and for all n ≥ Mf , let `′1 . . . `′p′`

be the
subsequence of `1 . . . `p`

such that fn+1(a`) = fn(a`′1
. . . a`′

p′
`

) and fn(a`′i
) 6= ε, 1 ≤ i ≤ p′`. Then

|fn+1(a`)|12 =
k∑

t=1

|fn(at)|12 ·m1,t,` +
p′`−1∑
i=1

C12
n (`′i, `

′
i+1), (6)

|fn+1(a`)|21 =
k∑

t=1

|fn(at)|21 ·m1,t,` +
p′`−1∑
i=1

C21
n (`′i, `

′
i+1), (7)

|fn+1(a`)|11 =
k∑

t=1

|fn(at)|11 ·m1,t,` +
p′`−1∑
i=1

C11
n (`′i, `

′
i+1). (8)

6.2 About the repetitions of one letter with no gaps

The case of p-repetitions of one letter is more complicated when no gaps are allowed. Indeed we have
to find blocks of p consecutive equal letters but, generally, this number p is limited by a given value
depending on the morphism itself. For example the Thue-Morse morphism µ (see Section 3.2) is such
that µn(a1) and µn(a2) do not contain a1a1a1 nor a2a2a2 as factors, whatever be the value of n (µ
generates cube-free words). This explains why in the previous section we only provide a formula giving
the number of squares of one letter (the ordered pattern 11) in the words fn(ai), 1 ≤ i ≤ k. If we want

15

to obtain a formula giving the number of p-powers of one letter (the ordered pattern 1p) for some p ≥ 3
the computation of external repetitions (corresponding to C11

n in equation (8)) will become much more
complicated.

6.3 Some examples

We only give here a little number of examples illustrating Proposition 5 because the involved techniques
are roughly the same as in the case of patterns with gaps. First we give three particular cases of families
of morphisms in which the number of external occurrences of the ordered pattern is trivially obtained.
Then we give examples of exact formulas in the well known cases of the Thue-Morse and the Fibonacci
morphisms in order to compare with the results obtained in Section 3.2. We end by an example of a basic
erasing morphism and one in which the value of the integer Mf above is 2.

6.3.1 No external rises

Let us suppose that the morphism f is such that, for all i and j, L(f)[i] ≥ F (f)[j]. According to
equation (6), in this case, for each letter a` ∈ A, f(a`) = a`1 . . . a`p`

, and for all n ≥ Mf ,

|fn+1(a`)|12 =
k∑

t=1

|fn(at)|12 ·m1,t,`.

Moreover, if the above inequality is strict then, according to equation (7),

|fn+1(a`)|21 =
k∑

t=1

|fn(at)|21 ·m1,t,` + p′` − 1.

6.3.2 No external descents

If, conversely to the previous case, the morphism f is such that, for all i and j, L(f)[i] ≤ F (f)[j] then,
according to equation (7), for each letter a` ∈ A, f(a`) = a`1 . . . a`p`

, and for all n ≥ Mf ,

|fn+1(a`)|21 =
k∑

t=1

|fn(at)|21 ·m1,t,`.

Moreover, if the above inequality is strict then, according to equation (6),

|fn+1(a`)|12 =
k∑

t=1

|fn(at)|12 ·m1,t,` + p′` − 1.

6.3.3 No external squares

Now, if we suppose that the morphism f is such that, for all i and j, L(f)[i] 6= F (f)[j] then, according
to equation (8), for each letter a` ∈ A, f(a`) = a`1 . . . a`p`

, and for all n ≥ Mf ,

|fn+1(a`)|11 =
k∑

t=1

|fn(at)|11 ·m1,t,`.

6.3.4 The Thue-Morse morphism

For details on this morphism see Section 3.2.
Here, k = 2 and for all 1 ≤ t, ` ≤ 2, m1,t,` = 1. Since µ is nonerasing, Mµ = 0.

Moreover for any integer n ≥ 0, C12
n (1, 2) = C21

n (2, 1) =
{

1, if n is even
0, if n is odd,

C12
n (2, 1) = C21

n (1, 2) = 0 and C11
n (1, 2) = C11

n (2, 1) =
{

1, if n is odd
0, if n is even.

Thus, from equations (6), (7), and (8) we obtain, for every n ≥ 0,

16

|µn+1(a1)|12 = |µn(a1)|12 + |µn(a2)|12 +
{

1, if n is even
0, if n is odd

|µn+1(a2)|12 = |µn(a1)|12 + |µn(a2)|12
|µn+1(a1)|21 = |µn(a1)|21 + |µn(a2)|21
|µn+1(a2)|21 = |µn(a1)|21 + |µn(a2)|21 +

{
1, if n is even
0, if n is odd

|µn+1(a1)|11 = |µn+1(a2)|11 = 2 · |µn(a1)|11 +
{

1, if n is odd
0, if n is even.

Since R(µ) =
[

1 0
]
, D(µ) =

[
0 1

]
and R2(µ) =

[
0 0

]
we obtain again a well known result.

Corollary 9 For any integer n ≥ 0,

R(µ2n) =
[

4n−1
3

4n−1
3

]
= D(µ2n) = R2(µ2n)

R(µ2n+1) =
[

2(4n−1)
3 + 1 2(4n−1)

3

]
D(µ2n+1) =

[
2(4n−1)

3
2(4n−1)

3 + 1
]

R2(µ2n+1) =
[

2(4n−1)
3

2(4n−1)
3

]
.

6.3.5 The Fibonacci morphism

For details on this morphism see Section 3.2.
Here again k = 2 and Mϕ = 0.
First we note that for n ≥ 1, since ϕ(a2) = a1, one has |ϕn(a2)|xy = |ϕn−1(a1)|xy for xy = 12,

xy = 21, and xy = 11.
Moreover we are in case 6.3.1 above thus |ϕn+1(a1)|12 = |ϕn(a1)|12 + |ϕn(a2)|12 for every n ≥ 1.

Now m1,1,1 = m1,2,1 = 1 and, for any positive integer n, C21
n (1, 2) =

{
1, if n is odd
0, if n is even and

C11
n (1, 2) =

{
1, if n is even
0, if n is odd.

Thus, from equations (7) and (8) we obtain, for every n ≥ 1,

|ϕn+1(a1)|21 = |ϕn(a1)|21 + |ϕn(a2)|21 +
{

1, if n is odd
0, if n is even

|ϕn+1(a1)|11 = |ϕn(a1)|11 + |ϕn(a2)|11 +
{

1, if n is even
0, if n is odd.

Since R(ϕ) =
[

1 0
]

and D(ϕ) = R2(ϕ) =
[

0 0
]

we have again a well known result.

Corollary 10 For any integer n ≥ 1,

R(ϕn) =
[

Fn−1 Fn−2

]
D(ϕ2n) =

[
F2n−1 F2n−2 − 1

]
= R2(ϕ2n+1)

R2(ϕ2n) =
[

F2n−2 − 1 F2n−3

]
= D(ϕ2n−1).

6.3.6 Erasing morphisms

Let A be the four-letter ordered alphabet A = {a1 < a2 < a3 < a4}.

1. Here we consider the erasing morphism f , given in Section 5.5, defined on A by

f(a1) = a1a3a2a4

f(a2) = ε
f(a3) = a1a4

f(a4) = a2a3

17

One has Mf = 1.
First remark that, for any positive integer n, fn(a2) = ε thus |fn(a2)|xy = 0 for xy = 12, xy = 21,

and xy = 11.
Here again we are in case 6.3.1 above thus, for n ≥ 1,

|fn+1(a1)|12 = |fn(a1)|12 + |fn(a2)|12 + |fn(a3)|12 + |fn(a4)|12
= |fn(a1)|12 + |fn(a3)|12 + |fn(a4)|12

|fn+1(a3)|12 = |fn(a1)|12 + |fn(a4)|12

|fn+1(a4)|12 = |fn(a3)|12.

Moreover the values of the number p′` of Proposition 5 are p′1 = 3, p′3 = 2, p′4 = 1 and, since the
inequality L(f)[i] ≥ F (f)[j] is strict for all the values of i, j, one has for every n ≥ 1

|fn+1(a1)|21 = |fn(a1)|21 + |fn(a3)|21 + |fn(a4)|21 + p′1 − 1
= |fn(a1)|21 + |fn(a3)|21 + |fn(a4)|21 + 2

|fn+1(a3)|21 = |fn(a1)|21 + |fn(a4)|21 + 1

|fn+1(a4)|21 = |fn(a3)|21.

But |f(a1)|12 = 2, |f(a3)|12 = 1, |f(a4)|12 = 1 and |f(a1)|21 = 1, |f(a3)|21 = 0, |f(a4)|21 = 0.
Thus we deduce easily that |fn(ai)|21 = |fn(ai)|12 − 1 for i = 1, i = 3, and i = 4.

To end, we are also in case 6.3.3 above. Consequently, for every n ≥ 1,

|fn+1(a1)|11 = |fn(a1)|11 + |fn(a3)|11 + |fn(a4)|11

|fn+1(a3)|11 = |fn(a1)|11 + |fn(a4)|11

|fn+1(a4)|11 = |fn(a3)|11.

But, since |f(a1)|11 = |f(a3)|11 = |f(a4)|11 = 0, this implies that |fn(a1)|11 = |fn(a3)|11 =
|fn(a4)|11 = 0 for any positive integer n.

So it remains to calculate the values of |fn+1(a1)|12 and |fn+1(a3)|12.
Since f(a1) = a1a3a2a4 and f(a3a4) = a1a4a2a3, it is clear that |fn(a1)|ai

= 2n−1 for each 1 ≤ i ≤ 4
and n ≥ 1.

Thus, since there are no external occurrences of the ordered pattern 12 in a word fn(ai) whatever is
the value of n, one has for every n ≥ 1

|fn+1(a1)|12 = 2n−1 · (|f(a1)|12 + |f(a3)|12 + |f(a4)|12)
= 2n−1 · 4
= 2n+1.

In the same manner, for every positive integer n, |fn(a3)|a1 = |fn(a3)|a4 =
{

2n−1
3 , if n is even

2n+1
3 , if n is odd

and |fn(a3)|a2 = |fn(a3)|a3 =
{

2n+2
3 , if n is even

2n−2
3 , if n is odd.

Consequently if n is even then

|fn+1(a3)|12 = 2n−1
3 · (|f(a1)|12 + |f(a4)|12) + 2n+2

3 · |f(a3)|12

= 3(2n−1)
3 + 2n+2

3

= 2n+2−1
3

and if n is odd then |fn+1(a3)|12 = 3(2n+1)
3 + 2n−2

3 = 2n+2+1
3 .

Starting from R(f) =
[

2 0 1 1
]
, the above results are summarized in the following

18

Corollary 11 For any integer n ≥ 1, R2(fn) =
[

0 0 0 0
]

and

if n is even

 R(fn) =
[

2n 0 2n+1+1
3

2n−1
3

]
D(fn) =

[
2n − 1 0 2n+1−2

3
2n−4

3

]
,

if n is odd

 R(fn) =
[

2n 0 2n+1−1
3

2n+1
3

]
D(fn) =

[
2n − 1 0 2n+1−4

3
2n−2

3

]
.

2. Now we consider the erasing morphism g defined on A by

g(a1) = a1a2a4a3

f(a2) = a3

f(a3) = ε
f(a4) = a1a2a4

Here we have Mf = 2, i.e., we must be careful to the fact that gn(a2) = ε only from n = 2. Thus the
recurrence formulas giving the values for gn+1 from those for gn must be given for n ≥ 2, which means
that the particular cases are those for both g and g2.

Let n ≥ 2. Since gn(a2) = gn(a3) = ε one has, for xy = 12, xy = 21, and xy = 11, |gn+1(a2)|xy =
|gn+1(a3)|xy = 0 and |gn+1(a1)|xy = |gn+1(a4)|xy.

We are in case 6.3.1 thus |gn+1(a1)|12 = 2 · |gn(a1)|12.
Now, C21

n (1, 4) = 1, hence |gn+1(a1)|21 = 2 · |gn(a1)|21 + 1.
To end, C11

n (1, 4) = 0 thus |gn+1(a1)|11 = 2 · |gn(a1)|11.

Consequently we obtain the following

Corollary 12 R(g) =
[

2 0 0 2
]
, D(g) =

[
1 0 0 0

]
, R2(g) =

[
0 0 0 0

]
,

and, for any integer n ≥ 2,

R(gn) =
[

2n 0 0 2n
]

D(gn) =
[

2n−1 + 2n−2 − 1 0 0 2n−1 + 2n−2 − 1
]

R2(gn) =
[

2n−2 0 0 2n−2
]
.

References

[1] J.-P. Allouche, J. Shallit, Sums of digits, overlaps, and palindromes, Discrete Math. & Theoret.
Comput. Sci. 4 (2000), 1–10.

[2] J.-P. Allouche, J. Shallit, Automatic sequences: theory, applications, generalizations, Cam-
bridge University Press, Cambridge, UK, 2003.

[3] S. Arshon, Démonstration de l’existence de suites asymétriques infinies, Mat. Sb. 44 (1937), 769–
777 (in Russian), 777–779 (French summary).

[4] E. Babson, E. Steingŕımsson, Generalized permutation patterns and a classification of the Ma-
honian statistics, Sém.Lothar. Comb. 44 (2000), Art. B44b, 18 pp.

[5] J. Berstel, Mots sans carré et morphismes itérés, Discr. Math. 29 (1980), 235–244.

[6] F.-J. Brandenburg, Uniformly growing k-th power-free homomorphisms, Theoret. Comput. Sci.
23 (1983), 69–82.

[7] A. Burstein, Enumeration of words with forbidden patterns, Ph.D. thesis, University of Pennsyl-
vania, 1998.

[8] A. Burstein, T. Mansour, Words restricted bypatterns with at most 2 distinct letters, Electronic
J. of Combinatorics 9:2 (2002), #R3.

19

[9] A. Burstein, T. Mansour, Words restricted by 3-letter generalized multipermutation patterns,
Annals of Combinatorics 7 (2003), 1–14.

[10] A. Burstein, T. Mansour, Counting occurrences of some subword patterns, Discrete Mathematics
and Theoretical Computer Science 6:1 (2003), 1–12.

[11] A. Claesson, Generalised Pattern Avoidance, European J. Combin. 22 no. 7 (2001), 961–971.

[12] A. Cobham, Uniform tag sequences, Math. Systems Th. 6 (1972), 164–192.

[13] J. Currie, No iterated morphism generates any Arshon sequence of odd order, Discr. Math. (2002),
277–283.

[14] S. Istrail, On irreducible languages and nonrational numbers, Bull. Math. Soc. Sci. Math. R. S.
Roumanie 21 (1977), 301–308.

[15] S. Kitaev, There are no iterated morphisms that define the Arshon sequence and the sigma-
sequence, Automata, Languages and Combinatorics 8 (2003), 43–50.

[16] S. Kitaev, Multi-avoidance of generalised patterns, Discr. Math. 260 (2003), 89–100.

[17] S. Kitaev, T. Mansour, P. Séébold, The Peano curve and counting occurrences of some patterns,
Journal of Automata, Languages and Combinatorics 9 (2004) 4, 439–455.

[18] D. E. Knuth, The Art of Computer Programming, 2nd ed., Addison-Wesley, Reading, MA, 1973.

[19] F. Levé, G. Richomme, On a conjecture about finite fixed points of morphisms, Theoret. Comput.
Sci. 339-1 (2005), 103–128.

[20] M. Lothaire, Combinatorics on Words, vol. 17 of Encyclopedia of Mathematics and Applications,
Addison-Wesley, Reading, Mass., 1983.
Reprinted in the Cambridge Mathematical Library, Cambridge University Press, Cambridge, UK,
1997.

[21] M. Lothaire, Algebraic Combinatorics on Words, vol.90 of Encyclopedia of Mathematics and its
Applications, Cambridge University Press, Cambridge, UK, 2002.

[22] M. Morse, Recurrent geodesics on a surface of negative curvature, Trans. Amer. Math. Soc. 22
(1921), 84–100.

[23] M. E. Prouhet, Mémoire sur quelques relations entre les puissances des nombres, Comptes Rendus
Acad. Sci. Paris 33 (1851), 225.

[24] G. Rozenberg, A. Salomaa (Eds), Handbook of Formal Languages Vol. 1, Springer, 1997.

[25] A. Salomaa, Jewels of Formal Language Theory, Computer Science Press, 1981.

[26] P. Séébold, About some overlap-free morphisms on a n-letter alphabet, Journal of Automata,
Languages and Combinatorics 7 (2002), 579–597.

[27] P. Séébold, On some generalizations of the Thue-Morse morphism, Theoret. Comput. Sci. 292-1
(2003), 283–298.

[28] R. Simion, F. Schmidt, Restricted permutations, European J. Combin. 6 no. 4 (1985), 383–406.

[29] A. Thue, Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen, Vidensk.-Selsk. Skrifter.
I. Mat. Nat. Kl. 1 Kristiania (1912), 1–67.
Reprinted in Selected Mathematical Papers of Axel Thue, T. Nagell, editor, Universitetsforlaget,
Oslo, 1977, 413-478.

20

