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Abstract

A classical result by Guibas and Odlyzko obtained in 1981 gives the generating function for the number
of strings that avoid a given set of substrings with the property that no substring is contained in any
of the others. In this paper, we give an analogue of this result for the enumeration of compositions
that avoid a given set of prohibited substrings, subject to the compositions’ length and weight.
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1. Introduction

In 1981, Guibas and Odlyzko [1] obtained the generating function for the number of strings avoiding a
given set of prohibited substrings and then applied this result to non-transitive games. (A string s =
s1s2 · · · sm contains a substring b1b2 · · · bk of length k if there is an index i such that sisi+1 · · · si+k =
b1b2 · · · bk. Otherwise, we say that s avoids the substring b1b2 · · · bk.) A detailed derivation of this
generating function and related results in the binary case was later given by Winterfjord in his Masters
thesis [4]. The basic idea in the derivation of the generating function is the notion of the correlation
between two strings and being able to enumerate the strings avoiding the set of substrings in two
different ways. Let X1 = a0a1 . . . am−1 and X2 = b0b1 . . . bℓ−1 be two strings of lengths m and ℓ,
respectively, over the alphabet [n] = {1, 2, . . . , n}. The correlation c12 = c0c1 . . . cm−1 is the binary
string defined as follows:

m ≤ ℓ: For 0 ≤ j ≤ m − 1, cj = 1 if ai = bℓ−m+i+j for i = 0, 1, . . . , m − j − 1, and cj = 0 otherwise;
m > ℓ: For 0 ≤ j ≤ m − ℓ, cj = 1 if bi = am−ℓ+i−j for i = 0, 1, . . . , ℓ − 1, and cj = 0 otherwise; for

m− ℓ+1 ≤ j ≤ m−1, cj = 1 if ai = bℓ−m+i+j for i = 0, 1, . . . , m− j−1 and cj = 0 otherwise.

In plain English, this means that cj is equal to 1 if and only if the coefficients in the overlap of the
string X1 and the string X2, shifted (or offset) by j positions to the left, agree, as illustrated in
Figure 1.

1The work presented here was supported by grant no. 090038011 from the Icelandic Research Fund.
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Figure 1. Comparing strings X1 and X2.

For example, if X1 = 110 and X2 = 1011, then c12 = 011 and c21 = 0010, as depicted below:

offset j 1 1 0 cj

0 1 0 1 1 0
1 1 0 1 1 1
2 1 0 1 1 1

offset j 1 0 1 1 cj

0 1 1 0 0
1 1 1 0 0
2 1 1 0 1
3 1 1 0 0

In general c12 6= c21 and, unless the strings are of the same lengths, the correlations will have different
lengths. The autocorrelation of a string or word X1 is just c11, the correlation of X1 with itself.
For instance, if X1 = 1011 then c11 = 1001. It is convenient to associate a correlation polynomial
c12(x) = c0 +c1q+ · · ·+ck−1q

k−1 with the correlation c12 = c0c1 . . . ck−1. This correlation polynomial
is the generating function for the number of letters in the tail, the portion that is to the right of the
overlap in the substring X1, as illustrated in Figure 1.

We now state the general result given by Guibas and Odlyzko [1] in the form given (for the special
case of binary strings) in Winterfjord [4, Th. 24].

Theorem 1.1. The generating function for the number of strings or words of length n over a given
alphabet that avoid the substrings S1, . . . , Sk of lengths ℓ1, . . . , ℓk respectively, none included in any
other, is given by

(1.1) S(q) =

−c11(q) · · · −c1n(q)
...

. . .
...

−cn1(q) · · · −cnn(q)

(1 − nq) 1 · · · 1
qℓ1 −c11(q) · · · −c1n(q)
...

...
. . .

...
qℓk −ck1(q) · · · −ckk(q)

,

where cij(q) is the correlation polynomial for the substrings Si and Sj.

Unfortunately, the approach by Guibas and Odlyzko is not applicable to permutations and subpermu-
tations, or when patterns (as opposed to strings) are to be avoided. However, the approach generalizes
to compositions avoiding a set of prohibited substings, and we will derive a formula for the most general
case that is an analogue of the formula by Guibas and Odlyzko. This generalization to compositions
follows the current interest in compositions which have been studied from different perspectives in
the literature, mostly from the view point of pattern avoidance (see [2] and references therein). This
result adds a facet to this research.

Let N be the set of natural numbers. A composition σ = σ1 · · ·σm of n ∈ N is an ordered collection
(or string) of one or more positive integers whose sum, also called the composition’s weight w(σ), is
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n. The number of summands or letters, namely m, is called the number of parts of the composition
and is denoted by ℓ(σ). The main result of this paper is the derivation of the generating function

G(x, q) = G(S1, . . . , Sk; x, q) =
∑

σ

xw(σ)qℓ(σ)

where the sum is taken over all compositions with parts in N simultaneously avoiding the prohibited
substrings Si, i = 1, . . . , k, where none of the substrings is included in any other. We state and prove
this result in Section 2 and then give applications of our result for families of prohibited substrings in
Section 3.

2. Main result

In order to generalize Theorem 1.1 to compositions, we need to adapt the correlation polynomial
to also keep track of the the weight in addition to the length of the tail. We therefore define the
correlation polynomial for a correlation cij = c0c1 . . . cm−1 between Si = a0a1 . . . am−1 and Sj as

cij(x, q) = c0 + c1x
w(am−1)q + c2x

w(am−2am−1)q2 + · · · + cm−1x
w(a2a3...am−1)qm−1.

For example, for X1 = 110 and X2 = 1011 considered in Section 1, c12(x, q) = x + x2q, c21(x, q) =
(xq)2, c11(x, q) = 1, and c22(x, q) = 1 + x3q2. Note that since we are considering compositions, all
parts are positive and therefore each term but the first one of a correlation polynomial is divisible by
xq (the first term is either 0 or 1). We are now ready to state the main result.

Theorem 2.1. The generating function for the number of compositions of weight n and length m with
parts in N that avoid the substrings S1, . . . , Sk of lengths ℓ(S1), . . . , ℓ(Sk) respectively, none included
in any other, is given by

(2.1) G(x, q) =

(1 − x) ·

−c11(x, q) · · · −c1n(x, q)
...

. . .
...

−cn1(x, q) · · · −cnn(x, q)

1 − x(1 + q) 1 − x · · · 1 − x

xw(S1)qℓ(S1) −c11(x, q) · · · −c1n(x, q)
...

...
. . .

...
xw(Sk)qℓ(Sk) −cn1(x, q) · · · −cnn(x, q)

where cij(x, q) are the correlation polynomials defined above.

Proof. In finding G(x, q) we adapt the arguments in [1, 4] to compositions. Let A denote the set
of all compositions avoiding the prohibited substrings and let Bi, for i = 1, . . . , k, be the set of all
compositions ending with Si but having no other occurrence of any of the prohibited substrings. A
composition in Bi is said to quasi-avoid Si. We denote the generating function corresponding to Bi

by Bi(x, q) and note that G(x, q) is the generating function of the set A. Furthermore, the sets A and
Bi are all pairwise disjoint as none of the substrings is included in any of the others.

We now derive recurrences for certain sets of compositions. Note that we can create compositions
of weight n + 1 recursively from those of weight n ≥ 1 by either increasing the last part by 1 or by
appending a part 1 at the right end of the composition. For a set of compositions M , let M+1 denote
the set obtained from M by increasing the rightmost part of each non-empty composition by 1, and let
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M × {1} denote the set obtained from M by adjoining the new rightmost part 1 to each composition
in M . With this notation, we can express the set of compositions that either avoid or quasi-avoid the
substrings as follows:

(2.2) A ∪ B1 ∪ · · · ∪ Bk = {ǫ} ∪ (A ∪ B1 ∪ · · · ∪ Bk − {ǫ})+1 ∪ (A × {1}),

where ǫ is the empty composition. The expression on the right hand side follows as increasing the last
part of a composition that avoids all substrings can create an occurrence of a substring, but only at the
very end of the composition, and likewise when adding a new part. On the other hand, a composition
that quasi-avoids a string is transformed either into a composition that avoids the substrings or quasi-
avoids a different substring when increasing the last part. However, when appending the part 1 to a
composition that quasi-avoids Si we create a composition that contains Si, so that operation is not
allowed for the sets Bi. Increasing the last part results in an increase in the weight of the composition
by 1 but no increase in the number of parts, while appending the part 1 increases both the weight
and the length of the composition. Thus (2.2) can be expressed in terms of generating functions as

(2.3) (1 − x − xq)G(x, q) + (1 − x)(B1(x, q) + · · · + Bk(x, q)) = 1 − x,

where we have used that the generating function of the union of disjoint sets is the sum of the
respective generating functions, and the generating function of a Cartesian product is the product of
the respective generating functions.

We now create an alternative connection between the sets A and Bi. Let Ri denote the set of compo-
sitions that consist of a composition from A followed by the prohibited string Si, where i = 1, . . . , k.
Note that Ri and Rj are disjoint for i 6= j as none of Si’s is included in any other. Furthermore,
the set Ri is not identical to the set Bi as it is possible that a prohibited string will occur inside a
string in Ri, not only at the end. For a composition (or string) X from Bj , we call a string Y with
ℓ(Y ) ≤ ℓ(Si) − 1 a possible ij-tail if XY ends with the substring Si. This nomenclature is readily
understood when comparing Figure 2 to Figure 1, as Y is the tail in the comparison of Si with Sj .

Sj Y

avoid Si

Figure 2. The ij-tail Y .

With this definition, we obtain the following equality of sets:

(2.4) A × Si = ∪1≤j≤kBj × {possible ij-tail},

which in terms of generating functions gives the following equation for each i = 1, . . . , k:

(2.5) G(x, q)xw(Si)qℓ(Si) −

k
∑

j=1

cij(x, q)Bj(x, q) = 0.

Indeed, a proof of (2.4) is identical to the corresponding statement for strings that can be found
in [1, 4] (it does not matter whether we deal with strings or compositions in this case), while for the
generating functions, the difference is that we also keep track of the weight in the compositions using
the variable x.
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Combining (2.3) and (2.5) results in the following set of equations










1 − x(1 + q) 1 − x · · · 1 − x

xw(S1)qℓ(S1) −c11(x, q) · · · −c1n(x, q)
...

...
. . .

...
xw(Sk)qℓ(Sk) −cn1(x, q) · · · −cnn(x, q)
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1 − x

0
...
0











.

Using Cramer’s rule to solve for G(x, q) gives formula (2.1). �

3. Applications of Theorem 2.1

Even though Theorem (2.1) provides an explicit solution to the enumerative problem, it involves
the evaluation of determinants which may not be a simple thing to do. While one can easily find
explicit formulas for the generating function that do not involve determinants when there are just a
few prohibited substrings, it is interesting to know in which cases the determinants can be evaluated
for families of prohibited substrings. In this section, we evaluate the determinants for a family of
prohibited substrings which generalizes the well-based sets used in [3] to count independent sets in
certain graphs called path-schemes.

Let 1i denote the string consisting of i 1’s and let V = ∪1≤i≤k{21ai−12} with 1 ≤ a1 < a2 < · · · < ak

be the set of substrings to be avoided. Note that none of the substrings in V is included in any other.
Thus we can apply formula (2.1) to find the generating function for the number of compositions
avoiding all the substrings in V simultaneously.

Corollary 3.1. The generating function V (x, q) for the number of compositions of weight n and length
m with parts in N that avoid the family of substrings V defined above is given by

(3.1) V (x, q) =
(1 − x)(1 + x

∑k

i=1(xq)ai)

(1 − x(1 + q) + (1 − x)x2q)(1 + x
∑k

i=1(xq)ai) − (1 − x)x2q
.

Proof. It is easy to see that the correlation polynomial for the two strings 21ai−12 and 21aj−12 is

cij(x, q) = δij + x(xq)ai , where δij is the Kronecker delta. Also, xw(21ai−12})qℓ(21ai−12) = xai+3qai+1.
Therefore Theorem 2.1 gives that

V (x, q) =

(1 − x) ·

−1 − x(xq)a1 −x(xq)a1 · · · −x(xq)a1

−x(xq)a2 −1 − x(xq)a2 · · · −x(xq)a2

...
...

. . .
...

−x(xq)ak −x(xq)ak · · · −1 − x(xq)ak

1 − x(1 + q) 1 − x 1 − x · · · 1 − x

xa1+3qa1+1 −1 − x(xq)a1 −x(xq)a1 · · · −x(xq)a1

xa2+3qa2+1 −x(xq)a2 −1 − x(xq)a2 · · · −x(xq)a2

...
...

...
. . .

...
xak+3qak+1 −x(xq)ak −x(xq)ak · · · −1 − x(xq)ak

.

To compute the determinant in the numerator, replace row 1 by the sum of all rows and then factor

out the common factor (−1 − x
∑k

i=1(xq)ai). Next subtract column 1 from columns 2, 3, . . . , k to
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obtain

−(1 + x

k
∑

i=1

(xq)ai) ·

1 0 0 · · · 0
−x(xq)a2 −1 0 · · · 0
−x(xq)a3 0 −1 · · · 0

...
...

...
. . .

...
x(xq)ak 0 0 · · · −1

= (−1)k · (1 + x

k
∑

i=1

(xq)ai).

To compute the determinant in the denominator, replace column 1 by the sum of column 1 and
x2q·(column (k + 1)) and for i = 2, 3, . . . , k, replace column i by the difference of column i and
(column (k + 1)) to yield

1 − x(1 + q) + (1 − x)x2q 0 · · · 0 1 − x

0 −1 · · · 0 −x(xq)a1

0 0 · · · 0 −x(xq)a2

...
...

. . .
...

...
0 0 · · · −1 −x(xq)ak−1

−x2q 1 · · · 1 −1 − x(xq)ak

.

To obtain an upper triangular matrix we replace the last row in this determinant by

x2q(row 1)

1 − x(1 + q) + (1 − x)x2q
+ (row 2) + (row 3) + · · · + (row (k + 1))

which yields that the determinant of the denominator is equal to

(−1)k
[

(1 − x)x2q − (1 − x(1 + q) + (1 − x)x2q)(1 + x

k
∑

i=1

(xq)ai)
]

,

completing the proof. �

Further simplifications of V (x, q) are possible whenever
∑k

i=1(xq)ai can be simplified. We provide
three examples here.

Example 3.2. The set of prohibited substrings {22, 212, . . . , 2ik−12} corresponds to {a1, a2, . . . , ak} =
{1, 2, . . . , k}. In this case, (3.1) reduces to

Vk(x, q) =
(1 − x)(1 − xq + x2q(1 − (xq)k))

(1 − x(1 + q) + (1 − x)x2q)(1 − xq + x2q(1 − (xq)k)) − (1 − x)(1 − xq)x2q
.

The initial values of V2(x, q) (avoiding 22 and 212) are as follows:

V2(x, q) = 1 + qx +
(

q + q2
)

x2 +
(

q + 2q2 + q3
)

x3 +
(

q + 2q2 + 3q3 + q4
)

x4 +
(

q + 4q2 + 3q3 + 4q4 + q5
)

x5 +
(

q + 5q2 + 9q3 + 5q4 + 5q5 + q6
)

x6 + · · ·

Example 3.3. The set of prohibited substrings that have an even number of 1’s, {22, 2112, . . . , 2i2k2}
is represented by the set {a1, a2, . . .} = {1, 3, 5, . . . , 2k + 1}. In this case, (3.1) is simplified as follows:

Vo(x, q) =
(1 − x)

(

1 − (xq)2 + x2q
(

1 − (xq)2k+1
))

(1 − (1 + q)x + (1 − x)x2q) (1 − (xq)2 + xq2 (1 − (xq)2k+1)) − (1 − x)x2q (1 − (xq)2)
.
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The initial values of Vo(x, q) for k = 2 (avoiding {22, 2112, 211112}) are as follows:

Vo(x, q) = 1 + xq + (q + q2)x2 + (q + 2q2 + q3)x3 + (q + 2q2 + 3q3 + q4)x4 +

(q + 4q2 + 4q3 + 4q4 + q5)x5 + (q + 5q2 + 9q3 + 6q4 + 5q5 + q6)x6 +

(q + 6q2 + 13q3 + 16q4 + 9q5 + 6q6 + q7)x7 +

(q + 7q2 + 19q3 + 28q4 + 26q5 + 12q6 + 7q7 + q8)x8 + · · · .

Example 3.4. The set of prohibited substrings that have an odd number of 1’s, {212, 21112, . . . , 2i2k−12}
is represented by the set {a1, a2, . . .} = {2, 4, 6, . . . , 2k}. In this case, (3.1) is simplified as follows:

Ve(x, q) =
(1 − x)

(

1 − (xq)2 + x3q2
(

1 − (xq)2k
))

(1 − (1 + q)x + (1 − x)x2q) (1 − (xq)2 + x3q2 (1 − (xq)2k)) − (1 − x)x2q (1 − (xq)2)
.

The initial values of Ve(x, q) for k = 2 (avoiding {212, 21112}) are as follows:

Ve(x, q) = 1 + xq +
(

q + q2
)

x2 +
(

q + 2q2 + q3
)

x3 +
(

q + 3q2 + 3q3 + q4
)

x4 +
(

q + 4q2 + 5q3 + 4q4 + q5
)

x5 +
(

q + 5q2 + 10q3 + 8q4 + 5q5 + q6
)

x6 +
(

q + 6q2 + 15q3 + 18q4 + 11q5 + 6q6 + q7
)

x7 +
(

q + 7q2 + 21q3 + 33q4 + 30q5 + 15q6 + 7q7 + q8
)

x8 + · · · .

Clearly, other families of substrings can be created that allow for similar simplification of the generating
function.
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