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Abstract

Bicubic maps are in bijection with β(0, 1)-trees. We introduce two
new ways of decomposing β(0, 1)-trees. Using this we define an end-
ofunction on β(0, 1)-trees, and thus also on bicubic maps. We show
that this endofunction is in fact an involution. As a consequence we
are able to prove some surprising results regarding the joint equidis-
tribution of certain pairs of statistics on trees and maps. Finally, we
conjecture the number of fixed points of the involution.

1 Introduction

A planar map is an embedding of a connected multigraph in the sphere with
no edge-crossings, considered up to continuous deformations. A map has
vertices, edges, and faces (disjoint simply connected domains). The maps we
consider shall be rooted, meaning that a directed edge has been distinguished

∗The third author was supported by the Spanish and Catalan governments under
projects MTM2011–24097 and DGR2009–SGR1040.



as the root. The face that lies to the right of the root edge while following its
orientation is the root face, whereas the vertex from which the root stems is
the root vertex. When drawing a planar map on the plane, we usually follow
the convention to choose the outer (unbounded) face as the root face. Tutte
[10, Chapter 10] founded the enumerative theory of planar maps in a series
of papers in the 1960s (see [9] and the references in [3]).

A planar map in which each vertex is of degree 3 is cubic; it is bicubic
if, in addition, it is bipartite, that is, if its vertices can be colored using two
colors, say, black and white, so that adjacent vertices are assigned different
colors.

The smallest bicubic map has two vertices and three edges joining them.
It is well-known that the faces of a bicubic map can be colored using three
colors so that adjacent faces have distinct colors, say, colors 1, 2 and 3, in a
counterclockwise order around white vertices. We will assume that the root
vertex is black and the root face has color 3. There are exactly three different
bicubic maps with 6 edges and they are given in Figure 1. The number of
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Figure 1: All bicubic maps with 4 vertices.

bicubic maps with 2n vertices was given by Tutte [9]:

3 · 2n−1(2n)!

n!(n+ 2)!
.

Let M be a bicubic map. For i = 1, 2, 3, let Fi(M) be the set of i-colored
faces of M . Let R1 ∈ F1(M), R2 ∈ F2(M), and R3 ∈ F3(M) be the three
faces around the root vertex; in particular, R3 is the root face. We shall now
define two statistics on bicubic maps:

f1r3(M) is the number of faces in F1(M) that touch R3;

f3r2(M) is the number of faces in F3(M) that touch R2.

Consider the following transformation φ on bicubic maps. Recolor the
faces by the mapping {1 7→ 2, 2 7→ 3, 3 7→ 1}. Keep the colors of the
vertices. Keep, also, the root vertex, but let the new root edge be the first
edge in counterclockwise direction from the old root edge:

2



old root

ne
w

ro
ot

It is easy to see that φ is a bijection; indeed, φ3 is the identity transformation.
Moreover, φ establishes the following result.

Proposition 1. For any positive integer n, we have∑
M

xf1r3(M) =
∑
M

xf3r2(M),

where both sums are over all bicubic maps on n vertices. In other words, the
statistics f1r3 and f3r2 are equidistributed.

In this paper we show the following stronger result.

Theorem 2. For any positive integer n, we have∑
M

xf1r3(M)yf3r2(M) =
∑
M

xf3r2(M)yf1r3(M),

where both sums are over all bicubic maps on n vertices. In other words, the
two pairs of statistics (f1r3, f3r2) and (f3r2, f1r3) are jointly equidistributed.

To prove Theorem 2 we first translate the statement to a corresponding
statement on so called β(0, 1)-trees; there is a one-to-one correspondence [4]
between bicubic maps and such trees. We then provide two proofs of the
theorem. Our first proof of Theorem 2 is based on generating functions (see
the end of Section 4). Our combinatorial proof of the theorem (see Corollary
12 and the text following it) is based on defining an endofunction on the trees,
and proving that it is an involution that respects the statistics in question
(see Theorem 10). We also conjecture the number of fixed points of the
involution.

The results in this paper can be seen as an extension to β(0, 1)-trees and
bicubic maps of studies conducted in [1, 2, 5, 6] on β(1, 0)-trees and rooted
non-separable planar maps.

2 β(0, 1)-trees

Cori et al. [4] introduced description trees to give a framework for recursively
decomposing several families of planar maps. A β(0, 1)-tree is a particular
kind of description tree; it is defined as a rooted plane tree whose nodes are
labeled with nonnegative integers such that
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1. leaves have label 0;

2. the label of the root is one more than the sum of its children’s labels;

3. the label of any other node exceeds the sum of its children’s labels by
at most one.

The unique β(0, 1)-tree with exactly one node (and no edges) will be called
trivial; the root of the trivial tree has label 0. Any other β(0, 1)-tree will
be called nontrivial. In Figure 2 we have listed all β(0, 1)-trees on 4 nodes.
Let root(T ) denote the root label of T , and let sub(T ) denote the number of
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Figure 2: All β(0, 1)-trees on 4 nodes.

children of the root. We say that a β(0, 1)-tree T is reducible if sub(T ) > 1,
and irreducible otherwise. Any reducible tree can be written as a sum of
irreducible ones, where the sum U ⊕ V of two trees U and V is defined as
the tree obtained by identifying the roots of U and V into a new root with
label root(U) + root(V )− 1. See Figure 3 for an example.
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Figure 3: Decomposing a reducible β(0, 1)-tree.

Note also that any irreducible tree with at least one edge is of the form
λi(T ), where 0 ≤ i ≤ root(T ) and λi(T ) is obtained from T by joining a new
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root via an edge to the old root; the old root is given the label i, and the
new root is given the label i+ 1. For instance,

if T =
2

0
1

0

then λ0(T ) =
1

0

0
1

0

, λ1(T ) =
2

1

0
1

0

, and λ2(T ) =
3

2

0
1

0

.

Let us now introduce a few more statistics on β(0, 1)-trees. By the right-
most path we shall mean the path from the root to the rightmost leaf. We
define rzero(T ) as the number of zeros on the rightmost path. By definition,
rzero( ) = 0.

A node is called excessive if its label exceeds the sum of its children’s
labels; it is called moderate otherwise. In particular, a leaf is a moderate
node and the root is an excessive node. Assuming that T is nontrivial, we
let rmod(T ) be the number of moderate nodes on the rightmost path of T .
For the case of the trivial tree we define rmod( ) = 0.

A node on the rightmost path, possibly the root, will be called open if
its rightmost child (the child on the rightmost path), if any, is a non-leaf
moderate node. In particular, the rightmost leaf is always an open node. Let
open(T ) denote the number of open nodes in T ; we define open( ) = 0.

For the tree T in Figure 3 we see that root(T ) = 4, sub(T ) = 4, rzero(T ) =
1 and rmod(T ) = open(T ) = 2. That rmod(T ) and open(T ) agree is not a
coincidence as demonstrated in the proof of the following lemma.

Lemma 3. For any β(0, 1)-tree T we have rmod(T ) = open(T ).

Proof. Since the right child of a non-leaf open node is non-leaf and moderate,
and the root is not a moderate node, it follows that among non-leaves the
numbers of open and moderate nodes agree. As the rightmost leaf is both
open and moderate, the equality of both statistics follows.

3 Bicubic maps as β(0, 1)-trees

Following [3] we will now describe a bijection between bicubic maps and
β(0, 1)-trees. Let us first recall some definitions from the introduction. For
any bicubic map M and i = 1, 2, 3, let Fi(M) be the set of i-colored faces
of M . Let R1 ∈ F1(M), R2 ∈ F2(M), and R3 ∈ F3(M) be the three faces
around the root vertex; in particular, R3 is the root face. In addition, let
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M3 7−→ M ′ = M
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Figure 4: Constructing an irreducible map (Case 1).

S1 ∈ F1(M) be the 1-colored face that meets the vertex that the root edge
points at:

R1 R2 S1

R3

Let us say that a face touches another face k times if there are k different
edges each belonging to the boundaries of both faces. Define the following
two statistics:

b(M) is the number of black vertices incident to both R1 and R2;

s1r3(M) is the number of times S1 touches R3.

For example, letM1, M2 andM3 be the three maps in Figure 1 (in that order).
Then rzero(M1) = 2 and rzero(M2) = rzero(M3) = 1. Also, s1r3(M1) = 1,
s1r3(M2) = 2 and s1r3(M3) = 1.

We say that M is irreducible if s1r3(M) = 1, or, in other words, if S1

touches R3 exactly once; we say that M is reducible otherwise. We shall
introduce operations on bicubic maps that correspond to λi and ⊕ of β(0, 1)-
trees. This will induce the desired bijection ψ between bicubic maps and
β(0, 1)-trees.

To construct an irreducible bicubic map based on M , and having two
more vertices than M , we proceed in one of two ways. The first way (1)
corresponds to λi(T ) when i = root(T ); the second way (2) corresponds to
λi(T ) when 0 ≤ i < root(T ).

(1) We create a new 1-colored face touching the root face exactly once, so
f1r3(M ′) = f1r3(M)+1, by removing the root edge from M and adding
two new vertices and four new edges that we connect to the map as in
Figure 4.

(2) Assuming that f1r3(M) = k, that is, M has k 1-colored faces touching
the root face, we can create an irreducible mapM ′ such that f1r3(M ′) =
i, where 1 ≤ i ≤ k. To this end, we remove the root edge from M .
Starting at the root node and counting in clockwise direction, we also
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Figure 5: Constructing an irreducible map (Case 2).
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Figure 6: Constructing a reducible map.

remove the first edge of the i-th 1-colored face that touches the root
face. In Figure 5 we schematically illustrate the case i = 3. Next we
add two more vertices and respective edges, and assign a new root as
shown in the figure.

Any irreducible bicubic map on n+ 2 vertices can be constructed from some
bicubic map on n vertices by applying operation (1) or (2) above.

We shall now describe how to create a reducible map based on irreducible
maps M1, M2, . . . , Mk. An illustration for k = 3 can be found in Figure 6.
This corresponds to the ⊕-operation on β(0, 1)-trees.

(3) We begin by lining up the maps M1, M2, . . . , Mk. Next, in each map
Mi, we remove the first edge (in counter-clockwise direction) from the
root edge on the root face. Then we connect the maps as shown in
the figure, and define the root edge of the obtained map to be the root
edge of Mk.

Any reducible bicubic map on n vertices can be constructed by applying
the above operation (3) to some ordered list of irreducible bicubic maps whose
total number of vertices is n.

By defining operations on bicubic maps corresponding to the operations
λi and ⊕ we have now completed the definition of the bijection ψ between
bicubic maps and β(0, 1)-trees. Two examples of applying ψ can be found in
the appendix.
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Proposition 4. Let M be a bicubic map, and let one(M) = |F1(M)| be the
number of 1-colored faces in M . Let T be a β(0, 1)-tree, and let exc(T ) denote
the number of excessive nodes in T . Let ψ be the map from bicubic maps to
β(0, 1)-trees described above. Finally, assume that T = ψ(M). Then

exc(T ) = one(M);

root(T ) = f1r3(M);

rmod(T ) = f3r2(M);

rzero(T ) = b(M);

sub(T ) = s1r3(M).

Proof. The proofs of these five equalities are similar, and we will only detail
the proof of rzero(T ) = b(M); the proofs of the other equalities are simpler.
Clearly,

rzero
(

1

0

)
= b

(
3 1

2

)
= 1.

Let M ′ be a bicubic map with at least 4 vertices. Then M ′ can be constructed
from one (M) or more (M1, . . . ,Mk) smaller bicubic maps as per the three
rules above.

(1) Assume that T and T ′ are the trees corresponding to M and M ′, re-
spectively. Then T ′ = λi(T ) with i = root(T ). The labels on the
rightmost path of T are preserved in T ′, and a new nonzero (root)
node is added. Thus rzero(T ′) = rzero(T ). We need to show that
rzero(M ′) = rzero(M), but this easy to see from the picture above: the
only black vertex added is not incident to R1, and the status (incident
or not incident to R1 and R2) of each of the other black vertices incident
to both R1 and R2 is preserved.

(2) Here T ′ = λi(T ) with 0 ≤ i < root(T ), and we distinguish two sub-
cases.

(a) Assume that i = 0. Comparing T to T ′ we see that one more
zero appears on the rightmost path of T ′, namely the new root.
Thus rzero(T ′) = rzero(T ) + 1. On the map M ′ we have just one
1-colored face touching R3 and this face must be R1. Comparing
M to M ′ we see that the black vertex added to M in order to
form M ′ is incident to both R1 and R2. The status of each of the
other black vertices is preserved. Thus b(M ′) = b(M) + 1.

(b) Assume that i > 0. Clearly, rzero(T ′) = rzero(T ). The black
vertex added to M in order to form M ′ is not incident with R1,
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µi(S, T ) =

T

S

+1
+1
+1
+1

+1

the ith open node

Figure 7: A schematic picture of µi.

and the status of each of the other black vertices is preserved.
Thus b(M ′) = b(M).

(3) Assume that T1, . . . , Tk and T ′ are the trees corresponding toM1, . . . ,Mk

and M ′, respectively. Clearly, rzero(T ′) = rzero(Tk). Consider M ′: no
black vertex in M1, . . . ,Mk−1 can contribute to the b-statistic because
such a vertex is neither incident to R1 nor incident to R2. Since the
status of each of the black vertices in Mk is preserved it follows that
b(M ′) = b(Mk).

The result now follows by induction.

4 New ways to decompose β(0, 1)-trees

For any β(0, 1)-trees T1, T2, . . . , Tk define

ρ(T1, T2, . . . , Tk) = λ0(T1)⊕ λ0(T2)⊕ · · · ⊕ λ0(Tk).

Let S and T be β(0, 1)-trees. Assume that root(S) = 1 and that T is non-
trivial. Let i be an integer such that 1 ≤ i ≤ open(T ), and let x denote
the ith open node on the rightmost path of T . Also, let y be x if x is a leaf
and let y be the rightmost child of x otherwise. We define µi(S, T ) as the
β(0, 1)-tree obtained by identifying x with the root of S, keeping the label
of x, and then adding one to each node on the rightmost path of T between
the root and y. A schematic illustration can be found in Figure 7, and a
specific example can be found in Figure 8. For convenience we also define
that µ1(S, ) = S.

Note that any β(0, 1)-tree U with root(U) = 1 is of the form ρ(T1, T2, . . . , Tk)
for some β(0, 1)-trees T1, T2, . . . , Tk. On the other hand, any β(0, 1)-tree U
with root(U) > 1 can be written U = µi(S, T ), where root(S) = 1 and T is
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Figure 8: An example using µi.
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Figure 9: An example using σ.

nontrivial. Indeed, the node we call x above is the parent node of the first
node labelled 0 on the rightmost path of U , and knowing x we trivially get
S and T .

Thus we can completely decompose any β(0, 1)-tree in terms of ρ and µi.
As an example, the tree from Figure 3 can be written

µ2(ρ[ ], µ1(ρ[µ2(ρ[ ], µ1(ρ[ρ[ ]], ρ[ ]))], µ1(ρ[ ], ρ[ , , ρ[ ]]))).

We shall now define two additional operations σ and νi on β(0, 1)-trees
that in a sense are dual to ρ and µi. We start with σ (see Figure 9 for an
example):

Definition 1. For β(0, 1)-trees T1, . . . , Tk define

σ(T1, . . . , Tk) = µ1(ρ(Tk−1, . . . , T1, ), Tk).

Let S and T be β(0, 1)-trees. Assume that open(S) = 1 and that T is
nontrivial. Let i be an integer such that 1 ≤ i ≤ root(T ) and let x denote the
rightmost leaf of S. Define νi(S, T ) as the β(0, 1)-tree obtained by identifying
x with the root of T , keeping the (zero) label of x, and then adding i− 1 to
each node on the rightmost path of S between the root and x. See Figure 10
for an example. For convenience we shall also define that ν1(S, ) = S.

Note that any β(0, 1)-tree U with open(U) = 1 is of the form σ(T1, T2, . . . , Tk)
for some β(0, 1)-trees T1, T2, . . . , Tk, and any β(0, 1)-tree U with open(U) > 1
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Figure 10: An example using νi.

can be written U = νi(S, T ), where open(S) = 1 and T is nontrivial. Again,
using the tree from Figure 3 as an example we have

ν2(σ[σ[ν1(σ[ , , ], σ[ ])]], σ[ν2(σ[σ[ ]], σ[σ[ ]])]).

The behaviour of the statistics root and open under ρ, µi, σ and νi follows
easily from the definitions.

Lemma 5. If T1, . . . , Tk, S and T are β(0, 1)-trees, then

open(ρ(T1, . . . , Tk)) = 1 + open(Tk), (1)

root(µi(S, T )) = 1 + root(T ), (2)

open(µi(S, T )) = i− 1 + open(S), (3)

root(σ(T1, . . . , Tk)) = 1 + root(Tk), (4)

root(νi(S, T )) = i− 1 + root(S), (5)

open(νi(S, T )) = 1 + open(T ), (6)

where in (2) and (3) we assume that root(S) = 1, and in (5) and (6) we
assume that open(S) = 1.

We can now give a generating function proof of Theorem 2.

Proof of Theorem 2. Let F (x, y) := F (t, x, y) be the generating function for
β(0, 1)-trees where t marks the number of edges, x marks the root statistic,
and y marks the rmod statistic. We claim that

F (x, y) = 1 + xS +
x

y − 1
S
(
F (x, y)− F (x, 1)

)
,

where S := tyF (1, y)/(1 − tF (1, 1)). Let us prove first that xS is the gen-
erating function for β(0, 1)-trees with root label equal to 1. Indeed, such a
tree is of the form ρ(T1, . . . , Tk) for some k ≥ 1. By Lemma 5, the behaviour
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of the rmod statistic under ρ is known (recall rmod agrees with open), and
it follows that

[x]F (x, y) =
∑
k≥1

tyF (1, y) (tF (1, 1))k−1 = S,

as claimed. As for the last term, it corresponds to β(0, 1)-trees with root
label greater than 1. They are of the form µi(S0, T ), for some β(0, 1)-trees
S0, T , and some integer i with 1 ≤ i ≤ open(T ) and open(S0) = 1. The
behaviour of the root and rmod statistics gives

F (x, y)− (1 + [x]F (x, y)) =
∑
T

t#edges(T )

open(T )∑
i=1

xroot(T )+1yi−1S

=
∑
T

t#edges(T )xroot(T )+1S
yopen(T ) − 1

y − 1
,

which easily sums to the claimed expression.
Let now G(x, y) := G(t, x, y) be the generating function for β(0, 1)-trees

where t marks the number of edges, x marks the rmod statistic, and y marks
the root statistic. This time using the (σ, νi) decomposition we have

G(x, y) = 1 + xT +
x

y − 1
T
(
G(x, y)−G(x, 1)

)
,

where T := tyG(1, y)/(1− tG(1, 1)). The proof is analogous to the one in the
paragraph above; in this case the second and third summands correspond to
β(0, 1)-trees with the rmod statistic equal to or greater than 1, respectively.

Since F (x, y) and G(x, y) satisfy the same equation with the same initial
conditions F (1, 1) = G(1, 1) being the generating function for β(0, 1)-trees,
we must have F (x, y) = G(x, y). On the other hand, by definition F (x, y) =
G(y, x). Thus, F (x, y) = F (y, x) which proves Theorem 2 via the respective
statistics on bicubic maps and β(0, 1)-trees.

5 Bicolored trees

If we look at the parse tree of an expression of a β(0, 1)-tree in terms of σ and
νi (or ρ and λi) we arrive at a new tree. For instance, writing the tree from
Figure 3 in terms of σ and νi, as above, we arrive at the tree in Figure 11,
where an internal black node corresponds to σ and a white node labeled i
corresponds to νi.

Let T denote the set of trees that can be obtained from β(0, 1)-trees in
this manner. Then it is not hard to see that T has the following recursive
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Figure 11: A bicolored tree.

characterization. A member of T is a rooted plane tree on white and black
nodes such that either the root is black and is connected to a possibly empty
list of trees in T , or the root is white, has a label i, is connected to exactly
two trees T1, T2 ∈ T , and 1 ≤ i ≤ κ(T2), where κ is defined by recursion: κ
of a tree consisting of a single leaf is 0; κ of a tree with black root connected
to T1, . . . ,Tk is 1+κ(Tk); and κ of a tree with white root labeled i, connected
to T1 and T2, is i− 1 + κ(T1). If, in addition, we define the weight of a tree
in T to be the number of black nodes minus the number of white nodes,
then we have established that there is a one-to-one correspondence between
β(0, 1)-trees on n nodes and trees in T of weight n.

In the next section we shall define an endofunction on β(0, 1)-trees. One
way to understand this endofunction is that we map a β(0, 1)-tree T to a
β(0, 1)-tree T ′ if the (σ, νi) parse tree of T is the same as the (ρ, µi) parse
tree of T ′. We will prove that this endofunction is an involution.

6 An involution on β(0, 1)-trees

The following three lemmas are immediate from the definitions of ρ, µi, σ
and νi; they will be used in the proof of Lemma 9.

Lemma 6. For all β(0, 1)-trees T1, . . . , Tk we have

ρ(T1, . . . , Tk) = ν1(σ(Tk−1, . . . , T1, ), Tk).

Note the similarity between Lemma 6 and Definition 1.

Lemma 7. Let R, S and T be β(0, 1)-trees. If open(R) = root(S) = 1, and
T is nontrivial, then, for integers i ≥ 1 and j ≥ 1, we have

νi+1(R, µj(S, T )) = µj+1(S, νi(R, T )).
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Figure 12: Applying the involution g.

Lemma 8. Let R, S and T be β(0, 1)-trees. If root(R) = open(R) = 1, then

µ1(ν1(R, S), T ) = ν1(µ1(R, T ), S).

Definition 2. Let T1, . . . , Tk, S and T be β(0, 1)-trees, and assume root(S) =
1. Define the map g on β(0, 1)-trees of size n by

1. g( ) = ;

2. g(ρ(T1, . . . , Tk)) = σ(g(T1), . . . , g(Tk));

3. g(µi(S, T )) = νi(g(S), g(T )).

Note that there is a subtlety in this definition. In case (3), we apply νi
to g(S), so we need to make sure that open(g(S)) = 1. But we are fine
because, as root(S) = 1 then S is ρ(T1, . . . , Tk), so to compute g(S) we
would use case (2) and the image under σ of any sequence of trees has just
one open node. Figure 12 gives an example of applying g. For a larger
example see the appendix, where two β(0, 1)-trees (and associated bicubic
maps) corresponding to each other under g are given.

Lemma 9. If T1, . . . , Tk, S and T are β(0, 1)-trees, and open(S) = 1, then

1. g(σ(T1, . . . , Tk)) = ρ(g(T1), . . . , g(Tk));

2. g(νi(S, T )) = µi(g(S), g(T )).

Proof. We have

g(σ(T1, . . . , Tk)) = g(µ1(ρ(Tk−1, . . . , T1, ), Tk)) by Definition 1

= ν1(g(ρ(Tk−1, . . . , T1, )), g(Tk)) by Definition 2

= ν1(σ(g(Tk−1), . . . , g(T1), )), g(Tk)) by Definition 2

= ρ(g(T1), . . . , g(Tk)) by Lemma 6
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which proves (1). To prove (2) we first note that root(νi(S, T )) = 1 if, and
only if, root(S) = 1 and i = 1. Accordingly, the proof of (2) will be split
into three cases:

(a) i = 1 and root(S) = 1;

(b) i = 1 and root(S) > 1;

(c) i > 1.

Case (a): By assumption, open(S) = 1; if also root(S) = 1, then S must
be of the form S = σ(S1, . . . , S`−1, ) for some β(0, 1)-trees S1, . . . , S`−1, and
thus

ν1(S, T ) = ν1(σ(S1, . . . , S`−1, ), T )

= ρ(S`−1, . . . , S1, T ). by Lemma 6

Therefore,

g(ν1(S, T )) = σ(g(S`−1), . . . , g(S1), g(T )) by Definition 2

= µ1(ρ(g(S1), . . . , g(S`−1), ), g(T )) by Definition 1

= µ1(g(σ(S1, . . . , S`−1, )), g(T )) by (1)

= µ1(g(S), g(T )).

Case (b): Since root(S) > 1 there are β(0, 1)-trees U and V , and an
integer j, such that root(U) = 1, V is nontrivial, and S = µj(U, V ). By
assumption open(S) = 1. Moreover, item (3) from Lemma 5 implies that
open(U) = 1 and j = 1; thus we can use Lemma 8. The proof now proceeds
by structural induction (the base case is trivial):

g(ν1(S, T )) = g(ν1(µ1(U, V ), T ))

= g(µ1(ν1(U, T ), V )) by Lemma 8

= ν1(g(ν1(U, T )), g(V )) by Definition 2

= ν1(µ1(g(U), g(T )), g(V )) by induction

Observe now that root(U) = open(U) = 1 implies that U can be writ-
ten as ρ(T1, . . . , Tk−1, ), and hence g(U) = σ(g(T1), . . . , g(Tk−1), ). Then
open(g(U)) = root(g(U)) = 1 and we can apply Lemma 8 to the last expres-
sion.

g(ν1(S, T )) = µ1(ν1(g(U), g(V )), g(T )) by Lemma 8

= µ1(g(µ1(U, V )), g(T )) by Definition 2

= µ1(g(S), g(T )).
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Case (c): If i > 1, then root(T ) > 1 and we can write T = µj(U, V ) for
some β(0, 1)-trees U and V with root(U) = 1 and V nontrivial. We can now
proceed by either using structural induction or induction on i, the base case
i = 1 being provided by cases (a) and (b) above:

g(νi(S, T )) = g(νi(S, µj(U, V )))

= g(µj+1(U, νi−1(S, V ))) by Lemma 7

= νj+1(g(U), g(νi−1(S, V ))) by Definition 2

= νj+1(g(U), µi−1(g(S), g(V ))) by induction

= µi(g(S), νj(g(U), g(V ))) by Lemma 7

= µi(g(S), g(µj(U, V ))) by Definition 2

= µi(g(S), g(T ))

which concludes the proof. Notice that in the second application of Lemma 7
we need again the fact that if root(U) = 1 then open(g(U)) = 1. Also, it is
necessary that root(g(S)) = 1; this follows from part (1) because open(S) = 1
allows us to write S = σ(T1, . . . , Tk).

Theorem 10. The map g is an involution.

Proof. We use induction on size. The base case g2( ) = is trivial. For the
induction step we have

g2(ρ(T1, . . . , Tk)) = g(σ(g(T1), . . . , g(Tk))) by Definition 2

= ρ(g2(T1), . . . , g
2(Tk)) by Lemma 9

= ρ(T1, . . . , Tk) by induction

and

g2(µi(S, T )) = g(νi(g(S), g(T ))) by Definition 2

= µi(g
2(S), g2(T )) by Lemma 9

= µi(S, T ) by induction

which concludes the proof.

Theorem 11. On β(0, 1)-trees with n nodes, the pair of statistics (root, open)
has the same joint distribution as the pair (open, root). Equivalently,∑

T

xroot(T )yopen(T ) =
∑
T

xopen(T )yroot(T ),

where the sum is over all β(0, 1)-trees with n nodes.
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Proof. Using induction we shall now prove that root(g(U)) = open(U) for
each β(0, 1)-tree U . The base case is plain. For the induction step, assume
that T1, . . . , Tk, S and T are β(0, 1)-trees, root(S) = 1, and that T is
nontrivial. We have

root(g(ρ(T1, . . . , Tk))) = root(σ(g(T1), . . . , g(Tk))) by Definition 2

= 1 + root(g(Tk)) by (4) from Lemma 5

= 1 + open(Tk) by induction

= open(ρ(T1, . . . , Tk)). by (1) from Lemma 5

Also,

root(g(µi(S, T ))) = root(νi(g(S), g(T ))) by Definition 2

= i− 1 + root(g(S)) by (5) from Lemma 5

= i− 1 + open(S) by induction

= open(µi(S, T )). by (3) from Lemma 5

Since g is an involution it follows that open(g(T )) = root(T ) as well, which
concludes the proof.

Corollary 12. On β(0, 1)-trees with n nodes, the pair of statistics (root, rmod)
has the same joint distribution as the pair (rmod, root). Equivalently,∑

T

xroot(T )yrmod(T ) =
∑
T

xrmod(T )yroot(T ),

where both sums are over all β(0, 1)-trees with n nodes.

Proof. This is a direct consequence of Lemma 3 and Theorem 11.

Our second proof of Theorem 2 now follows from Corollary 12 through
the correspondence between bicubic maps and β(0, 1)-trees.

Definition 3. Let Cn =
(
2n
n

)
/(n+1) denote the nth Catalan number. Define

a(n) = 2n−1Cn.

This is sequence A003645 in OEIS [8].

By computing the number of trees fixed by g, for n ≤ 12, we arrive at
the following conjecture.

Conjecture 13. For n > 1, the number of β(0, 1)-trees on n nodes fixed un-
der g is a(bn/2c). This sequence starts 1, 1, 4, 4, 20, 20, 112, 112, 672, 672, 4224, 4224, . . .
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The number of fixed points under the involution h on β(1, 0)-trees (intro-
duced in [1, 2]) was found in [5]. These numbers also count self-dual rooted
non-separable planar maps [6]. However, we were not able to exploit the ideas
to count fixed points under h in order to prove Conjecture 13, because the
involution g is more complex, and in general, β(0, 1)-trees are more complex
than β(1, 0)-trees.

Proposition 14 (Tutte, Koganov, Liskovets and Walsh). The number of
bicubic maps on 2n vertices with one distinguished 1-colored face is a(n).

Proof. Koganov, Liskovets and Walsh [7, Proposition 3.1] showed that the
number of rooted eulerian planar maps with n edges and a distinguished
vertex is given by the formula a(n). Tutte’s well-known “trinity mapping”
sends eulerian planar maps with n edges to bicubic maps with 2n vertices.
It is easy to see that under the same mapping vertices are sent to 1-colored
faces.

Proposition 15. The number of β(0, 1)-trees on n + 1 nodes with one dis-
tinguished excessive node is a(n).

Proof. This is a direct consequence of Propositions 4 and 14.

In light of this last proposition we can reformulate Conjecture 13 as fol-
lows.

Conjecture 16. There is a bijection between β(0, 1)-trees on n nodes fixed
under g and β(0, 1)-trees on bn/2c+1 nodes with one distinguished excessive
node.

We close this paper by making an additional conjecture.

Conjecture 17. The two pairs of statistics (root, rzero) and (rmod, sub) are
jointly equidistributed on β(0, 1)-trees.

We have verified Conjecture 17 for β(0, 1)-trees on at most 11 nodes.
This conjecture will imply, via the bijection described in Section 3, that the
two pairs of statistics (f1r3, b) and (f3r2, s1r3) are jointly equidistributed on
bicubic maps.
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8 Appendix

In Figures 13 and 14 we give examples of the mapping ψ from bicubic maps
to β(0, 1)-trees. The image of each large map at the top is the tree below
it, and for each smaller map, its image is the subtree consisting of the edge
next to it and all the edges below, with the root label adjusted if necessary.

Also, the two trees are the image of each other under the involution g.
For the tree (T ) and map (M) in Figure 13 we have exc(T ) = one(M) = 6,
root(T ) = f1r3(M) = 4, rmod(T ) = f3r2(M) = 2, rzero(T ) = b(M) = 1,
and sub(T ) = s1r3(M) = 4. For the tree (T ) and map (M) in Figure 14 we
have exc(T ) = one(M) = 6, root(T ) = f1r3(M) = 4, rmod(T ) = f3r2(M) =
2, rzero(T ) = b(M) = 3, and sub(T ) = s1r3(M) = 1.

Figure 13: An example of applying ψ.
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Figure 14: An example of applying ψ.
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