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1. Introduction

Let I(G) denote the number of independent sets of a graph G. This number can be
determined for some special classes of graphs (see [8] for a survey). For instance, I(G) was
studied for grid graphs (see [1]), multipartite complete graphs, path-schemes (see [7]), and
cyclic-schemes. Some of these numbers are given by certain combinations of Fibonacci
numbers, some others by Lucas numbers.

In this paper, we study four classes of graphs. To define these classes, we recall that
a line graph L(G) of a graph G is obtained by associating a vertex with each edge G
and connecting two vertices with an edge if and only if the corresponding edges of G are
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adjacent. Also, recall that a cycle graph Cℓ is a graph on ℓ nodes containing a single cycle
through all nodes.

We now give the definitions of our classes.

Class 1: Let G1
ℓ = Cℓ, the ℓ-cycle graph. We obtain G2

ℓ by superimposing the
line graph L(G1

ℓ) onto the graph G1
ℓ , that is splitting each edge of G1

ℓ with the
corresponding vertex of L(G1

ℓ) and then adding the edges of L(G1
ℓ). More generally,

Gn
ℓ is obtained by superimposing Ln−1(G1

ℓ) onto Gn−1
ℓ . For example, in Figure 1,

we have the graphs G4
3 and G3

4, respectively, if one ignores the dashed edges.
Clearly, all but n of the ℓn nodes of Gn

ℓ have degree 4, and we say that Gn
ℓ is an

almost 4-regular graph.

Figure 1. Examples of (almost) 4-regular graphs under consideration.

Class 2: The graph Rn
ℓ is obtained from Gn

ℓ by duplicating the edges of G1
ℓ . For

example, in Figure 1, the extra edges are the dashed edges, and by adding them
we get the graphs R4

3 and R3
4 respectively. So, to get Rn

ℓ we add ℓ additional edges
to Gn

ℓ , and it is easy to see that Rn
ℓ is a 4-regular graph.

Class 3: Let K1
ℓ = Kℓ, a complete graph on ℓ nodes. Put the ℓ nodes of K1

ℓ on a
circle and draw the remaining (ℓ − 1)! − ℓ edges. Call the first ℓ edges external
and the remaining edges, internal. Then construction of Kn

ℓ is similar to that of
Gn

ℓ , except that:
(1) The basis of the construction is now Kℓ, rather than Cℓ.
(2) On each iteration i, the graph superimposed onto Ri−1

ℓ is not Li(Kℓ) but
rather the complete graph on the nodes of Li(Cℓ), the line graph of Cℓ formed
by the external edges of K1

ℓ .
In Figure 2, we show how to construct K3

4 from K2
4 (the dashed edges should

be ignored). In that figure, the external edges of respective complete graphs
are in bold. We also remark that the internal edges do not intersect each other.
Moreover, Figure 2 suggests a convenient way of representing K3

4 , where each node
of the graph lies only on internal edges incident with that node. We achieve that
by putting the nodes of the line graphs under consideration off the centers of the
corresponding edges. Indeed, if we were using the centers of the external edges,
K3

4 would look as in Figure 3, which is misleading since, for example, the node a
does not lie on the edge bc.



COUNTING INDEPENDENT SETS IN SOME CLASSES OF (ALMOST) REGULAR GRAPHS 3

The graph Kn
ℓ is almost (ℓ+1)-regular, since all but ℓ of its ℓn nodes have degree

ℓ + 1. Moreover, it follows from our definitions that Kn
3 = Gn

3 .

→ →

Figure 2. A way of constructing K3
4 and P 3

4 .

Class 4: The graph P n
ℓ is obtained from the graph Kn

ℓ by duplicating the external
edges in the graph K1

ℓ . For example, in Figure 2, the extra edges are the dashed
edges, and by adding them we construct the graph P 3

4 from K3
4 . So to get P n

ℓ we
add ℓ extra edges to Kn

ℓ , and it is easy to see that P n
ℓ is an (ℓ + 1)-regular graph.

a

b

c

Figure 3. A bad presentation of K3
4 .

Let gℓ(n), rℓ(n), kℓ(n) and pℓ(n) denote the numbers of independent sets in the graphs
Gn

ℓ , Rn
ℓ , Kn

ℓ and P n
ℓ respectively. In our paper we study these numbers. In Section 3, we

give an algorithm for calculating all these numbers. For the numbers pℓ(n), we provide
an explicit generating function (see Theorem 3.4). However, in order to illustrate our
approach to the problem, in Section 2 we consider g3(n) and find an explicit formula for
it.

Our choice of the graphs to study was motivated by the so called de Bruijn graphs,
which are defined as follows. A de Bruijn graph is a directed graph ~Gn = ~Gn(V, E), where
the set of vertices V is the set of all the words of length n in a finite alphabet A, and
there is an arc from vi = (vi1, . . . , vin) to vj = (vj1, . . . , vjn) if

vi2 = vj1, vi3 = vj2, . . . , vin = vj(n−1),

that is when the words vi and vj overlap by (n − 1) letters.
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The de Bruijn graphs were first introduced (for the alphabet A = {0, 1}) by de Bruijn
in 1944 for enumerating the number of code cycles. However, these graphs proved to
be a useful tool for various problems related to the subject of combinatorics on words
(e.g. see [2, 3, 5]). It is known that the graph ~Gn can be defined recursively as ~Gn =

L( ~Gn−1). The authors were interested in studying other graphs defined recursively using
the operation of taking line graphs (with natural bases), which could give interesting
applications. Also, with our choice of graphs (Gn

ℓ and Kn
ℓ ), it is natural to complete

them to regular graphs (Rn
ℓ and P n

ℓ ) and study these graphs. It turns out that there are
combinatorial interpretations (relations to other combinatorial objects) for the number
of independent sets for some of our graphs, and we mention these relations in Sections 2
and 3. Moreover, we construct a direct bijection describing such a relation for P n

4 (see
Proposition 3.5 and the discussion that follows).

2. The numbers g3(n).

Let us first find an explicit formula for g3(n). It is clear that for any independent set
of the graph Gn

3 , we can label a node of Gn
3 1 if this node is in the independent set, and

label it 0 otherwise. Thus, our purpose is to count the number of triangles having either
0 or 1 in each node and such that no two adjacent nodes are both assigned 1s. We call
such triangles legal.

In order to get a recursion for g3(n), we introduce three auxiliary parameters an, bn, and
cn, which are the numbers of legal triangles that, up to rotation, have specific numbers
in the nodes of the biggest triangle (see Figure 4). Since we consider only legal graphs,
the 1s in the nodes of the biggest triangle induces 0s in certain nodes of a smaller triangle
(this 0s are shown in Figure 4).

1
an

0 ? 0

00

0
bn

1 0 1

00

1
cn

1 0 1

00

Figure 4. Auxiliary parameters an, bn, and cn.

Considering all the possibilities for the numbers of the biggest triangle, we have that

g3(n) = g3(n − 1) + 3an + 3bn + cn,

where g3(n−1) corresponds to all 0s, and we have the multiple 3 twice because of possible
rotations. Similarly, we get that an = g3(n − 2) + an−1, and bn = cn = g3(n − 2). This
leads to the recursion

(1) g3(n) = 2g3(n − 1) + 6g3(n − 2) − 4g3(n − 3),
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which, under the same initial conditions, is equivalent to the recursion

(2) g3(n) = 4g3(n − 1) − 2g3(n − 2).

We define g3(0) = 1, since we associate the graph G0
3 with the empty graph, in which case

there is only one independent set, the empty set. Thus,

g3(n) =
1

2
√

2

(

(2 +
√

2)n+1 − (2 −
√

2)n+1
)

,

and the generating function for the numbers g3(n) is 1/(1− 4x + 2x2). The initial values
for the numbers g3(n) are:

1, 4, 14, 48, 164, 560, 1912, 6528, 22288, 76096, . . . .

Preceded by 0, the sequence {g3(n)} is the binomial transform of the Pell numbers

Pn =
(1 +

√
2)n − (1 −

√
2)n

2
√

2

(see [11, A007070]). These numbers can also be interpreted as maximum bets in a poker
game (also see [11, A007070]), where the first player bets 1 dollar into a pot and the ith
player bets the amount of the (i − 1)st player’s bet plus the resulting amount of money
in the pot. Then the number of dollars dn in the pot after n bets is given by

dn = 2(dn−1 + (dn−1 − dn−2)) = 4dn−1 − 2dn−2, d0 = 1, d1 = 4,

which yields dn = g3(n).

We remark that it would be interesting to obtain recurrence (2) directly from the graph
Gn

3 , rather than via recurrence (1). Unfortunately, we were unable to do this.

3. An algorithm for calculating gℓ(n), rℓ(n), kℓ(n) and pℓ(n)

In this section we present an algorithm for calculating gℓ(n), rℓ(n), kℓ(n) and pℓ(n) by
using the transfer matrix method (see [10, Theorem 4.7.2]).

3.1. An algorithm for calculating gℓ(n). In this section, we use the transfer matrix
method to obtain an information about the sequence of gℓ(n).

Similarly to Section 2, for any independent set of the graph Gn
ℓ , consider a labeling

of Gn
ℓ , where the nodes of the independent set are labeled 1 and the remaining nodes

are labeled 0. For a given graph Gn
ℓ , we define the n-th level of Gn

ℓ to be Gn
ℓ \ Gn−1

ℓ ,
which is isomorphic to G1

ℓ . Thus, we may think of an independent set of the graph Gn
ℓ

as assembled from elements chosen on each level, making sure that when we add a new
level, we create no conflict with the previous level.

The collection Lℓ of possible level labelings is the set of all (0, 1) ℓ-vectors v = (v1, . . . , vℓ).
It will be convenient to define vℓ+1 := v1. Then v = (v1, . . . , vℓ) and w = (w1, . . . , wℓ) in
Lℓ are a possible consecutive pair of levels in an independent set of Gn

ℓ (with w following
v) if and only if

(3) vi = vi+1 = 0 or wi = 0, where i = 1, 2, . . . , ℓ.
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Thus, to obtain any independent set in the graph Gn
ℓ , we begin with a vector of Lℓ, then

keep adjoining each next vector w ∈ Lℓ so that it satisfies (3) together with the previously
chosen vector v ∈ Lℓ, until n vectors have been selected.

We define a matrix G = Gℓ, the transfer matrix of the problem, as follows. G is a
2ℓ × 2ℓ matrix of 0s and 1s whose rows and columns are indexed by vectors of Lℓ. The
entry of G in position (v,w) is 1 if the ordered pair of vectors (v,w) satisfies (3), and is
0 otherwise. G depends only on ℓ, not on n. Hence, the number of independent sets of
Gn

ℓ , gℓ(n), is the first entry of the vector Gn · (u1, . . . , u2ℓ)T , where ui = 1 if the ith vector
v in the collection Lℓ has no two consecutive 1s, even after wrapping, (i.e. vi + vi+1 ≤ 1
for all i = 1, 2, . . . , ℓ), and ui = 0 otherwise. Hence,

gℓ(n) = (1, 0, . . . , 0) · Gn · (u1, . . . , u2ℓ)T .

For instance, when ℓ = 3, the possible level vectors are

(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1),

except for the last level, where we only have

(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0).

If we index the rows and the columns of the transfer matrix G in this order, then we get

G =























1 1 1 1 1 1 1 1
1 0 0 0 1 0 0 0
1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0























.

The vector (u1, . . . , u2ℓ)T in this case is (1, 1, 1, 0, 1, 0, 0, 0). If we now find the first
entry of the vector (I − xG)−1 · (1, 1, 1, 0, 1, 0, 0, 0)T , where I is the unit matrix, then we
get that the generating function for g3(n) is given by 1/(1 − 4x + 2x2). We obtain the
results for larger ℓ similarly.

Theorem 3.1. The generating functions for the numbers g4(n), g5(n) and g6(n) are given,
respectively, by

1 + 4x − x2 − 2x3

1 − 3x − 14x2 + 15x3 + 7x4
,

(1 + x)(1 + 5x − 8x2)

1 − 5x − 30x2 + 69x3 + 31x4 − 22x5
,

1 + 10x − 12x2 − 50x3 + 10x4 + 20x5 − 12x6

1 − 8x − 66x2 + 280x3 + 178x4 − 532x5 − 84x6 + 108x7
.

We remark that the algorithm for finding the generating function for gℓ(n) has been
implemented in Maple, and yielded explicit results for ℓ ≤ 6.
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3.2. An algorithm for calculating rℓ(n). In this section we use the transfer matrix
method to obtain an information about the numbers rℓ(n). This case is similar to that of
gℓ(n) with some small differences.

We partition Rn
ℓ into levels just as in the case of Gn

ℓ , so the n-th level of Rn
ℓ is Rn

ℓ \Rn−1
ℓ .

The collection of possible levels Lℓ is the set of all ℓ-vectors v of 0s and 1s such that
there no consecutive 1s in v, that is, vi + vi+1 6= 2 (where we define vℓ+1 := v1). Clearly,
the set Lℓ contains exactly Lℓ vectors where Lℓ is the ℓth Lucas number. For instance,
L3 contains the vectors (0, 0, 0), (0, 0, 1), (0, 1, 0), and (1, 0, 0).

The condition that vectors v and w in Lℓ are a possible consecutive pair of levels in an
independent set of Rn

ℓ is given by (3) just as for Gn
ℓ . To obtain any independent set in

the graph Rn
ℓ , we begin with a vector of Lℓ, then keep adjoining each next vector w ∈ Lℓ

so that it satisfies (3) together with the previously chosen vector v ∈ Lℓ, until n vectors
have been selected.

We define the transfer matrix of the problem R = Rℓ in the same way as G = Gℓ in
subsection 3.1. Then R is an Lℓ × Lℓ matrix, and the number of independent sets of Rn

ℓ ,
rℓ(n), is the first entry of of the vector Rn · 1 where 1 = (1, 1, . . . , 1). Hence,

rℓ(n) = (1, 0, . . . , 0) · Rn · 1.

For instance, when ℓ = 3, the possible level vectors in an independent set are

(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0).

If we indexed the rows and columns in this order, then the transfer matrix is

R =









1 1 1 1
1 0 0 1
1 1 0 0
1 0 1 0









.

If we find the first entry of the vector (I − xG)−1 · 1, we get that the generating function
for r3(n) is given by 1+2x

1−2x−2x2 . The initial values for the numbers r3(n) are

1, 4, 10, 28, 76, 208, 568, 1552, 4240, . . .

This sequence appears as A026150 in [11].

Similarly to the case ℓ = 3, we obtain the following results for ℓ = 4, 5, 6.

Theorem 3.2. The generating functions for the numbers r4(n), r5(n) and r6(n) are given,
respectively, by

1 + 4x − 4x2

1 − 3x − 4x2 + 4x3
,

1 + 7x − 6x2

1 − 4x − 8x2 + 6x3
,

1 + 12x − 24x2 + 8x4

(1 − 8x + 4x2 + 4x3)(1 + 2x − 2x2)
.
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We remark that the algorithm for finding the generating function for rℓ(n) has been
implemented in Maple, and yielded explicit results for ℓ ≤ 6.

3.3. An algorithm for calculating kℓ(n). In this section we use the transfer matrix
method yet again to obtain information about the sequences kℓ(n). This case is also
similar to that of gℓ(n), so we will only sketch it briefly.

We partition Kn
ℓ into levels just as in the case of Gn

ℓ , so the n-th level of Kn
ℓ is Kn

ℓ \Kn−1
ℓ .

The collection of possible levels Lℓ is the set of all ℓ-vectors v of 0s and 1s. Vectors v
and w in Lℓ are a possible consecutive pair of levels in an independent set of Kn

ℓ if they
satisfy (3).

We define the transfer matrix of the problem, K = Kℓ, in the same way as Gℓ. Then K
is a 2ℓ × 2ℓ matrix, and the number of independent sets of Kn

ℓ , kℓ(n), is the first entry of
the vector Kn · (u1, . . . , u2ℓ)T where ui = 1 if the ith vector in the collection Lℓ contains
at most one nonzero entry. Hence,

kℓ(n) = (1, 0, . . . , 0) · Kn · (u1, . . . , u2ℓ)T .

For instance, when ℓ = 3, the possible level vectors in an independent set are

(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1).

If we index the rows and columns in this order, then the transfer matrix is

K =























1 1 1 1 1 1 1 1
1 0 0 0 1 0 0 0
1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0























.

If we find the first entry of the vector (I − xK)−1 · (u1, . . . , u2ℓ)T , we get that the
generating function for k3(n) is given by 1

1−4x+2x2 . In particular, we get that k3(n) = g3(n)
which can also be seen directly from the definitions. Similarly, we have the following result.

Theorem 3.3. The generating functions for the numbers k4(n), k5(n) and k6(n) are
given, respectively, by

1 + 2x + 3x2

1 − 3x − 14x2 + 15x3 + 7x4
,

1 + x + 12x2 − 8x3

1 − 5x − 30x2 + 69x3 + 31x4 − 22x5
,

1 − x + 38x2 − 72x3 − 8x4 + 30x5

1 − 8x − 66x2 + 280x3 + 178x4 − 532x5 − 84x6 + 108x7
.

We remark that the algorithm for finding the generating function for kℓ(n) has been
implemented in Maple, and yielded explicit results for ℓ ≤ 6.
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3.4. An algorithm for calculating pℓ(n). In this section we use the transfer matrix
method to obtain information about the sequences pℓ(n).

We partition P n
ℓ into levels the same way as Gn

ℓ , so the n-th level of P n
ℓ is P n

ℓ \P n−1
ℓ .

The collection of possible levels Lℓ is the set of all ℓ-vectors v of 0s and 1s. Vectors v
and w in Lℓ are a possible consecutive pair of levels in an independent set of P n

ℓ if they
satisfy (3).

The collection of possible levels Lℓ is the set of all ℓ-vectors v = (v1, . . . , vℓ) of 0s and
1s such that v1 + · · · + vℓ ≤ 1. Clearly, the set Lℓ contains exactly ℓ + 1 vectors which
are (0, . . . , 0) and (0, . . . , 0, 1, 0, . . . , 0). The condition that vectors v and w in Lℓ are a
possible consecutive pair of levels in an independent set of P n

ℓ is given by (3).

We define the transfer matrix of the problem, P = Pℓ, in the same way as Gℓ, Rℓ and
Kℓ. We define a matrix P = Pℓ, the transfer matrix of the problem, as follows. P is an
(ℓ + 1) × (ℓ + 1) matrix of 0s and 1s whose rows and columns are indexed by vectors of
Lℓ. Therefore, it is easy to see that

P =

















1 1 1 1 1 · · · 1 1 1
1 0 0 1 1 · · · 1 1 1
1 1 0 0 1 · · · 1 1 1
...

...
...

1 1 1 1 1 · · · 1 0 0
1 0 1 1 1 · · · 1 1 0

















(ℓ+1)×(ℓ+1)

.

Theorem 3.4. The generating function for pℓ(n) is given by
∑

n≥0

pℓ(n)xn =
1 + 2x

1 − (ℓ − 1)x − 2x2
.

Proof. We want to find the first entry of the vector (I − xP )−1 · 1 which means we must
find the first row, say (e1, . . . , eℓ+1), of the matrix (I − xP )−1. By solving the system of
equations

(I − xP )−1 · (e1, . . . , eℓ+1)
T = (1, 0, . . . , 0)T ,

we get that

e1 =
1 − (ℓ − 2)x

1 − (ℓ − 1)x − 2x2
and ej =

x

1 − (ℓ − 1)x − 2x2
for j ≥ 2.

Hence, the first entry of the vector (I − xP )−1 · 1 is given by

ℓ+1
∑

i=1

ei =
1 + 2x

1 − (ℓ − 1)x − 2x2
. �

For instance, when ℓ = 3, the generating function for p3(n) is given by 1+2x
1−2x−2x2 . One

can see, in particular, that p3(n) = r3(n), which follows directly from the definitions.

In the case ℓ = 4 the initial values of the numbers p4(n) are

1, 5, 17, 61, 217, 773, 2753, 9805, 34921, 124373, . . .
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The same sequence turns out to appear in [6] (see [11, A007483]). Thus, the following
proposition is true:

Proposition 3.5. The number of independent sets in the graph P n
4 is equal to the num-

ber of (possibly empty) subsequences of the sequence (1, 2, . . . , 2n + 1) in which each odd
member has an even neighbor.

Here, the neighbors of an integer m are m−1 and m+1. In the case n = 1, the sequences
appearing in the proposition are ǫ, 2, 23, 12, 123, where ǫ is the empty sequence. In this
case, we can find a direct bijection between the objects in Proposition 3.5 as described
below.

We start by labeling the vertices of the (innermost) level n of P n
4 clockwise by 2, 23, 12,

123. The level n − 1 is labeled starting from the vertex immediately to the left of vertex
labeled 2 as follows: 4, 45, [3]4, [3]45 (the meaning of brackets will be discussed below).
More generally, for i < n, given a level n− i+1 labeled clockwise with 2i, 2i(2i+1), [2i−
1]2i, [2i− 1]2i(2i + 1), we label the (next outer) level n − i clockwise from the inside out
with 2i+2, (2i+2)(2i+3), [2i+1](2i+2), [2i+1](2i+2)(2i+3) starting from the vertex
immediately to the left of vertex labeled 2i. (See Figure 5 for the case n = 3.) Each
independent set has at most one vertex on each level. Now, given any independent set in
P n

4 , we can write the labels of its nodes in increasing order and delete any integer [2i− 1]
in brackets if the sequence also contains 2i − 2 or 2i − 1 without brackets. Erasing all
brackets now, if any, we obtain a sequence from Proposition 3.5.

→

123 12

232

→

[3]45 [3]4

454

123

12

23

2

[5]67 [5]6

676

[3]45

[3]4

45

4

123

12

23

2

Figure 5. A labeling of P 3
4 by subsequences of Proposition 3.5.

Example 3.6. The independent sets {45, [5]67}, {4, [5]67}, {12, [5]6}, {[3]4, 67} correspond
to the sequences 4567, 467, 1256, 3467, respectively.

For convenience, we will write down the set of nonadjacent labels at level n− i for each
label at level n − i + 1.

(no label) ǫ 7→ (2i + 2), (2i + 2)(2i + 3), [2i + 1](2i + 2), [2i + 1](2i + 2)(2i + 3)

2i 7→ [2i + 1](2i + 2), [2i + 1](2i + 2)(2i + 3)

2i(2i + 1) 7→ (2i + 2), [2i + 1](2i + 2)(2i + 3)

[2i − 1]2i 7→ (2i + 2), (2i + 2)(2i + 3)

[2i − 1]2i(2i + 1) 7→ (2i + 2)(2i + 3), [2i + 1](2i + 2)

(4)
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Now it is not difficult to construct an independent set given a sequence of Proposi-
tion 3.5. We partition the sequence of integers from 1 to 2n + 1 as follows:

123 | 45 | 67 | . . . | 2n(2n + 1),

then choose the vertices of the independent set in the order of increasing labels using the
rules (4). Notice that the label of the vertex at level n − i + 1 must contain 2i.

Example 3.7.

4567 7→ 123|45|67 7→ (ǫ, 45, [5]67) 7→ {45, [5]67}
467 7→ 123|45|67 7→ (ǫ, 4, [5]67) 7→ {45, [5]67}

1256 7→ 123|45|67 7→ (12, ǫ, [5]6) 7→ {12, [5]6}

It can be shown that the two maps described above are inverses of each other based on
the recursive structure of sequences under consideration.
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