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Abstract

We introduce the notion of a set of prohibitions and give definitions
of a complete set and a crucial word with respect to a given set of prohi-
bitions. We consider three special sets which appear in different areas of
mathematics and for each of them examine the length of a crucial word.
One of these sets is proved to be incomplete. The problem of determining
lengths of words that are free from a set of prohibitions is shown to be
NP-complete, although the related problem of whether or not a given set
of prohibitions is complete is known to be effectively solvable.

1 Introduction and Background

In defining or characterising sets of objects in discrete mathematics, “languages
of prohibitions” are often used to define a class of objects by listing those pro-
hibited subobjects that are not contained in the objects of the class. To this end
the notion of a subobject is defined in different ways. The notion depends on the
set under consideration. These sets are subwords for fragmentarily restricted
languages, subgraphs for families of graphs and so on.

The research in the direction of words and languages of prohibited subwords
was begun by different authors [2, 9, 10, 12, 16, 21] in the 1970s. The interest
in the general question in this area arose from considerations of different types
of special problems, in particular, in coding theory, combinatorics of symbolic
sequences, number theory and problems of Ramsey type (for instance the arith-
metic progressions in partitions of the natural row). For algebraic problems it is
more typical to study avoidance of infinite sets that are defined by prohibitions
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of words (called terms or patterns) in an alphabet of variables that can them-
selves be words [2, 21]. Different problems on sequences without repetitions,
under variation the concept of “strong” or “weak” repetition of subwords, are
typical examples of problems of this class (e.g. see [1, 3, 5, 6, 14, 18]). To give
a more precise example, one can consider abelian square-free words, in which
no two adjacent subwords are permutations of each other. In [5] Erdös asked
how many letters do we need to construct an infinite abelian square-free word.
That is easy to check that such word does not exist in three letter alphabet.
The first author [6] gave an example of infinite abelian square-free word over
25 letter alphabet, and improved this result by reducing the number of letters
in the alphabet to seven [7]. Pleasants’s improvement [18] contains only five
letters in the alphabet. Finally, Keränen [14] constructed an infinite abelian
square-free word over a four-letter alphabet and Carpi [3] derived that, on a
four-letter alphabet, the number of abelian square-free words of each length
grows exponentially, it is uncountable and the monoid of abelian square-free
endomorphisms is not finitely generated.

In this paper we consider three types of “prohibitions” connected with a
generalisation of the notion of nonrepetitive symbolic sequences, and for each
of these sets we consider the structure of crucial words and find their lengths.
In Section 5 we investigate the problem of determining lengths of words that
are free from any given set of prohibitions. We show that this problem is NP-
complete although the related problem whether or not a given set of prohibitions
is complete is known to be effectively solvable.

Let A = {a1, . . . , an} be an alphabet of n letters. A word over the alphabet
A is a finite sequence of letters of the alphabet. Any i consecutive letters of a
word X generate a subword of length i. If X is a subword of a word Y , we write
X/Y .

The set A∗ is the set of all the words over the alphabet A. The set of
nonempty words over A is denoted A+. Let S ⊆ A∗. Then S is called a set
of prohibited words or a set of prohibitions. A word that does not contain any
words from S as its subwords is said to be free from S. The set of all words that
are free from S is denoted by Ŝ.

Example 1. Let A = {a, b}. The set of prohibitions is S = {aa, ba}. The
word abbb is in Ŝ.

If there exists k ∈ N such that the length of any word in Ŝ is less than k,
then S is called a complete1 set.

Example 2. A = {1, 2, 3, 4}. The set of prohibitions is

S = {123, 13, 14, 11, 22, 33, 44 }.

Then S is incomplete, since the word (124)k is in Ŝ for any k.

1“Complete” is equivalent to “unavoidable” in contemporary literature (e.g. see [17, 19,
20]). However, we use the original terminology from [8, 9, 10, 12].
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Example 3. A = {1, 2, 3}. The set of prohibitions is

S = {12, 23, 31, 32, 11, 22, 33}.

It is easy to check that S is complete.

A word X ∈ Ŝ is called a crucial word (with respect to S), if the word Xai

contains a prohibited subword for each letter ai ∈ A. This means that Xai

has the structure BBiai, where B is some word and Biai ∈ S. The subword
Bi is called the i-suffix of crucial word X. If for each letter of the alphabet we
consider the minimal i-suffix (with respect to the length) we obtain a system of
i-suffixes, which we will use to investigate crucial words.

Example 4. A = {a, b, c}. The set of prohibitions is S = {aa, cab, acac}.
The word aca is crucial with respect to S.

A crucial word of minimal (maximal) length, if it exists, is called a minimal
(maximal) crucial word. Let Lmin(S) (Lmax(S)) denote the length of a minimal
(maximal) crucial word with respect to S.

If one knows the crucial words with respect to a given set of prohibitions S,
one can solve the problem on whether or not the set S is complete. Indeed, if
there does not exist a crucial word with respect to S (as in Example 1) then
S is not complete, since any word from Ŝ can be continued to the right by
concatenating some letter of the alphabet. On the other hand, if X is a crucial
word with respect to S then we consider the words Biai ∈ S, take the longest
one (in case we have more than one word with maximum length, we choose any
one) and delete the letter ai from the chosen word in S. By doing this we get
the set S′ – a reduction of the set S. The completeness of the set S is invariant
under the operation of reduction described above, that is S is complete if and
only if S′ is complete. The notion of a crucial word, as well as the algorithm
determining whether or not a given set of prohibitions is complete, which is
based on consecutive reductions, was presented by the first author in [8].

We remark that in the case of finite sets of words with fixed lengths, it is
helpful to use a geometrical interpretation of the completeness problem on the
de Bruijn graphs. Determining whether or not a given set of prohibitions is
complete reduces to looking for cycles on the subgraph obtained by deleting the
set of vertices S from a de Bruijn graph (see [9, 10]).

In this paper we consider three sets of prohibitions denoted Sn
1 , Sn

2 , Sn,k
3 .

Here we use n for indicating the number of letters of the alphabet under con-
sideration and k is a natural number.

We now give the definitions of these sets:
Sn

1 = {XX | X ∈ A+}, that is, we prohibit the repetition of two equal
consecutive subwords. The elements of Sn

1 are usually called squares.
Sn

2 = {XY | ν(X) = ν(Y )}, where ν(X) = (ν1(X), . . . , νn(X)) is the content
vector2 of X, in which νi(X) is the number of occurrences of the letter ai in

2The content vector is also sometimes called the commutative image.
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X. That is, we prohibit the repetition of two consecutive subwords of the same
content. The elements of Sn

2 are usually called abelian squares.
Sn,k

3 = {XY | d(X, Y ) ≤ k, |X| = |Y | ≥ k + 1, k ∈ N}, where d(X, Y ) is the
number of letters in which the words X and Y differ (Hamming metric) and |X|
is the length of the word X. That is we prohibit any two consecutive subwords
of length greater than k such that the number of positions in which these words
differ is less then or equal to k.

The proofs of the theorems in this paper consist of the constructions of
extremal crucial words and of the proofs of their optimality, i.e., the lower
bound for Lmin(S) and the upper bound for Lmax(S).

2 The Set of Prohibitions Sn
1

The result from the following theorem was mentioned by Arshon [1], but no proof
was provided. The words appearing in the proof of Theorem 1 are frequently
called Zimin words, but should perhaps be called Arshon words.

Theorem 1. We have
Lmin(Sn

1 ) = 2n − 1.

Proof. We define a crucial word X by induction:

X1 = a1, Xi = Xi−1aiXi−1, X = Xn.

From this construction it follows that |X| = 2n − 1. We will prove that X
is a minimal crucial word with respect to Sn

1 .
Let U be an arbitrary minimal crucial word. We show that U coincides with

the word X up to a permutation of letters in A.
From the definition of a crucial word it follows that in the word Uai there is a

prohibited word of the form BiaiBiai, where Bi is a certain word and BiaiBiai

is a suffix of the word Uai (the suffix may coincide with Uai). In this case the
i-suffix is the subword BiaiBi. Let `i = BiaiBi.

We assume that `1/`2/ · · · /`n, that is `i is a subword of `i+1 since we can
make such ordering by permuting the letters of the alphabet, which obviously
does not affect the cruciality and minimality of a word.

Note that the minimal crucial word U has the form

U = BnanBn = BnanYna1,

where Yn is a certain word. Actually, if on the right of BnanBn there is a
certain nonempty word, then it contradicts the minimality of a crucial word,
and if instead of a1 there stands ak (k > 1) then it contradicts `1/`k.

We show that `n−1 coincides with Bn. We have `n−1 = Bn−1an−1Bn−1 and
assume anBn be a subword of `n−1. Now `n−1 has the form KanPan−1KanP ,
where KanP = Bn−1), but then

`n = Pan−1KanPanPan−1KanP, where Pan−1KanP = Bn,
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and the word U contains the prohibited subword anPanP . This cannot be the
case. It means that `n−1 is a subword of the word Bn, and the word U has the
form:

U = `n = Zn`n−1anZn`n−1,

where Zn is a certain word. Since we explore a minimal crucial word, we have
Zn = ε, and then Bn = `n−1. In the same way we can show that Bi = `i−1 for
each i = 2, . . . , n− 1 and B1 = ε.

Hence the structure of a minimal crucial word U coincides with that of the
word X as required.

Remark 2. From the proof of Theorem 1 it follows that the word X is the
unique minimal crucial word up to a permutation of the letters of the alpha-
bet A.

3 The Set of Prohibitions Sn
2

Proposition 3. A minimal crucial (with respect to Sn
2 ) word cannot have three

letters, each of which appears exactly twice in the word.

Proof. Since the proposition is obviously true for |A| = 1, 2, 3, we will consider
the case |A| ≥ 4.

Let X be a minimal crucial word, and suppose the system of i-suffixes for
it is `1/`2/ · · · /`n = X. Suppose the letters ai1 , ai2 , ai3 occur twice in X and
that i1 < i2 < i3 < n (the fact that i1, i2, i3 do not equal n follows from the
fact that an must occur an odd number of times).

When we pass from `i3−1 to `i3 (`i3−1 is determined, since there are i1,
i2 < i3) there must appear a letter ai3 , and when we pass from `i3 to `i3+1

(`i3+1 is determined, since i3 < n) there must appear one more letter ai3 ;
hence, since there are exactly two letters ai3 in X, there are no letters ai3 in `j ,
for 2 < j < i3. Hence, in particular, there are no letters ai3 in the subword `i2

(both letters ai3 lie to the left of `i2 in X).
Obviously, the letter ai1 must be in `i1 . The second letter ai1 appears when

we pass from `i1 to `i2 . Since there are only two letters ai1 , there are no letters
ai1 in the word X to the left of `i2 (in particular, the letters ai3 precede the
letters ai1 when reading the word X from left to right).

If we write the letter ai3+1 to the right of the word X we obtain a prohibited
word (a word from Sn

2 ). The words from Sn
2 are divided into two parts which

have the same content vectors. Obviously, the letters ai3 must be in different
parts of the prohibited word, and the letters ai1 must be in different parts of
the same word which is impossible, since the letters ai3 lie strictly to the left of
ai1 , and this contradicts the assumption.

Remark 4. From the proof of Proposition 1 we have that if letters ai and aj

occur twice in a word X (in which `1/`2/ · · · /`n = X), then either i = j + 1 or
j = i + 1.
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Note that a natural approach to a construction of a crucial word that is free
from Sn

2 is possible. It consists of an algorithm of step-by-step optimisation: we
ascribe to a crucial word on an n-letter alphabet a minimal number of letters
to obtain a crucial word on an (n + 1)-letter alphabet.

The algorithm can be written recursively in the following way:
Xn = Bn−1anXn−1

Bn−1 = Bn−3an−1Bn−3

B1 = a1, B2 = a2, B−1 = B0 = X0 = ε.

Some initial values when implementing the algorithm are:

X1 = a1,
X2 = a1a2a1,
X3 = a2a3a1a2a1,
X4 = a1a3a1a4a2a3a1a2a1,
X5 = a2a4a2a5a1a3a1a4a2a3a1a2a1.

This is an algorithm by which the minimal crucial word Xn for the set of
prohibitions Sn

1 can be built. For Sn
2 such a construction gives an upper bound

of the form exp(n/2), or, to be more exact,

(3− (n mod 2))2b
n+1

2 c − 3.

However, one can give an upper bound that is a linear function (see Theo-
rem 5).

We introduce, as before, the system of i-suffixes: `1/`2/ · · · /`n (we permute
the letters of the alphabet if necessary). We show that the passage from `i−1 to
`i is possible by ascribing only two symbols (letters of alphabet A).

When we passed from `i−1 to `i let there appear symbols y and z. `i−1

may be denoted by AB, where A is a certain word, B consists of the letters
of the word A (which are somehow mixed) and B contains one letter ai−1 less
than A does. Let x be the last letter of the word A on the right. Then `i may
be denoted by yzKxB, where A = Kx. From the definition of `i we have the
following equation (recall that ν denotes the content vector)

ν(y) + ν(z) + ν(K) = ν(B) + ν(x) + ν(ai),

which from the definition of K and B is equivalent to

2ν(x) + ν(ai) = ν(y) + ν(z) + ν(ai).

It follows necessarily that x = ai−1 and either y = ai−1, z = ai or y = ai, z =
ai−1. Suppose y = ai−1, z = ai.

For example, we have the following crucial word for a 6-letter alphabet:

a4a5a3a4a2a3a1a2 l a6a4a3a2a1a2a3a4a6,

(the symbol was drawn for a more convenient visual perception of the word).
This word is crucial and its length is equal to 17.
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Theorem 5. ([11, Theorem 5] 3) For any n > 2 we have

Lmin(Sn
2 ) = 4n− 7.

Proof. We consider the case of an arbitrary n ≥ 3 defining the word W as

W = an−2an−1an−3an−2 . . . a1a2 l anan−2an−3 . . . a2a1a2 . . . an−3an−2an.

Then |W | = 2(n− 2) + n− 1 + n− 2 = 4n− 7.
Let us verify that the word W is crucial.
If we write the letters a1, a2, an to the right of the word W we will obviously

have prohibited subwords. Let 2 < i < n. Then if we write the letters ai we
will have the prohibition

ai−1ai . . . a1a2anan−2 . . . ai l ai−1 . . . a2a1a2 . . . an−2anai,

since the composition vectors of the left and right subwords with respect to the
vertical line are equal.

Before proving that W ∈ Ŝn
2 we make the following remark.

In the word W we have `n/`1/ · · · /`n−2/`n−1. Substituting a1 for an, a2 for
a1, . . . , an for an−1 we obtain another word

U = an−1an . . . a2a3 l a1an−1 . . . a3a2a3 . . . an−1a1,

for which `1/`2/ · · · /`n.
In both cases (before and after substitution of letters of the alphabet) we

have the construction of a crucial word (which will be proved below) hence the
same upper bound for the length of a minimal crucial word.

For W it is more convenient to show further that W ∈ Ŝn
2 .

We rewrite W making in it the marks (1),(2), . . . ,(2n − 4), which number
the gaps between letters of a word like this:

(2n− 4)an−2(2n− 5)an−1 . . . (2)a1(1)a2 l anan−2 . . . a2a1a2 . . . an−2an.

In a possible prohibition we mark the left and right bounds. Note that the
length of a prohibition is an even number, and each letter must occur an even
number of times in a prohibition. The left bound of the prohibition must lie to
the right of the mark (2n− 5), since the letter an−1 occurs in W once;

It must lie to the left of the mark (1), since to the right of the mark (1) there
is one letter a1.

Note that if m is even then (m) is not the left bound of the possible prohi-
bition. Actually in this case two variants are possible:

1) the prohibition does not cover the left letter an.
2) the prohibition covers the left letter an.
In the second case we do not have a prohibition, since if the prohibition

begins from the even mark, then it cannot cover the second an.
3An anonymous referee remarked that the lower bound for the result obtained in the

theorem appears in [15].
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In the first case the right bound of the prohibition lies to the left of an, hence
the letter am

2 +1 enters the prohibition only once.
Suppose the prohibition begins from the mark (m) and m is odd.
There are two possible cases.
1) The prohibition does not cover the left letter an (this case is impossible

since the letter abm
2 c occurs in the prohibition once).

2) The prohibition covers the left an. Then it covers the right an too, and
the letter abm

2 c occurs an odd number of times in the prohibition. So W ∈ Ŝn
2

and hence Lmin(Sn
2 ) ≤ 4n− 7 for n > 2.

We give now a lower bound.
Since the length of a minimal crucial word must be odd, and the passage

from `i to `i+1 requires at least two letters, we have that a trivial lower bound
of length of a minimal crucial word is 2n− 1.

Let us now improve the lower bound. Obviously a minimal crucial word
in which `1/`2/ · · · /`n has an even number of occurrences of the letter ai for
i = 1, . . . , n − 1 and an odd number of occurrences of the letter an. The word
U has two letters a1, two letters a2, one letter an and four of any other letter.
From Proposition 3 we know that there does not exist a crucial word that has
the fewer number of letters, hence the word U gives us the lower bound of length
of a minimal crucial word.

4 The Set of Prohibitions Sn,k
3

Theorem 6. We have
Lmin(Sn,k

3 ) = 2k + 1.

Proof. For the set of prohibitions Sn,k
3 we must have |A| = |B| ≥ k + 1, where

AB is an arbitrary prohibition. So we have

Lmin(Sn,k
3 ) ≥ 2k + 1.

An upper bound is given by the construction p1p2 . . . pkxp1p2 . . . pk, where
x, pi ∈ A, i = 1, . . . , k.

Remark 7. The crucial word with respect to S1,k
3 is unique and its length is

2k + 1.

Theorem 8. We have
Lmax(S2,k

3 ) = 3k + 3.

Proof. Let

ā =
{

1, if a = 2,
2, if a = 1.

Moreover, let us consider an arbitrary crucial word A, with respect to S2,k
3 ,

of length greater then 3k + 3. It is easy to see that if a1a2 . . . ak+1 are the first
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k +1 letters of A then the next k +1 letters of A must be ā1ā2 . . . āk+1, because
otherwise the first 2k + 2 letters of A will form a prohibited subword. By the
same argument, we can show that

A = a1a2 . . . ak+1ā1ā2 . . . āk+1a1a2 . . . ak+1ā1 . . . .

Let us consider the subwords Ai of A of the length 2k + 4 which start from
the ith letter, where 1 ≤ i ≤ k:

Ai = aiai+1 . . . ak+1ā1 . . . āi︸ ︷︷ ︸
k+2

āi+1 . . . āk+1a1 . . . ai+1︸ ︷︷ ︸
k+2

If ai = āi+1 then the underbraced subwords of Ai are the same in the first and
in the last positions, so they differ in at most k positions, hence Ai is prohibited.
So we must have ai = ai+1 for i = 1, . . . , k.

Without loss of generality we can assume that a1 = 1, so

A = 11 . . . 1︸ ︷︷ ︸
k+1

22 . . . 2︸ ︷︷ ︸
k+1

11 . . . 1︸ ︷︷ ︸
k+1

2 . . . .

It is easy to see that if the length of A is greater then 3k + 3 then A has a
prohibited subword of length 2k + 4:

A = 11 . . . 1︸ ︷︷ ︸
k

︷ ︸︸ ︷
1 22 . . . 2︸ ︷︷ ︸

k+1

︷ ︸︸ ︷
11 . . . 1︸ ︷︷ ︸

k+1

2 2 . . . .

(here and then two braces above a word show us a disposition of a prohibited
subword and, in particular, a disposition of parts of this subword that correspond
to X and Y from the definition of the set of prohibitions Sn,k

3 ).
So Lmax(S2,k

3 ) ≤ 3k + 3.
To prove the theorem it is sufficient to check that there are no prohibited

subwords in the word A = 11 . . . 1︸ ︷︷ ︸
k+1

22 . . . 2︸ ︷︷ ︸
k+1

11 . . . 1︸ ︷︷ ︸
k+1

.

Obviously the left end of a possible prohibition can be only in the left block
1 . . . 1︸ ︷︷ ︸

k+1

:

︷ ︸︸ ︷
1 . . . 1︸ ︷︷ ︸

j

2 . . . 2︸ ︷︷ ︸
i

︷ ︸︸ ︷
2 . . . 2︸ ︷︷ ︸
k−i+1

1 . . . 1︸ ︷︷ ︸
2i+j−k−1

with

j + i ≥ k + 1 (1)

Two cases are possible:

1. j ≥ k − i + 1

2. j < k − i + 1
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In the first case there is non-coincidence between the left and right parts
of the prohibition in the first k − i + 1 letters and in the last i letters that is
non-coincidence in k + 1 letters. So this case is impossible.

In the second case we have non-coincidence in the first j letters and in the
last 2i + j − k − 1 letters. Hence we have non-coincidence in 2(i + j) − k − 1
letters, that according to (1) is greater than or equal to k + 1.

It follows that the word 1 . . . 1︸ ︷︷ ︸
k+1

2 . . . 2︸ ︷︷ ︸
k+1

1 . . . 1︸ ︷︷ ︸
k+1

does not contain a prohibition

and thus the theorem is proved.

Theorem 9 (Incompleteness). The set of prohibitions Sn,k
3 for n ≥ 3 is incom-

plete.

Proof. Since the alphabet A is finite, there is no trivial solution of the problem
(such as taking all letters of A and obtaining an infinite sequence with the
properties needed). So to prove the incompleteness of the set Sn,k

3 we have to
show the existence of an infinite word which is free from the set of prohibitions
Sn,k

3 .
We consider the case n = 3 and the alphabet A = {1, 2, 3}, since the incom-

pleteness of the set of prohibitions Sn,k
3 for the case n > 3 will follow from the

incompleteness of the set of prohibitions for the case n = 3.
Let B = {a, b, c} be an alphabet. We define the mapping h by h(a) = 1k+1,

h(b) = 2k+1, h(c) = 3k+1. Thus, h is a mapping from B∗ to the set of all
words over the alphabet C = {1k+1, 2k+1, 3k+1}. Clearly, the inverse f = h−1

is well-defined. The domain of the mapping f is the set of all words over the
alphabet C, and the image of f is the set B∗.

Let the set of prohibitions S′ = {XX|X ∈ B+}. Obviously, the set S′

coincides with the set Sn
2 whenever A = B.

It is known [2] that for the alphabet B there exists an infinite sequence L′

which is free from the set of prohibitions S′. L′ is built by iteration of the
morphisms:

a → abc

b → ac

c → b

The morphism iteration procedure is as follows.
We start from the letter a. Then we substitute this letter with abc. Then

we substitute each letter in abc by the rule above. We obtain after this step
abcacb. And so on. Executing this procedure an infinite number of times gives
us the sequence L′.

Let us prove that the sequence L = h(L′) does not contain words prohibited
by S3,k

3 .
We are going to prove the statement by considering L and all possible dis-

positions of words prohibited by S3,k
3 .
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The sequence L is built up from the letters of the alphabet C or in other
words from the blocks xk = x . . . x︸ ︷︷ ︸

k+1

, where x ∈ {1, 2, 3}. It means that there are

only three different cases for a disposition of a possible prohibition in L.

Case 1.
︷ ︸︸ ︷
xk+1 . . . yk+1

︷ ︸︸ ︷
zk+1 . . . tk+1;

Case 2. xi
︷ ︸︸ ︷
xk−i+1 . . . yk+1

︷ ︸︸ ︷
zk+1 . . . tk−i+1 ti, where 0 < i < k + 1;

Case 3. xi
︷ ︸︸ ︷
xk−i+1 . . . y`

︷ ︸︸ ︷
yk−`+1 . . . tk−j+1 tj , where 0 ≤ i, j, l ≤ k + 1.

Now we will consider these cases and show that each of them is impossible.
Case 1. Let P denote the prohibited subword (prohibition) under consid-

eration, R and L denote the right and the left parts of P respectively.
It is obvious that L and R have the same number of blocks. Moreover, the

ith block of L (from the left to the right) is equal to the ith block of R, because
otherwise we have non-coincidence of L and R in at least k + 1 letters which
contradicts the fact that P ∈ S3,k

3 . So we have that P = WW for some W ∈ C∗.
Now, f(P) = f(W )f(W ) is a subword of L′. But f(W )f(W ) ∈ S′ which is

impossible by the properties of L′. So Case 1 is impossible.
We note that an important consequence of Case 1 is the following. If

xk+1yk+1 is a subword of L then x 6= y.
Case 2. If there are no letters between xk+1 and yk+1, that is

P =
︷ ︸︸ ︷
xk−i+1yk+1

︷ ︸︸ ︷
zk+1tk−i+1,

then we must have x = z, because otherwise we have x 6= z and y 6= z which
gives us that L and R differ in the first k + 1 positions, but this contradicts
P ∈ S3,k

3 .
By the same argument we have y = t, so

P =
︷ ︸︸ ︷
xk−i+1yk+1

︷ ︸︸ ︷
xk+1yk−i+1 .

But if we consider now f(L) = L′ then it has

P′ =
︷ ︸︸ ︷
f(xk+1)f(yk+1)

︷ ︸︸ ︷
f(xk+1)f(yk+1) .

as a subword, which is impossible since P′ ∈ S′.
So there is some nonempty subword in L between xk+1 and yk+1, and P can

be written as

P =
︷ ︸︸ ︷
xk−i+1x1

k+1 . . . xp
k+1yk+1

︷ ︸︸ ︷
zk+1z1

k+1 . . . zp
k+1tk−i+1 .

There are two possible subcases here.
1. x = z.
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Since x 6= x1 we have x1 6= z. If x1 6= z1 then L and R differ in k+1 position
starting from the (k − i + 2)th position, which is impossible since P ∈ S3,k

3 . So
x1 = z1.

In the same way, for each of x2, x3, . . .xp, y, we can obtain that

P =
︷ ︸︸ ︷
zk−i+1z1

k+1 . . . zp
k+1tk+1

︷ ︸︸ ︷
zk+1z1

k+1 . . . zp
k+1tk−i+1

which leads us to the fact that L has a subword WW for some W ∈ C∗, hence
L′ has a subword f(W )f(W ) which is impossible.

So the subcase 1 is impossible.
2. x 6= z.
If x1 6= z then L and R differ in k+1 position starting from the first position,

which is impossible since P ∈ S3,k
3 . So x1 = z.

If x2 6= z1 then L and R differ in k + 1 position starting from the (k + 2)th
position, which is impossible by the same arguments as above. So x2 = z1. And
so on.

We have

P =
︷ ︸︸ ︷
xk−i+1zk+1z1

k+1 . . . zp
k+1

︷ ︸︸ ︷
zk+1z1

k+1 . . . zp
k+1tk−i+1 .

Applying f to L gives us a subword P′ of L′,

P′ =
︷ ︸︸ ︷
f(zk+1)f(z1

k+1) . . . f(zp
k+1)

︷ ︸︸ ︷
f(zk+1)f(z1

k+1) . . . f(zp
k+1),

which is prohibited in L′ by S′.
We have got that subcase 2 is impossible and hence Case 2 is impossible.
Case 3. We can assume that ` 6= 0 and ` 6= k + 1, because otherwise we

deal with either Case 1 or Case 2 which are impossible.
We suppose that i ≥ ` (the case i < ` can be considered in the same way).
If there are no letters between yk−`+1 and tk−j+1, then we have either

P =
︷ ︸︸ ︷
xk−i+1y`

︷ ︸︸ ︷
yk−`+1tk−j+1

or

P =
︷ ︸︸ ︷
xk−i+1zk+1y`

︷ ︸︸ ︷
yk−`+1tk−j+1 .

In the first of these cases we have that x 6= y and y 6= t which gives us
that L and R have noncoincidence in at least k + 1 letters, but this contradicts
P ∈ S3,k

3 .
In the second case we must have z = t, because otherwise since z 6= y and

t 6= y, L and R have noncoincidence in the last k+1 letters which is impossible.
So in the second case we have

P =
︷ ︸︸ ︷
xk−i+1tk+1y`

︷ ︸︸ ︷
yk−`+1tk−j+1 .

12



If x 6= y then L and R have noncoincidence in the first k − ` + 1 positions
and in the last ` positions, that is they have noncoincidence in at least k + 1
positions which is impossible. So x = y.

Now applying f to L gives us that L′ contains the subword

P′ =
︷ ︸︸ ︷
f(xk+1)f(tk+1)

︷ ︸︸ ︷
f(xk+1)f(tk+1),

which is impossible.
So there is some nonempty subword in R between yk−`+1 and tk−j+1, and

P can be written in the form

P =
︷ ︸︸ ︷
xk−i+1L1 . . . Lpy

`
︷ ︸︸ ︷
yk−`+1R1 . . . Rp′tk−j+1,

where Ls, Rm ∈ C, for 1 ≤ s ≤ p, 1 ≤ m ≤ p′, and either p = p′ or p = p′ + 1.
We define 4(Ls) = xs if Ls = xs

k+1. In the same way we define 4(Rm).
Now we have that either p = p′ or p = p′ + 1. Each of these cases has two

possible subcases: either x = y or x 6= y. Let us consider the case p = p′ + 1.
The other case can be considered by similar reasoning. Thus we must consider
the following subcases a) and b):

a) x = y; It must be that L1 = R1, because otherwise L and R differ in
k + 1 positions starting from the (k − i + 2)th position. Then we consider one
by one L2, L3, . . . ,Lp. One can see that in this subcase

P =
︷ ︸︸ ︷
yk−i+1R1 . . . Rp′tk+1y`

︷ ︸︸ ︷
yk−`+1R1 . . . Rp′tk−j+1,

and L has WW as a subword, where W = yk+1R1 . . . Rp′tk+1, which is impos-
sible.

b) x 6= y; There are two special subcases here, namely either 4(L1) = y
or L1 = R1.

If 4(L1) = y then

P =
︷ ︸︸ ︷
xk−i+1yk+1R1 . . . Rp′y`

︷ ︸︸ ︷
yk−`+1R1 . . . Rp′tk−j+1,

and L has WW as a subword, where W = yk+1R1 . . . Rp′ , which is impossible.
So L1 = R1. In this case we have

P =
︷ ︸︸ ︷
xk−i+1R1 . . . Rp′tk+1y`

︷ ︸︸ ︷
yk−`+1R1 . . . Rp′tk−j+1 .

Since y 6= x, y 6= 4(R1) and y 6= t, L and R have noncoincidence in the first
k − l + 1 positions and in the last l positions, so they have noncoincidence in
k + 1 positions which contradicts P ∈ S3,k

3 .
We have got that Case 3 is impossible.
We have proved that the infinite word L contains no word from the set S3,k

3

as a subword, therefore Sn,k
3 is incomplete for n ≥ 3.
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5 The Complexity of Problems on Complete-
ness of Sets of Words

It is known [9, 10] that the complexity of deciding whether or not an arbitrary
finite set of prohibited words S is complete is O(|S| · n), where n is the greatest
length of a word in S (see also [17] and references therein).

It is interesting in its own right to be able to effectively (in polynomial
time) recognise whether a set is complete, but also to give a more detailed
characterisation of the set of words Ŝ, in particular to find the greatest length
of a word that is free from S. The set An is the set of all the words over the
alphabet A whose length is equal to n. If S ⊆ An and L(n) = max

S
L(Ŝ), where

L(Ŝ) is the greatest length of a word that is free from S, then [9] we have

L(n) = |A|n−1 + n− 2 = C(n) + n− 1.

Here C(n) is the greatest length of a single path in the de Bruijn graph of
order n that has no chords and does not go through the vertices with loops
corresponding to the constant words (x, . . . , x) where x ∈ A.

One can find all words that are free from S, in particular all crucial words,
simply by considering all words of length less than or equal to L(Ŝ) and checking
for each word, if it is free from S. Such an algorithm is not effective since it can
require considering exp(L(n)) words.

The question of deciding the possible lengths of words that are free from S,
in particular of crucial words, can be formulated as a problem of recognising
properties of “languages of prohibitions” in the terminology of the theory of
NP-completeness [13].

Problem A:
Given: An arbitrary set of words S and a natural number `.
The question: Does there exist a word of length at least ` that is free from

S?
In order to compare, we formulate the problem of completeness of a set of

words S in the same form.
Problem B:
Given: An arbitrary set of words S in an alphabet A.
The question: Does there exist ` ∈ N such that |X| ≤ ` for any word X that

is free from S?
Considering problems A and B as problems of recognising properties of finite

sets S, we observe that problem B is a question of existence of a bound on the
length of the words that are free from S. This problem, as we have already
mentioned, can be solved effectively with complexity of order |S| · n. In the
same time the problem A is a question of localization of this bound. We will
show that problem A, as opposed to problem B, is NP-complete. We observe
that problems A and B for infinite sets S do not make sense if one does not
consider particular constructive methods for generating a set S.

Let A = {a1, . . . , an} be an alphabet and A` be the set of all those words
on the alphabet A whose length is less than or equal to `. We assume also
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that the empty word belongs to A` and that S1 is an arbitrary set such that
S1 ⊆ A2 \A1. We define S2 by

S2 = {xXx| x ∈ A, X ∈ An−1}.

So the set S2 contains all possible words of length less than or equal to n+1
whose first letter coincides with their last letter. Suppose S = S1 ∪ S2.

We now consider an “auxiliary” problem A′.
Problem A′:
Given: A set S of the type described above and a natural number `, ` ≤ n.
The question: Does there exist a word of length at least ` that is free from

S?
In case of the problem A′, the restriction on ` is natural, because any word

free from S is free from S2 and therefore consists of different letters of the
alphabet, whence its length is less than or equal to n.

Checking whether a given word of length ` (a solution of A′ that we “guessed”)
is free from S can be done in polynomial time. Indeed, the freeness from S2 of
the word is equivalent to the absence of identical letters in the word (which can
be checked in linear time) and the freeness from S1 is recognised by considering
all subwords of length 2 (there are ` − 1 such subwords) and by checking for
each of them whether it belongs to S1 (polynomial checking time).

We now introduce the problem of “the longest path in a graph”, which is
known to be NP-complete (see [13]).

Problem “path”:
Given: A directed graph ~G(V,E) and a natural number `, ` ≤ |V | = n.
The question: Does there exist a simple directed path (without self-intersections

in vertices) of length at least `?
One can obtain a correspondence between problem A′ and problem “path”

as follows. We compare vertices v1, . . . , vn from V (~G) to the letters a1, . . . , an

over the alphabet A. Also we compare each edge ~vivj from E(~G) to the word
aiaj . We form the set S1 from all such words of A2 that correspond to the
edges of the graph that is the complement of ~G with respect to the complete
directed graph.

Now to any oriented simple path vi1 , . . . , vi`
of length ` in ~G there corre-

sponds the word ai1 . . . ai`
of length `, consecutive letters of which correspond

to vertices in the order in which the path passed through them. This word is
free from S1 because aij aij+1 6∈ S1 for any i = 1, 2, . . . , ` − 1. The word is free
from the set S2 as well because in the path there is no repetition of vertices (a
property of a simple path) and therefore ai1 . . . ai`

does not contain a subword
of the form aiXai for any word X and any letter ai ∈ A.

Conversely, to any word over the alphabet A that is free from S there cor-
responds a path in ~G(V,E) that goes through edges from E(~G) since the word
is free from S1 and that is not self-intersected since the word is free from S2.

Now NP-completeness of problem A′ and the more general problem A follows
from NP-completeness of the problem “path”.
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