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Abstract

The graph of overlapping permutations is defined in a way analogous to the De Bruijn graph
on strings of symbols. However, instead of requiring the tail of one permutation to equal the
head of another for them to be connected by an edge, we require that the head and tail in
question have their letters appear in the same order of size. We give a formula for the number of
cycles of length d in the subgraph of overlapping 312-avoiding permutations. Using this we also
give a refinement of the enumeration of 312-avoiding affine permutations and point out some
open problems on this graph, which so far has been little studied.

1 Introduction and preliminaries

One of the classical objects in combinatorics is the De Bruijn graph. This is the directed graph
on vertex set {0, 1, . . . , q − 1}n, the set of all strings of length n over an alphabet of size q, whose
directed edges go from each vertex x1 · · ·xn to each vertex x2 · · ·xn+1. That is, there is a directed
edge from a string x to y if and only if the last n − 1 coordinates of x agree with the first n − 1
coordinates of y.

The De Bruijn graph has been much studied, especially in connection with combinatorics on
words, and one of its well known properties is the fact that its number of directed cycles of length d,
for d ≤ n, is given by

1

d

∑
e|d

µ (d/e) qe, (1.1)

where the sum is over all divisors e of the length d, and where µ denotes the number theoretic
Möbius function. Recall that µ(n) is (−1)k if n is a product of k distinct primes and is zero
otherwise.

A natural variation on the De Bruijn graphs is obtained by replacing words over an alphabet
by permutations of the set of integers {1, 2, . . . , n}, where the overlapping condition determining
directed edges in De Bruijn graphs is replaced by the condition that the head and tail of two
permutations have the same standardization, that is, that their letters appear in the same order
of size. As an example, this is the case with the permutations 24513 and 35124, since 4513 and
3512 both have their letters appearing in the same order of size, namely as 3412. This graph of
overlapping permutations, denoted G(n), is what we study in this paper. The simple case of n = 2
is illustrated in Figure 1. Note that, apart from the path and cycle graphs mentioned in Section 3,
all graphs in this paper are directed, although we don’t explicitly refer to them as directed graphs.

The graph G(n) appeared in [4] in connection with universal cycles on permutations. It has also
appeared in [7], where it was used as a tool in determining the asymptotic behavior of consecutive
pattern avoidance, and in [2], where it is called the graph of overlapping patterns (see also [10,
Section 5.6]).
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Figure 1: The graph G(2) of overlapping permutations.

A natural question about this graph, which does not seem to have been studied so far, is what
its number of directed cycles is, the analogue to the question for which (1.1) is the answer. We have
not been able to solve that problem (and we do not recognize the associated number sequences).
We do here, however, solve that problem when the graph is restricted to permutations of length n
avoiding the pattern 312, that is, permutations containing no three letters the first of which is
the largest and the second one the smallest. We show here that the number of directed cycles of
length d is

1

d

∑
e|d

µ (d/e)

(
2e

e

)
, (1.2)

for d not exceeding n. Note the similarity between this and the expression in (1.1): the power qe

in (1.1) is replaced here by the central binomial coefficient
(
2e
e

)
.

It is easy to see, due to straightforward symmetries, that permutations avoiding a particular
one of the patterns 132, 213 and 231 yield a graph isomorphic to the one for 312, which is the
representative we have chosen. It is also easy to see that permutations avoiding 123 (or, equivalently,
321) give rise to a nonisomorphic graph. For this latter case we have no solution for the number of
cycles, and we do not recognize the number sequences counting the cycles in that graph.

Using similar techniques, we prove that the number of 312-avoiding affine permutations in S̃d

with k cut-points is given by the binomial coefficient
(
2d−k−1
d−1

)
. This refines a result of Crites [6]

who showed that the number of 312-avoiding affine permutations is
(
2d−1
d−1

)
. As a corollary to our

results we show that each affine permutation has a cut-point or is, in other words, decomposable.
The connection between cycles in the graph of overlapping permutations and affine permutations

goes through bi-infinite sequences. A bi-infinite sequence (. . . , f(−1), f(0), f(1), f(2), . . .) of distinct
real numbers yields a bi-infinite walk where the ith edge is given by the standardization of f =
(f(i), f(i+1), . . . , f(i+n)), that is, the unique permutation of {1, 2, . . . , n+1} whose letters appear
in the same order of size as the numbers in f . This walk is a closed walk of length d if the sequence
is periodic, in the sense that f(i) < f(j) if and only if f(i+d) < f(j+d). Thus, infinite d-periodic
sequences correspond to d-cycles.

The paper is organized as follows. In Section 2 we introduce some definitions related to pattern
avoidance, affine permutations and infinite sequences. The last of these play an important role in the
proof of the main result, as do ordinary and cyclic compositions of an integer, which are introduced
in Section 3. In Section 4 we give results on the number of affine 312-avoiding permutations with
a given number of cut-points and show that every such permutation does have a cut-point. In
Section 5 we present the main result, about the number of d-cycles in G(n, 312) and subsequently
give a bijection that proves this, in Sections 6 and 7. Finally, in Section 8, we list several open
problems in this area.
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2 Pattern-avoiding permutations, affine permutations and infinite
sequences

We first introduce some formal definitions that are needed later on.
For a permutation x = x1 · · ·xn consisting of distinct real numbers, let Π(x) denote the stan-

dardization of x, also known as the reduced form of x, that is, the unique permutation π = π1 · · ·πn
in the symmetric group Sn whose elements have the same relative order as those in x. In other
words, xi < xj if and only if πi < πj for all 1 ≤ i < j ≤ n and π is built on the set {1, 2, . . . , n}.
For example, Π(3(−2)02) = 4123.

The graph of overlapping permutations G(n) has the elements of the symmetric group Sn as
its vertex set and for every permutation σ = σ1 · · ·σn+1 in Sn+1 there is a directed edge from
Π(σ1 · · ·σn) to Π(σ2 · · ·σn+1).

A permutation π = π1π2 · · ·πn ∈ Sn avoids a permutation τ ∈ Sk if there are no integers
1 ≤ i1 < i2 < · · · < ik ≤ n such that Π(πi1πi2 · · ·πin) = τ . In this context, τ is called a pattern and
we say that π avoids the pattern τ . Let Sn(τ) denote the set of τ -avoiding permutations in Sn.
Especially, we are interested in 312-avoiding permutations, which are those that have no indices
i < j < k such that πj < πk < πi. It is well-known that the number of 312-avoiding permutations
in Sn is given by the nth Catalan number Cn = 1

n+1

(
2n
n

)
.

A cut-point for a permutation π ∈ Sn is an index j with 1 ≤ j ≤ n − 1 such that for all i
and k satisfying 1 ≤ i ≤ j < k ≤ n we have that πi < πk. The cut-points split a permutation
into components, each ending at a cut-point. A permutation without cut-points is said to be in-
decomposable (or, sometimes, irreducible). As an example, the permutation 31246758 has three
cut-points, namely 3, 4, and 7, and components 312, 4, 675 and 8, wheres 2413 is indecomposable.
The following result is well-known (see, for instance, [5] or Stanley’s list of Catalan interpreta-
tions [14]), and is easy to prove using the fact that every 312-avoiding permutation is of the form
A1B, where each element of B is larger than every element of A, which implies that a 312-avoiding
permutation is indecomposable precisely when B is empty.

Proposition 2.1. The number of 312-avoiding indecomposable permutations in Sn is given by the
Catalan number Cn−1.

An extension of the notion of permutations is affine permutations. While the symmetric
group Sd is the Weyl group Ad−1, the group of affine permutations S̃d is the affine Weyl group Ãd−1.
However, the combinatorial description of affine permutations is due to Lusztig (unpublished) and
the first combinatorial study of them was conducted in [3, 8]. An affine permutation is a bijection
π : Z −→ Z such that

π(i+ d) = π(i) + d, (2.1)

d−1∑
i=0

(π(i)− i) = 0. (2.2)

Note that the first condition implies that the values π(0) through π(d − 1) determine the whole
affine permutation. The set of all affine permutations is denoted by S̃d.

We now extend the notion of an affine permutation to infinite sequences. An infinite sequence
is defined to be an injective function f : Z −→ R. Alternatively, one can think of an infinite
sequence as a bi-infinite list (. . . , f(−1), f(0), f(1), f(2), . . .) of distinct real numbers. We say that
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two infinite sequences f and g are equivalent if there is a strictly increasing continuous function
T : R −→ R such that g(i) = T (f(i)). It is straightforward that this is an equivalence relation.
We think about the equivalence classes as bi-infinite permutations. Hence, it is natural to extend
notions from permutation patterns theory to (bi-)infinite sequences.

A cut-point for a bi-infinite sequence f is an index j such that for all integers i ≤ j < k we have
that f(i) < f(k). The inversion set for a bi-infinite sequence f is the set

Inv(f) = {(i, j) ∈ Z2 : i < j, f(i) > f(j)}.

A bi-infinite sequence is periodic with period d, if for all integers i and j, f(i) < f(j) is equivalent
to f(i+ d) < f(j+ d). Equivalently, a bi-infinite sequence is periodic with period d if the inversion
set satisfies the condition (i, j) ∈ Inv(f) is equivalent to (i + d, j + d) ∈ Inv(f). Extending the
notion of pattern-avoidance, we say that a bi-infinite sequence f avoids the pattern σ ∈ Sn if there
are no integers i1 < i2 < · · · < in such that Π(f(i1)f(i2) · · · f(in)) = σ.

3 Compositions and cyclic compositions

A composition of a non-negative integer d into k parts is a list of k positive integers (a1, a2, . . . , ak)
such that their sum is d. Let α1, α2, . . . be a sequence of numbers and f(t) =

∑
i≥1 αit

i be the
associated generating function. Form a new sequence (βd,k)d≥1 by the relation

βd,k =
∑

(a1,a2,...,ak)

αa1αa2 · · ·αak

where the sum is over all compositions of d into k parts. Additionally, we set β0,k to be the
Kronecker delta δ0,k, which is equal to 1 if k = 0 and 0 otherwise. Also, let the sequence (βd)d≥0 be
defined by the sum βd =

∑
k≥0 βd,k. The following relations are classical generatingfunctionology:∑

d≥0
βd,kt

d = (f(t))k and
∑
d≥0

βdt
d =

1

1− f(t)
. (3.1)

If αi is the cardinality of a set Si, we can give a combinatorial interpretation to the number βd,k,
hence also βd. An enriched composition is a pair (a, s) where a is a composition (a1, a2, . . . , ak) of d
into k parts and s = (s1, s2, . . . , sk) is a list of the same length such that the element si belongs
to the set Sai . Now βd,k is the number of enriched compositions of d into k parts, and βd is the
number of enriched compositions of d.

A composition of d can be thought of as a subgraph of the path on d vertices. Note that each
connected component of a subgraph of a path is also a path. The number of connected components
of the subgraph is the number of parts of the composition. With this analogue in mind we define
a cyclic composition to be a subgraph of the cycle on d vertices where each component is a path.
Note that we rule out the case of the cycle being a subgraph of itself. Yet again, the number of
paths is the number of components k. Observe that k is also the number of edges removed to
obtain the subgraph. Since there are d edges in a cycle, we have

(
d
k

)
cyclic compositions of d into

k parts for k ≥ 1. For instance, there are
(
4
2

)
= 6 cyclic compositions of 4 into two parts, namely,

two consisting of two 2s and four consisting of 1 and 3 (see Figure 2).
To be more formal, let Zd denote both the integers modulo d and the cycle of length d, where

we connect i and i + 1 modulo d. A cyclic composition is a set partition P = {B1, B2, . . . , Bk}
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Figure 2: The 6 cyclic compositions of 4 into two parts.

where each block Bi is a path in the cycle Zd. Equivalently, each block Bi is the image of an
interval [pi, qi] of integers under the quotient map Z −→ Zd with the restriction 0 ≤ qi−pi ≤ d−1.
Also, let ai be qi − pi + 1, that is, the cardinality of the interval [pi, qi] and the associated path.

Similarly to compositions, we construct new sequences (γd,k)d≥1 and (γd)d≥1 as follows:

γd,k =
∑
P

αa1αa2 · · ·αak

where the sum is over all cyclic compositions P of d into k parts and ai is the size of the ith part.
Also, let γd denote the sum γd =

∑
k≥1 γd,k.

Proposition 3.1. The generating functions for γd,k and γd are given by∑
d≥k

γd,kt
d = tf ′(t)(f(t))k−1 =

t

k
D
(

(f(t))k
)

and (3.2)

∑
d≥1

γdt
d =

tf ′(t)

1− f(t)
, (3.3)

where D is the differential operator with respect to t.

Proof. To observe the first relation, consider the component containing the vertex 1 of the cycle.
Also, assume that this component has size i. Then there are i possibilities how to choose the
component. This is encoded by the generating function

∑
i≥1 iαit

i = tf ′(t). Next we have to

choose a composition of d− i into k − 1 parts, which is given by (f(t))k−1. The first result follows
from multiplication of generating functions. The second result follows from summing (3.2) over
all k.

As a brief example of equation (3.3), note that setting αi = 1 enumerates the number of cyclic
compositions. We have f(t) = 1/(1− t)− 1 and obtain

∑
d≥1 γdt

d = 1/(1− 2t)− 1/(1− t), yielding

the answer of 2d − 1 for the number of cyclic compositions of d.
Combining generating functions (3.1) and (3.2) we have the following result.

Corollary 3.2. The two quantities βd,k and γd,k are related by

γd,k =
d

k
βd,k. (3.4)

An enriched cyclic composition is a pair (P, s) where P is a cyclic composition {B1, B2, . . . , Bk}
of d into k parts and s = (s1, s2, . . . , sk) is a list of the length k such that the element si belongs
to the set S|Bi|. Now γd,k has the combinatorial interpretation as the number of enriched cyclic
compositions of d into k parts, and βd is the number of enriched cyclic compositions of d.
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Let C(t) and CB(t) denote the generating functions for the Catalan numbers and the central
binomial coefficients, that is,

C(t) =
∑
d≥0

Cdt
d =

1−
√

1− 4t

2t
,

CB(t) =
∑
d≥0

(
2d

d

)
td =

1√
1− 4t

.

Lemma 3.3. Let αi = Ci−1+δi,1 where δi,1 denotes the Kronecker delta. Then the central binomial
coefficient is given by the sum (

2d

d

)
=
∑
P

αa1αa2 · · ·αak ,

where the sum is over all cyclic compositions P of d and d ≥ 1.

Proof. First, observe that
∑

i≥1 αit
i = t + tC(t). The result now follows from equation (3.3) and

the identity

CB(t)− 1 =
t(t+ tC(t))′

1− t− tC(t)
.

The following two well-known identities involving the Catalan numbers are worth keeping in
mind in the next section, where we prove similar results regarding affine 312-avoiding permutations.
We have ∑

(a1,a2,...,ak)

Ca1−1Ca2−1 · · ·Cak−1 =
k

d

(
2d− k − 1

d− 1

)
, (3.5)

where the sum is over all compositions of d into k parts. The numbers in the right hand side
give Catalan’s triangle, sequence A009766 in [11]. One of many things they enumerate is the set
of 312-avoiding permutations of length d that split into (at most) k components. Namely, such
a permutation can be decomposed as A1A2 · · ·Ak where every letter of Ai is smaller than each
letter of Aj for i < j. Since each component is an indecomposable 312-avoiding permutation, these
permutations with k components are counted by the left hand side. By a similar argument we have∑

(a1,a2,...,ak)

Ca1−1Ca2−1 · · ·Cak−1 = Cd,

where the sum is over all compositions of d.
By combining Corollary 3.2 and (3.5) we have:

Lemma 3.4. The following identity holds∑
P

Ca1−1Ca2−1 · · ·Cak−1 =

(
2d− k − 1

d− 1

)
, (3.6)

where the sum is over all cyclic compositions P of d into k parts.
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4 312-avoiding affine permutations

Before we continue, we take a detour to study 312-avoiding affine permutations. Recall that an affine
permutation π ∈ S̃d is 312-avoiding if there are no indices x < y < z such that π(y) < π(z) < π(x).
Crites [6] proved the following result for affine permutations.

Theorem 4.1 (Theorem 6 in [6]). The number of 312-avoiding affine permutations in S̃d is given
by
(
2d−1
d

)
.

We give a refinement of this result. Recall that a cut-point for an affine permutation π is an
index j such that for i ≤ j < k the inequality π(i) < π(k) holds. Especially, if j is a cut-point,
then so is any index congruent to j modulo d. Hence, we count the number of equivalence classes
of cut-points.

Theorem 4.2. Let k be a positive integer and k ≤ d. The number of 312-avoiding affine permuta-
tions in S̃d that have k cut-points modulo d is given by(

2d− k − 1

d− 1

)
.

Proof. Consider a cyclic composition {B1, B2, . . . , Bk} into k parts of the cycle Zd and enrich each
block with an indecomposable 312-avoiding permutation. Since there are Ca−1 indecomposable 312-
avoiding permutations in Sa by Proposition 2.1, the total number of enriched cyclic compositions
is given by Lemma 3.4, that is,

(
2d−k−1
d−1

)
. Let the ith block Bi be the image of the interval [pi, qi].

View the permutation πi enriching Bi as a bijection on this interval. That is, we have the bijection
πi : [pi, qi] −→ [pi, qi]. Now concatenate these k bijections, that is, define

π :
⋃

1≤i≤k
[pi, qi] = [p1, qk] −→ [p1, qk]

by π(j) = πi(j) if j ∈ [pi, qi]. Finally, extend π to all integers by the condition (2.1). By con-
struction, it is clear that π is an affine permutation and that all 312-avoiding permutations with k
cut-points are constructed this way.

Corollary 4.3. Every 312-avoiding affine permutation in S̃d has a cut-point.

Proof. Since the sum of
(
2d−k−1
d−1

)
for k from 1 to d is

(
2d−1
d

)
, and by Theorem 4.1, all the 312-avoiding

affine permutations have been accounted for.

A more direct proof is as follows.

A second proof of Corollary 4.3. Let π be an affine 312-avoiding permutation in S̃d. On the set
P = {(i, π(i)) : i ∈ Z} define a poset structure by (i, π(i)) <P (j, π(j)) if i > j and π(i) < π(j).
Note, for instance, that the set {(i, π(i)) : i ≡ j mod d} forms an infinite antichain.

Now if an element (i, π(i)) is greater than both of the elements (j, π(j)) and (k, π(k)), and
these two elements are incomparable, then this triple forms a 312-pattern. Since we assumed π is
312-avoiding we have that the lower order ideal generated by a single element is a chain. In other
words, the poset is a forest with the minimal elements as roots.
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Figure 3: The graph G(3, 312), which has two 1-cycles, two 2-cycles and six 3-cycles.

Pick a minimal element (i, π(i)) in the poset. We claim that i is a cut-point. Among the
maximal elements above (i, π(i)) in the poset pick an element (j, π(j)) with the largest second
coordinate. We claim that if k ≤ i then π(k) ≤ π(j). There is nothing to prove if π(k) ≤ π(i).
If π(k) ≥ π(i) then we have (k, π(k)) ≥P (i, π(i)). But we picked (j, π(j)) to be the element with
largest second coordinate, which proves the claim. Next we claim that if k > i then π(k) > π(j).
Assume that π(k) < π(j). Since (i, π(i)) is a minimal element we know that π(i) < π(j). However,
this yields a contradiction since Π(π(j), π(i), π(k)) = 312, the prohibited pattern. Hence, i is a
cut-point.

5 The graph of 312-avoiding permutations

Recall that G(n) denotes the directed graph of overlapping permutations, that is, it has the ver-
tex set Sm and for every permutation σ = σ1 · · ·σm+1 in Sm+1 there is a directed edge from
Π(σ1 · · ·σm) to Π(σ2 · · ·σm+1) labelled σ. Furthermore, let G(n, τ) be the graph of overlapping
τ -avoiding permutations, that is, it is the subgraph of G(n) having the vertex set Sn(τ) and the
edge set Sn+1(τ). For an example, see Figure 3 where the graph G(3, 312) is presented.

A closed walk of length d in a graph is a list of d edges (e1, e2, . . . , ed) such that head(ei) =
tail(ei+1) for 1 ≤ i ≤ d−1 and head(ed) = tail(e1), where for a directed edge e, head(e) is the node
the edge points to, while tail(e) is the other node incident to e. Thus, (1342, 2314, 2134) and its
cyclic shift (2134, 1342, 2314) are two different closed walks.

Define an equivalence on the set of closed walks by cyclic shifting, that is, two closed walks
(e1, e2, . . . , ed) and (ei, ei+1, . . . , ed, e1, e2, . . . , ei−1) are equivalent. Then a d-cycle is defined to be
an equivalence class of size d. For instance, the graph G(3, 312) in Figure 3 has six closed walks of
length 2, namely,

(1234, 1234), (4321, 4321), (1324, 2143), (2143, 1324), (2314, 3241) and (3241, 2314).
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However, the graph G(3, 312) has only two 2-cycles, since the first two closed walks yield 1-cycles
while the forth (resp., sixth) walk is equivalent to the third (resp., fifth) walk.

The number of closed walks is given by the following result.

Theorem 5.1. The number of closed walks of length d in G(n, 312), for d ≤ n, is given by
(
2d
d

)
.

A bijective proof of Theorem 5.1 will be given in the following two sections.

Theorem 5.2. The number of d-cycles in G(n, 312), for d ≤ n, is given by

1

d

∑
e|d

µ (d/e)

(
2e

e

)
.

Proof. Let h(d) denote the number of d-cycles. A closed walk of length d can be obtained by
choosing a divisor e of d, an e-cycle and a starting point on the cycle. By repeating the e-cycle d/e
times we obtain a closed walk of length d. Hence, we have(

2d

d

)
=
∑
e|d

e · h(e).

The result now follows by classical Möbius inversion.

6 The bijection

It remains to show that the number of closed walks of length d in G(n, 312) is given by
(
2d
d

)
. We

do this by constructing a bijection between closed walks and enriched cyclic compositions. This
bijection goes via infinite sequences. Let Qd denote the set of all closed walks of length d in the
graph G(n, 312).

Given a cyclic composition on Zd, we enrich each part of size a either with a 312-avoiding
indecomposable permutation from the symmetric group Sa, or, if a = 1, with the symbol D (for
“Down”). Note that if a = 1, then the enrichment is either the identity permutation 1 in S1

or the symbol D. Let Ed denote the set of all these enriched cyclic compositions. Note that the
number of enrichments of a part of size a is the Catalan number Ca−1 plus the Kronecker delta δa,1.
Hence, by Lemma 3.3, we know that the total number of these structures is the central binomial
coefficient

(
2d
d

)
.

We now describe a bijection Φ : Ed −→ Qd. Let B = (B1, B2, . . . , Bk) be an enriched cyclic
composition in Ed. Recall that the ith block Bi is the image of the interval [pi, qi] under the quotient
map Z −→ Zd. If the enrichment on the part Bi is a permutation, we view it as a permutation πi on
the set [pi, qi]. Let Bi be the set Bi =

⋃
j∈Z[pi + jd, qi + jd]. Note that B1, B2, . . . , Bk is a partition

of the integers Z. Furthermore, extend πi by the relation πi(j + d) = πi(j) + d. That is, now πi
is a bijection on the set Bi. Next we use the fact that the exponential function exp : R −→ R>0

is strictly increasing and its negative − exp : R −→ R<0 is strictly decreasing, where R>0 (resp.,
R<0) is the set of all possible (resp., negative) real numbers. Construct an infinite sequence f by

f(j) =

{
exp(πi(j)) if j ∈ Bi and part Bi is enriched with a permutation,

− exp(j) if j ∈ Bi and part Bi is enriched with the symbol D.
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Figure 4: A schematic representation of the sequence appearing in Example 6.1.

By construction, the infinite sequence f is d-periodic. Furthermore, we claim that f is 312-avoiding.
Assume not, that is, there are three integers x < y < z such that f(y) < f(z) < f(x). If f(y) < 0
then so is f(z). But the negative values of f form a decreasing sequence, since this is a subsequence
of − exp(j). This contradicts f(y) < f(z). Now assume that f(y) > 0. Since f(x) > f(y), x has
to belong to the same interval Bi + j · d as y. Similarly, since f(x) > f(z), z has to belong to the
same interval Bi + j · d as x. This contradicts to the fact that the block Bi was enriched with a
312-avoiding permutation.

Finally, we construct an infinite walk (. . . , σ−1, σ0, σ1, σ2, . . .) in the graph G(n, 312) by letting
σi be the standardization Π(f(i), f(i+1), . . . , f(i+n)). Note that this permutation is 312-avoiding
and as an edge in the graph it has the tail Π(f(i), f(i+ 1), . . . , f(i+ n− 1)) and the head Π(f(i+
1), f(i+ 2), . . . , f(i+n)). Since f is d-periodic the infinite walk has period d. Restricting the walk
to (σ1, σ2, . . . , σd) gives a closed walk in the set Qd. This completes the description of the map Φ.

Example 6.1. As an example, consider the cyclic composition of d = 8 consisting of the interval
[−1, 1] and the five singletons {2}, {3}, {4}, {5}, {6}. Enrich the singletons {2}, {3} and {5} with the
symbol D. Enrich the interval [−1, 1] with the permutation 231 and the two remaining singletons
with the permutation 1. Then a graphical representation of the associated sequence f is in Figure 4.
In the graph G(8, 312) the sequence f describes the 8-cycle:

45362178, 43521786, 34216758, 43267581, 32564718, 35647281, 56473821, 54637218.

In the graph G(9, 312) the sequence f describes the 8-cycle whose three first edges are 453621897,
435217869 and 453278691.

One can always lift an infinite walk in the graph to an infinite sequence. However, as Remark 6.2
shows, an infinite walk could lift to several non-equivalent sequences, and they do not all have the
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desired properties. Thus, when lifting a walk to a sequence we have the additional requirements
in Conditions (7.1) and (7.2). Their interpretation is that we do not introduce an inversion in the
infinite sequence, unless we are required to do so by a local condition.

Remark 6.2. Consider the two infinite sequences

h1(n) = n+ (−1)n and h2(n) = n+ 2(−1)n.

Observe that they both encode the same 2-cycle in G(2, 312). That is,

Π(h1(n), h1(n+ 1), h1(n+ 2)) = Π(h2(n), h2(n+ 1), h2(n+ 2)) =

{
132 if n is odd,

213 if n is even.

However, note that h2 is not 312-avoiding, whereas h1 is. Furthermore, h2 does not have any
cut-points, whereas h1 does. Hence, when constructing the inverse map to Φ we have to be careful
in constructing an infinite sequence which is 312-avoiding. This is the reason for the appearance of
the two conditions (7.1) and (7.2) in the next section.

7 The inverse bijection

We now construct the inverse map of Φ. Given the closed walk (σ1, σ2, . . . , σd) in Qd we extend it
to an infinite walk by letting σj+d = σj for all integers j.

We are going to find a sequence . . . , g(−1), g(0), g(1), g(2), . . . such that Π(g(i), g(i+1), . . . , g(i+
n)) = σi for all integers i. To find such a sequence, let g(k) = σ1(k) for 1 ≤ k ≤ n+1. Now alternate
the following two steps to extend g to all of the integers.

(+) Assume that we have picked the values g(i), g(i + 1), . . . , g(j − 1) of the sequence. We will
now pick the value of g(j). That is, we are extending the sequence in the positive direction.
Let σ be the permutation σi−n. Let a and b be the real numbers (including ±∞) given by

a =

{
g(σ−1(σ(n+ 1)− 1) + s) if σ(n+ 1) > 1,

−∞ if σ(n+ 1) = 1,

b =

{
g(σ−1(σ(n+ 1) + 1) + s) if σ(n+ 1) < n+ 1,

∞ if σ(n+ 1) = n+ 1,

where s is the shift s = j−n− 1. Then any real number x in the open interval (a, b) satisfies
Π(g(j − n), . . . , g(j − 1), x) = σ. However, we have one more requirement, we will pick x as
large as possible with respect to the already picked values g(i), g(i+1), . . . , g(j−n−1). That
is, we pick g(j) = x such that

max(a, {g(k) : g(k) < b, i ≤ k ≤ j − 1}) < x < b. (7.1)

(–) Now we extend the sequence in the negative direction. Assume that we have picked the values
g(i + 1), g(i + 2), . . . , g(j) of the sequence. We will now pick the value of g(i). Let σ now
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denote the permutation σi. Let the two bounds a and b be given by

a =

{
g(σ−1(σ(1)− 1) + s) if σ(1) > 1,

−∞ if σ(1) = 1,

b =

{
g(σ−1(σ(1) + 1) + s) if σ(1) < n+ 1,

∞ if σ(1) = n+ 1,

where s = i− 1. Yet again, any real number x in the open interval (a, b) satisfies Π(x, g(i+
1), . . . , g(i + n)) = σ. However, now we pick x as small as possible with the already picked
values g(i+ 1), . . . , g(j). That is, we pick g(i) = x such that

a < x < min(b, {g(k) : g(k) > a, i+ 1 ≤ k ≤ j}) (7.2)

The purpose of the two conditions (7.1) and (7.2) is to avoid introducing any extra inversions
in the sequence g. These conditions will come into play at the end of this construction in the case
when the set D (to be defined soon) is empty.

Claim 7.1. The sequence g is locally 312-avoiding, that is, if i < j < k, where k − i ≤ n then
Π(g(i), g(j), g(k)) 6= 312.

This holds true since σi is 312-avoiding.

Claim 7.2. For all i we have g(i) 6= g(i+ d).

Since d ≤ n and Π(g(i), g(i + 1), . . . , g(i + d), . . . , g(i + n)) is a permutation, g(i) and g(i + d)
are distinct.

Claim 7.3. For i < j and j − i < n the inequality g(i) < g(j) is equivalent to g(i+ d) < g(j + d).

Since σi = σi+d we have the string of the equivalences g(i) < g(j)⇐⇒ σi(1) < σi(j− i+ 1)⇐⇒
σi+d(1) < σi+d(j − i+ 1)⇐⇒ g(i+ d) < g(j + d).

Hence, the infinite sequence g decomposes into d sequences, each of which is monotone. We
now partition the integers Z into two sets D = {i : g(i) > g(i+ d)} and U = {i : g(i) < g(i+ d)}.
Note that since d ≤ n we have that i ∈ D is equivalent to i + d ∈ D. That is, D consists of the
sequences that are decreasing and U of the increasing sequences.

Claim 7.4. The subsequence {g(i)}i∈D is decreasing.

Assume that it is not decreasing. Then there are two entries i, j ∈ D such that i < j, j−i ≤ d−1
and g(i) < g(j). Also, we have that g(j − d) > g(j). Combining the last two inequalities we have
that Π(g(j − d), g(i), g(j)) = 312, contradicting that the sequence is not decreasing.

Claim 7.5. The values of the sequence {g(i)}i∈D are all smaller than the values of {g(j)}j∈U .

We begin when i and j are close to each other, that is, when i < j < i + d, i ∈ D and j ∈ U .
Assume that g(i) > g(j). Then we have the string of inequalities g(i− d) > g(i) > g(j) > g(j − d)
implying that Π(g(i−d), g(j−d), g(i)) = 312, a contradiction. Hence, we conclude that g(i) < g(j).
Now pick i′ ∈ D and j′ ∈ U . If i′ < j′ let i = i′ and j = j′ − d · b(j′ − i′)/dc. If i′ > j′ let
i = i′−d·d(i′−j′)/de and j = j′. (Here b·c and d·e are the usual floor and ceiling functions.) In both
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cases we have i ∈ D, j ∈ U and i < j < i+d. Furthermore, we have that g(i′) ≤ g(i) < g(j) ≤ g(j′),
proving the claim.

Now assume that D is non-empty. The case when D is empty requires an extra argument,
which we postpone to the end of this section. Pick p1 to be an element in the set D. Decompose
the interval [p1, p1 + d− 1] of cardinality d into smaller intervals, according to the rules:

(d) If i ∈ D∩ [p1, p1 +d−1] then let the singleton {i} = [i, i] be an interval in the decomposition.
Moreover, enrich this singleton with the symbol D.

(u) If i ≤ j, i − 1, j + 1 ∈ D and [i, j] ⊆ U ∩ [p1, p1 + d − 1] then we use the argument at the
end of Section 3 to decompose the interval [i, j] into smaller intervals, each enriched with
an indecomposable 312-avoiding permutation. That is, we use the permutation Π(g(i), g(i+
1), . . . , g(j)) to decompose the interval.

Let the decomposition of the interval [p1, p1 + d − 1] be {[p1, q1], [p2, q2], . . . , [p`, q`]}, where qi +
1 = pi+1. Extend this decomposition to a decomposition {[pi, qi]}i∈Z of the integers Z by letting
pi+` = pi + d and qi+` = qi + d. Note that under the quotient map Z −→ Zd we obtain a cyclic
composition.

Claim 7.6. If the intervals [pi, qi] and [pk, qk] are not enriched with the symbol D, i < k, x ∈ [pi, qi]
and z ∈ [pk, qk] then we have g(x) < g(z).

First assume that z − x ≤ d. If there is no interval [pj , qj ] between these two intervals (i <
j < k) which is enriched with the symbol D then the inequality follows by the decomposition
into indecomposable permutations in part (u) above. If there is an interval [pj , qj ] in between
which is enriched with the symbol D, then consider the pattern Π(g(x), g(pj), g(z)). Since [pj , qj ]
is enriched by D we have that g(pj) < g(x) and g(pj) < g(z). Hence, if g(x) > g(z), we obtain
the pattern 312, a contradiction. Finally, if z − x > d, we obtain the inequality by using that U
consists of the increasing sequences.

The last claim states that we do not lose information if we view the permutation enriching
the interval [pi, qi] as a bijection on this interval. The resulting composition, viewed as a cyclic
composition with its enrichment, is the inverse image of the map Φ.

When the set D is empty, we need to be more careful to show that the sequence g has a cut-
point. We will use an argument similar to that in the second proof of Corollary 4.3. However, there
is an added complication since all we know is that g is locally 312-avoiding. By condition (7.1) we
have the following lemma.

Lemma 7.7. Assume that j < k and g(j) > g(k). Then there is a chain j = j0 < j1 < · · · < j` = k
such that g(j0) > g(j1) > · · · > g(j`) and jh+1 − jh ≤ n for all indices h.

Proof. When we selected the value of g(j`), we picked this value in an interval (a, b) where b was
one of the values from the list g(j` − n), . . . , g(j` − 2), g(j` − 1). Hence, let j`−1 be the index such
that g(j`−1) = b.

Assume that g(j) < g(j`−1). Condition (7.1) states that we picked g(j`) as large as possible in
the interval (a, b). Hence, the assumption g(j) < g(j`−1) implies that g(j) < g(j`), a contradiction.
We conclude that g(j) > g(j`−1). By iterating this argument we obtain the chain.

Now the argument is the same as in the second proof of Corollary 4.3, except in the case when
we use the 312-avoidance. That is, we have picked (i, g(i)) as a minimal element in the poset P
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and (j, g(j)) to be an element larger than or equal to the minimal element (i, g(i)) maximizing the
second coordinate. Observe that i − j ≤ d. The local 312-avoidance condition implies that the
poset order between (i, g(i)) and (j, g(j)) is a chain. That is, we have the string of inequalities
g(j) > g(j + 1) > · · · > g(i− 1) > g(i).

The remaining case is to show that there is no index k such that i < k and g(i) < g(k) < g(j).
First pick j′ in the interval [j, i− 1] such that g(j′+ 1) < g(k) < g(j′). Next use Lemma 7.7 to pick
the first element of the chain j′1 such that j′ < j′1 ≤ j′ + n and g(j′ + 1) < g(j′1) < g(j′). However,
this is a 312-pattern, contradicting the assumption that there is such a k. Hence, we conclude that
the sequence g has a cut-point.

Let the cut-point be p1 − 1. Consider the composition of the interval [p1, p1 + d− 1] consisting
of one part. That is, this part is the interval [p1, p1 + d − 1]. Now, in a way similar to part (u)
above, we decompose this interval into smaller intervals, each enriched with an indecomposable 312-
avoiding permutations using the permutation Π(g(p1), g(p1 + 1), . . . , g(p1 +d− 1)). This completes
the inverse of Φ in the case when the set D is empty.

8 Open problems

In conclusion, we list a few open problems.

Question 8.1. The sequence 1
d

∑
e|d µ (d/e)

(
2e
e

)
from Theorem 5.2 appears in the On-Line Ency-

clopedia of Integer Sequences [11] as sequence A060165. It has been previously studied by Puri and
Ward [12, 13]. When q is a prime power, the number of monic irreducible polynomials of degree d
in GF (q)[x] is given by (1.1). Is there a similar algebraic interpretation for the numbers occurring
in Theorem 5.2?

Question 8.2. Can the number of d-cycles in the graph G(n, 321) be determined? Equivalently,
what is the number of closed walks in G(n, 321) of length d? Of course, the same question can be
asked for any set of patterns of length 3 or more, as well as for the entire graph G(n).

Question 8.3. One of the earliest results on De Bruijn graphs is that the number of complete
cycles, also known as Eulerian cycles, is given by

(q!)q
n−1

qn
.

This result goes back to 1894 by Flye Sainte-Marie [9] in the case when q = 2 and the general case
to van Aardenne-Ehrenfest and De Bruijn [1]. Is there an analogous result for the graph G(n) of
overlapping permutations? It seems, from the small examples we have studied, that the number
of complete cycles in the graph of overlapping permutations has small prime factors, which gives
hope that there is an explicit formula.

Question 8.4. Observe that G(n, 312) does not have any complete cycles since there are vertices
with different out- and indegrees. Hence, it is natural to ask: For which sets S of patterns do
all vertices in the graph G(n, S) have the same out- and indegree? Also, what is the number of
complete cycles in these graphs?

Question 8.5. Lastly, it would be interesting to find bijective proofs of Lemmas 3.3 and 3.4.
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