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Abstract. In 1961, Erdős asked whether or not there exist words of
arbitrary length over a fixed finite alphabet that avoid patterns of the
form XX ′ where X ′ is a permutation of X (called abelian squares). This
problem has since been solved in the affirmative in a series of papers
from 1968 to 1992. Much less is known in the case of abelian k-th powers,
i.e., words of the form X1X2 . . . Xk where Xi is a permutation of X1 for
2 ≤ i ≤ k. In this paper, we consider crucial words for abelian k-th pow-
ers, i.e., finite words that avoid abelian k-th powers, but which cannot be
extended to the right by any letter of their own alphabets without creat-
ing an abelian k-th power. More specifically, we consider the problem of
determining the minimal length of a crucial word avoiding abelian k-th
powers. This problem has already been solved for abelian squares by Ev-
dokimov and Kitaev [6], who showed that a minimal crucial word over an
n-letter alphabet An = {1, 2, . . . , n} avoiding abelian squares has length
4n − 7 for n ≥ 3. Extending this result, we prove that a minimal crucial
word over An avoiding abelian cubes has length 9n−13 for n ≥ 5, and it
has length 2, 5, 11, and 20 for n = 1, 2, 3, and 4, respectively. Moreover,
for n ≥ 4 and k ≥ 2, we give a construction of length k2(n−1)−k−1 of
a crucial word over An avoiding abelian k-th powers. This construction
gives the minimal length for k = 2 and k = 3.
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1 Introduction

Let An = {1, 2, . . . , n} be an n-letter alphabet and let k ≥ 2 be an integer. A
word W over An contains a k-th power if W has a factor of the form Xk =
XX . . . X (k times) for some non-empty word X . A k-th power is trivial if X is
a single letter. For example, the word V = 13243232323243 contains the (non-
trivial) 4-th power (32)4 = 32323232. A word W contains an abelian k-th power

if W has a factor of the form X1X2 . . . Xk where Xi is a permutation of X1

for 2 ≤ i ≤ k. The cases k = 2 and k = 3 give us (abelian) squares and cubes,
respectively. For instance, the preceding word V contains the abelian square
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43232 32324 and the word 123 312 213 is an abelian cube. A word is (abelian)
k-power-free if it avoids (abelian) k-th powers. For example, the word 1234324
is abelian cube-free, but not abelian square-free since it contains the abelian
square 234 324.

A word W over An is crucial with respect to a given set of prohibited words

(or simply prohibitions) if W avoids the prohibitions, but Wx does not avoid
the prohibitions for any x ∈ An. A minimal crucial word is a crucial word of
the shortest length. For example, the word W = 21211 (of length 5) is crucial
with respect to abelian cubes since it is abelian cube-free and the words W1 and
W2 end with the abelian cubes 111 and 21 21 12, respectively. Actually, W is a
minimal crucial word over {1, 2} with respect to abelian cubes. Indeed, one can
easily verify that there does not exist any crucial abelian cube-free words over
{1, 2} of length less than 5.

Abelian squares were first introduced by Erdős [4], who asked whether or
not there exist words of arbitrary length over a fixed finite alphabet that avoid
factors of the form XX ′ where X ′ is a permutation of X . This question has
since been solved in the affirmative; see for instance [2, 5, 7, 9] for work in this
direction. Problems of this type were also considered by Zimin [10], who used
the following sequence of words as a key tool.

The Zimin word Zn over An is defined recursively as follows: Z1 = 1 and
Zn = Zn−1nZn−1 for n ≥ 2. The first four Zimin words are:

Z1 = 1, Z2 = 121, Z3 = 1213121, Z4 = 121312141213121.

The k-generalised Zimin word Zk
n = Xn is defined as

X1 = 1k−1 = 11 . . . 1, Xn = (Xn−1n)k−1Xn−1 = Xn−1nXn−1n . . . nXn−1

where the number of 1’s, as well as the number of n’s, is k − 1. Thus Zn = Z2
n.

It is easy to see that Zk
n avoids (abelian) k-th powers and it has length kn − 1.

Moreover, it is known that Zk
n gives the length of a minimal crucial word avoiding

k-th powers.
However, in the case of abelian powers the situation is not as well studied.

Crucial abelian square-free words (also called left maximal abelian square-free

words) of exponential length are given in [3] and [6], and it is shown in [6] that
a minimal crucial abelian square-free word over an n-letter alphabet has length
4n − 7 for n ≥ 3.

In this paper, we extend the study of crucial abelian k-power-free words to
the case of k > 2. In particular, we provide a complete solution to the problem
of determining the length of a minimal crucial abelian cube-free word (the case
k = 3) and we conjecture a solution in the general case. More precisely, we show
that a minimal crucial word over An avoiding abelian cubes has length 9n− 13
for n ≥ 5 (Corollary 1), and it has length 2, 5, 11, and 20 for n = 1, 2, 3, and 4,
respectively. For n ≥ 4 and k ≥ 2, we give a construction of length k2(n−1)−k−1
of a crucial word over An avoiding abelian k-th powers (see Theorem 5). This
construction gives the minimal length for k = 2 and k = 3, and we conjecture
that this is also true for any k ≥ 4 and sufficiently large n. We also provide



3

a rough lower bound for the length of minimal crucial words over An avoiding
abelian k-th powers, for n ≥ 5 and k ≥ 4 (see Theorem 6).

We let ℓk(n) denote the length of a minimal crucial abelian k-power-free word
over An and we denote by |W | the length of a word W . For a crucial word X

over An, we let X = Xi∆i, where ∆i is the minimal factor such that ∆ii is a
prohibition. Note that we can rename letters, if needed, so we can assume that
for any minimal crucial word X , one has

∆1 ⊂ ∆2 ⊂ · · · ⊂ ∆n = X

where “⊂” means (proper) right factor (or suffix). In other words, ∆i = Yi∆i−1

for each i = 2, 3, . . . , n and Yi is not empty. In what follows we will use Xi and
Yi as stated above. We note that the definitions imply:

X = Xi∆i = XiYi∆i−1 = Xn−1Yn−1Yn−2 . . . Y2∆1,

for any i = 2, 3, . . . , n − 1. Furthermore, assuming we consider k-th powers, we
write ∆ii = Ωi,1Ωi,2 . . . Ωi,k, where the k blocks Ωi,j are equal up to permutation,
and we denote by Ω′

i,k the block Ωi,k without the rightmost i.

2 Crucial Words for Abelian Cubes

2.1 An Upper Bound for ℓ3(n)

The fact that the 3-generalised Zimin word Z3
n is crucial with respect to abelian

cubes already gives us an upper bound of 3n − 1 for ℓ3(n). In Theorem 1 below
we improve this upper bound to 3 · 2n−1 − 1. We then give a construction of a
crucial abelian cube-free word over An of length 9n − 13, which coincides with
the lower bound given in Theorem 3 of Sec. 2.2 for n ≥ 5.

Theorem 1. One has that ℓ3(n) ≤ 3 · 2n−1 − 1.

Proof. We construct a crucial abelian cube-free word X = Xn iteratively as
follows. Set X1 = 11 and assume Xn−1 has been constructed. Then do the
following:

1. Increase all letters of Xn−1 by 1 to obtain X+

n−1.

2. Insert 1 after (to the right of) each letter of X+

n−1 and adjoin one extra 1 to
the right of the resulting word to get Xn.

For example, X2 = 21211, X3 = 31213121211, etc. It is easy to verify that
|Xn| = 3 ·2n−1−1. We show by induction that Xn avoids abelian cubes, whereas
Xnx does not avoid abelian cubes for any x ∈ An. Both claims are trivially true
for n = 1. Now take n ≥ 2. If Xn contains an abelian cube, then removing
1’s from it, we would deduce that Xn−1 must also contain an abelian cube,
contradicting the fact that Xn−1 contains no abelian cubes.

It remains to show that extending Xn to the right by any letter x from An

creates an abelian cube. If x = 1 then we get 111 from the construction of Xn.
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On the other hand, if x > 1 then we swap the rightmost 1 with the rightmost
x in Xx, thus obtaining a word where every other letter is 1; removing all 1’s
and decreasing each of the remaining letters by 1, we have Xn−1(x − 1), which
contains an abelian cube (by the induction hypothesis). ⊓⊔

Remark 1. We observe that the “greedy” construction used in the proof of above
theorem yields minimal crucial abelian cube-free words over An of lengths 2,
5, 11 for n = 1, 2, 3, respectively. For n = 4, one can verify that a mini-
mal crucial word avoiding abelian cubes has length 20. For example, the word
41213124213121312211 is a minimal crucial word with respect to abelian cubes.

A construction giving the best possible upper bound for n ≥ 5 can be easily
described by examples, and we do this below (for n = 4, 5, 6, 7; the construction
does not work for n ≤ 3). We also provide a general description. The pattern in
the construction is easy to recognise.

An optimal construction for crucial abelian cube-free words. The con-
struction of the word En for n = 4, 5, 6, 7 works as follows. We use spaces to
separate the blocks Ωn,1, Ωn,2, and Ω′

n,3 in En = ∆n for a more pleasing visual
representation.

E4 = 34423311 34231134 3233411

E5 = 45534423311 45342311345 4323344511

E6 = 56645534423311 56453423113456 5432334455611

E7 = 67756645534423311 67564534231134567 6543233445566711

In general, the block Ωn,1 in En = ∆n = Ωn,1Ωn,2Ω
′

n,3 is built by adjoining
the factors i(i+1)(i+1) for i = n−1, n−2, . . . , 2, followed by two 1’s. The block
Ωn,2 is built by adjoining the following factors: i(i+1) for i = n−1, n−2, . . . , 2,
followed by 11, and then the factor 34 . . . (n−1)n. Finally, the block Ω′

n,3 is built
by adjoining the factors (n−1)(n−2) . . . 32, then xx for 3 ≤ x ≤ n−1, followed
by n, and finally two 1’s.

By construction, we have

En = Ωn,1Ωn,2Ω
′

n,3

where Ωn,3 = Ω′

n,3n and each Ωn,i contains two 1’s, one 2, two n’s, and three
x’s for x = 3, . . . , n − 1. Hence, it is easy to see that |En| = 9n − 13. The fact
that En is crucial with respect to abelian cubes is proved in Theorem 5 where
one needs to set k = 3. Thus, a minimal crucial word avoiding abelian cubes has
length at most 9n− 13 for n ≥ 4. That is:

Theorem 2. For n ≥ 4, we have ℓ3(n) ≤ 9n − 13.

Proof. See the proof of Theorem 5 where one needs to set k = 3 (in view of
Remark 4, later). ⊓⊔
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2.2 A Lower Bound for ℓ3(n)

If X = ∆n is a crucial word with respect to abelian cubes, then clearly the
number of occurrences of each letter except n must be divisible by 3, whereas
the number of occurrences of n is 2 modulo 3. We sort in non-decreasing order the
number of occurrences of the letters 1, 2, . . . , n− 1 in X to get a non-decreasing
sequence of numbers (a1 ≤ a2 ≤ . . . ≤ an−1). Notice that ai does not necessarily
correspond to the letter i. We denote by a0 the number of occurrences of the
letter n. Also note that a0 can be either larger or smaller than a1. By definitions,
|X | =

∑n−1

i=0
ai.

The word En of length 9n − 13 in Sec. 2.1 has the following sequence of
ai’s: (a0, a1, . . . , an−1) = (5, 3, 6, 9, . . . , 9). In this subsection, we prove that this
sequence cannot be improved for n ≥ 5, meaning that, e.g., 5 cannot be replaced
by 2, and/or 6 cannot be replaced by 3, and/or 9(’s) cannot be replaced by 3(’s)
or 6(’s), no matter what construction we use to form a crucial word. This is a
direct corollary to the following four lemmas and is recorded in Theorem 3. In
the next four lemmas we use, without explanation, the following facts that are
easy to see from the definitions. For any letter x in a crucial abelian cube-free
word X :

– the number of occurrences of x in ∆x is 2 modulo 3 and the number of
occurrences of any other letter, if any, in ∆x is divisible by 3;

– if x + 1 exists, then Yx+1 in ∆x+1 = Yx+1∆x contains 2 modulo 3 copies of
x + 1 and 1 modulo 3 occurrences of x, whereas the number of occurrences
of any other letter, if any, in Yx+1 is divisible by 3.

Abusing notions, we think sometimes of words as sets, and use “∈” and “⊆”
for “occur(s)” when the relative order of letters is not important in the argument.

Lemma 1. For a crucial abelian cube-free word X, |X | ≥ 3, the sequence of

ai’s cannot contain 3,3. That is, (a1, a2) 6= (3, 3).

Proof. Suppose that x and y, with x < y < n, are two letters occurring in X

exactly 3 times (each). We let A1 = YnYn−1 . . . Yy+1 and A2 = YyYy−1 . . . Yx+1 so
that we have X = A1A2∆x. We must have the following distribution of x’s and
y’s: y ∈ A1, {x, y, y} ⊆ A2, and {x, x} ⊆ ∆x. However, we get a contradiction,
since each of the blocks Ωn,2 and Ω′

n,3 in X = ∆n = Ωn,1Ωn,2Ω
′

n,3 must receive
one copy of x and one copy of y, which is impossible (no x can exist between
the two rightmost y’s). ⊓⊔

Lemma 2. For a crucial abelian cube-free word X, |X | ≥ 4, the sequence of

ai’s cannot contain 6,6,6.

Proof. We first prove the following fact.

A useful fact: If x and y, with x < y < n, are two letters occurring in X

exactly 6 times (each), then ∆x cannot contain 5 copies of x. Indeed, if this were
the case, then assuming A1 = YnYn−1 . . . Yy+1 and A2 = YyYy−1 . . . Yx+1 giving
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X = A1A2∆x, we have that A1A2 has exactly one x and at least three y’s,
contradicting the fact that each of the blocks Ωn,1, Ωn,2, and Ω′

n,3 must receive
two x’s and two y’s.

Suppose that x, y, and z, with x < y < z < n, are three letters occurring in
X exactly 6 times (each). We let A1 = YnYn−1 . . . Yz+1, A2 = YzYz−1 . . . Yy+1,
and A3 = YyYy−1 . . . Yx+1 so that X = A1A2A3∆x. The minimal requirements
on the Ai are as follows: z ∈ A1, {z, z, y} ⊆ A2, {y, y, x} ⊆ A3. Moreover, using
the useful fact above applied to x and y, ∆x contains exactly two copies of x. The
useful fact applied to y and z guarantees that A1A2 contains 4 y’s (in particular,
∆x does not contain any y’s).

Looking at X = ∆n = Ωn,1Ωn,2Ω
′

n,3, we see that each of the blocks Ωn,1,
Ωn,2, and Ω′

n,3 must receive 2 x’s, 2 y’s, and 2 z’s. Thus, in A3, we must have
the following order of letters: x, y, y and the boundary between Ωn,2 and Ω′

n,3

must be between x and y in A3. But then ∆x entirely belongs to Ω′

n,3, so it
cannot contain any z’s (if it would do so, ∆x would then contain 3 z’s which is
impossible). On the other hand, (exactly) 3 z’s must be in A3 for Ω′

n,3 to receive
2 z’s. Thus, ∆y contains 2 y’s, 3 z’s and 3 x’s which is impossible by Lemma 1
applied to the word ∆y with two letters occurring exactly 3 times (alt ernatively,
one can see, due to the considerations above, that no z can be between the two
rightmost x’s contradicting the structure of ∆y). ⊓⊔

Lemma 3. For a crucial abelian cube-free word X, |X | ≥ 4, the sequence of

ai’s cannot contain 3,6,6.

Proof. Suppose that x occurs exactly 3 times and y and z occur exactly 6 times
(each) in X . We consider three cases covering all the possibilities up to renaming
y and z.

Case 1: z < y < x < n. One can see that ∆y does not contain x, but it contains
at least 3 z’s contradicting the fact that each of Ωn,1, Ωn,2, and Ω′

n,3 must
receive 1 x and 2 z’s.

Case 2: x < z < y < n. We let A = YnYn−1 . . . Yz+1 so that X = A∆z . All
three x’s must be in ∆z , while A must contain at least 3 y’s contradicting
the fact that each of the blocks Ωn,1, Ωn,2, and Ω′

n,3 must receive 1 x and 2
y’s.

Case 3: z < x < y < n. We let A1 = YnYn−1 . . . Yy+1, A2 = YyYy−1 . . . Yx+1,
and A3 = YxYx−1 . . . Yz+1 so that X = A1A2A3∆z . The minimal require-
ments on the Ai and ∆z are as follows: y ∈ A1, {x, y, y} ⊆ A2, {z, x, x} ⊆ A3,
and {z, z} ⊆ ∆z. The remaining 3 y’s cannot be in ∆z so as not to contradict
the structure of ∆x (it would not be possible to distribute x’s and y’s in a
proper way). However, if the remaining 3 y’s are in A3 then, not to contra-
dict the structure of ∆x (no proper distribution of y’s and z’s would exist),
the remaining 3 z’s must be in ∆x, which contradicts to the structure of
X = ∆n = Ωn,1Ωn,2Ω

′

n,3 (no proper distribution of y’s and z’s would exist
among the blocks Ωn,1, Ωn,2, and Ω′

n,3, each of which is supposed to have
exactly 2 copies of y and 2 copies of z). Thus, there are no y’s in ∆x, con-
tradicting the structure of ∆n (no proper distribution of y’s and x’s would
exist among the blocks Ωn,1,Ωn,2, and Ω′

n,3). ⊓⊔
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Lemma 4. For a crucial abelian cube-free word X, |X | ≥ 5,

(a0, a1, a2, a3, a4) 6= (2, 3, 6, 9, 9).

Proof. Suppose that n occurs twice in X and assume that a letter t occurs exactly
3 times. If t 6= n−1, then all three occurrences of t are in ∆n−1 whereas the two
occurrences of n are in Yn (recall that X = ∆n = Yn∆n−1). This contradicts the
fact that Ωn,1 must contain 1 copy of n and 1 copy of t. Thus, the letter n − 1
occurs exactly 3 times.

Now, assuming x, y, and z, with x < y < z < n − 1, are three letters
occurring in X {6, 9, 9} times (we do not specify which letter occurs how many
times), we have, similar to the proof of Lemma 4, that ∆z entirely belongs to
Ω′

n,3. Moreover, the block Ω′

n,3 has 2,3,3 occurrences of letters x, y, z (in some
order). However, if x or y occur twice in Ω′

n,3, they occur twice in ∆z leading
to a contradiction with ∆z ’s structure. Thus z must occur twice in Ω′

n,3, and x

and y occur 3 times (each) in Ω′

n,3. But then it is clear that x and y must occur
3 times (each) in ∆z , contradicting the fact that x and z cannot be distributed
properly in ∆z . ⊓⊔

Theorem 3. For n ≥ 5, we have ℓ3(n) ≥ 9n − 13.

Proof. This is a direct corollary to the preceding four lemmas, which tell us that
any attempt to decrease numbers in the sequence (5, 3, 6, 9, 9, . . .) corresponding
to En will lead to a prohibited configuration. ⊓⊔

Corollary 1. For n ≥ 5, we have ℓ3(n) = 9n− 13.

Proof. The result follows immediately from Theorems 2 and 3. ⊓⊔

Remark 2. Recall from Remark 1 that ℓ3(n) = 2, 5, 11, 20 for n = 1, 2, 3, 4,
respectively. For instance, the word 42131214231211321211 is a minimal crucial
abelian cube-free word of length 20 (= 2 + 3 + 6 + 9). This can be proved using
similar arguments as in the proofs of the Lemmas 1–4.

3 Crucial Words for Abelian k-th Powers

3.1 An Upper Bound for ℓk(n) and a Conjecture

The following theorem is a direct generalisation of Theorem 1 and is a natural
approach to obtaining an upper bound that improves kn − 1 given by the k-
generalised Zimin word Zk

n.

Theorem 4. For k ≥ 3, we have ℓk(n) ≤ k · (k − 1)n−1 − 1.

Proof. We proceed as in the proof of Theorem 1, with the only difference being
that we put k− 2 1’s to the right of each letter and one extra 1 as the rightmost
one. ⊓⊔
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We skip here the analysis of the work of a greedy algorithm, and proceed
directly with the construction of a crucial abelian k-power-free word Dn,k that
we believe to be optimal.

A construction of a crucial abelian k-power-free word Dn,k, where
n ≥ 4 and k ≥ 2. As we shall see, the following construction of the word Dn,k

is optimal for k = 2, 3. We believe that it is also optimal for any k ≥ 4 and
sufficiently large n (see Conjecture 1).

As our basis for the construction of the word Dn,k, we use the following word
Dn,2 = Dn, which is constructed as follows, for n = 4, 5, 6, 7. (As previously, we
use spaces to separate the blocks Ωn,1 and Ω′

n,2 in Dn = ∆n.)

D4 = 34231 3231

D5 = 4534231 432341

D6 = 564534231 54323451

D7 = 67564534231 6543234561

In general, the first block Ωn,1 in Dn = ∆n = Ωn,1Ω
′

n,2 is built by adjoining
the factors i(i + 1) for i = n − 1, n − 2, . . . , 2, followed by the letter 1. The
second block Ω′

n,2 is built by adjoining the factors (n − 1)(n − 2) . . . 432, then
34 . . . (n − 2)(n − 1), and finally the letter 1.

Remark 3. The above construction coincides with the construction given in [6,
Theorem 5] for a minimal crucial abelian square-free word over An of length
4n − 7. In fact, the word Dn can be obtained from the minimal crucial abelian
cube-free word En (defined in Sec. 2.1) by removing the second block in En and
deleting the rightmost copy of each letter except 2 in the first and third blocks
of En.

Now we illustrate each step of the construction for the word Dn,k by example,
letting n = 4 and k = 3. The construction can be explained directly, but we
introduce it recursively, obtaining Dn,k from Dn,k−1 for n ≥ 4, and using the
crucial abelian square-free word Dn,2 = Dn as the basis. For n = 4,

D4,2 = Ω4,1Ω
′

4,2 = 34231 3231.

Assume that Dn,k−1 = Ωn,1Ωn,2 . . . Ω′

n,k−1 is constructed and implement the
following steps to obtain Dn,k:

1. Duplicate Ωn,1 in Dn,k−1 to obtain the word

D′

n,k−1 = Ωn,1Ωn,1Ωn,2 . . . Ω′

n,k−1.

For n = 4 and k = 3, D′

4,3 = 34231 34231 3231.
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2. Append to the second Ωn,1 in D′

4,3 the factor 134 . . . n (in our example, 134;
in fact, any permutation of {1, 3, 4, . . . , n} would work at this place) to obtain
Ωn,2 in Dn,k. In each of the remaining blocks Ωn,i in D′

n,k−1, duplicate the
rightmost occurrence of each letter x, where 1 ≤ x ≤ n − 1 and x 6= 2.
Finally, in the last block of D′

n,k insert the letter n immediately before the
leftmost 1 to obtain the word Dn,k. For n = 4 and k = 3, we have

D4,3 = 34423311 34231134 3233411.

We provide five more examples here, namely D5,3, D5,4, D4,4, D4,5, and D6,4,
respectively, so that the reader can check their understanding of the construc-
tion:

45534423311 45342311345 4323344511;

455534442333111 455344233111345 453423111334455 43233344455111;

34442333111 34423311134 34231113344 3233344111;

34444233331111 34442333111134 34423311113344 34231111333444 3233334441111;

5666455534442333111 5664553442331113456 5645342311133445566 543233344455566111.

Remark 4. By construction, Dn,3 = En for all n ≥ 4.

Theorem 5. For n ≥ 4 and k ≥ 2, we have ℓk(n) ≤ k2(n − 1) − k − 1.

Proof. Fix n ≥ 4 and k ≥ 2. By construction, we have

Dn,k = Ωn,1Ωn,2 . . . Ωn,k−1Ω
′

n,k

where Ωn,k = Ω′

n,kn and each Ωn,i contains (k−1) occurrences of the letter 1, one
occurrence of the letter 2, (k − 1) occurrences of the letter n, and k occurrences
of the letter x for x = 3, 4, . . . , n − 1. Hence, it is easy to see that |Dn,k| =
k2(n − 1) − k − 1. We prove that Dn,k is crucial with respect to abelian k-th
powers; whence the result. The following facts, which are easily verified from the
construction of Dn,k, will be useful in the proof.

Fact 1. In every block Ωn,i, the letter 3 has occurrences before and after the
single occurrence of the letter 2.

Fact 2. In every block Ωn,i, all (k−1) of the 1’s occur after the single occurrence
of the letter 2 (as the factor 1k−1 = 11 . . . 1).

Fact 3. For all i with 2 ≤ i ≤ k − 1, the block Ωn,i ends with ni−1 = nn · · ·n
(i− 1 times) and the other (k− 1− i + 1) n’s occur (together as a string) before
the single occurrence of the letter 2 in Ωn,i. In particular, there are exactly k−2
occurrences of the letter n between successive 2’s in Dn,k.

Freeness: First we prove that Dn,k is abelian k-power-free. Obviously, by con-
struction, Dn,k is not an abelian k-th power (as the number of occurrences of
the letter n is not a multiple of k) and Dn,k does not contain any trivial k-th
powers, i.e., k-th powers of the form xk = xx . . . x (k times) for some letter x.
Moreover, each block Ωn,i is abelian k-power-free. For if not, then according to
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the frequencies of the letters in the blocks, at least one of the Ωn,i must contain
an abelian k-th power consisting of exactly k occurrences of the letter x for all
x = 3, 4, . . . , n − 1 and no occurrences of the letters 1, 2, and n. But, by con-
struction, this is impossible because, for instance, the letter 3 has occurrences
before and after the letter 2 in each of the blocks Ωn,i in Dn,k (by Fact 1).

Now suppose, by way of contradiction, that Dn,k contains a non-trivial
abelian k-th power, P say. Then it follows from the preceding paragraph that
P overlaps at least two of the blocks Ωn,i in Dn,k. We first show that P cannot
overlap three or more of the blocks in Dn,k. For if so, then P must contain at
least one of the blocks, and hence P must also contain all k of the 2’s. Further-
more, all of the 1’s in each block occur after the letter 2 (by Fact 2), so there
are (k − 1)2 = k2 − 2k + 1 occurrences of the letter 1 between the leftmost and
rightmost 2’s in Dn,k. Thus, P must contain all k(k − 1) = k2 − k of the 1’s.
Hence, since Ω′

n,k ends with 1k−1 = 11 . . . 1 (k − 1 times), we deduce that P

must end with the word

W = 23k−11k−1Ωn,2 . . . Ωn,k−1Ω
′

n,k,

which contains k of the n’s, k(k − 1) + (k − 1) = k2 − 1 of the 3’s, and k(k − 1)
occurrences of the letter x for x = 4, . . . , n − 1. It follows that P must contain
all k2 of the 3’s. But then, since

Dn,k = (n − 1)nk−1 . . . 34k−1W

(by construction), we deduce that P must contain all k2 of the 4’s that occur
in Dn,k, and hence all k2 of the 5’s, and so on. That is, P must contain all k2

occurrences of the letter x for x = 3, . . . , n − 1; whence, since Dn,k begins with
the letter n − 1, we have P = Ωn,1Ωn,2 · · ·Ωn,k = Dn,k, a contradiction.

Thus, P overlaps exactly two adjacent blocks in Dn,k, in which case P cannot
contain the letter 2; otherwise P would contain all k of the 2’s, and hence would
overlap all of the blocks in Dn,k, which is impossible (by the preceding argu-
ments). Hence, P lies strictly between two successive occurrences of the letter
2 in Dn,k. But then P cannot contain the letter n as there are exactly k − 2
occurrences of the letter n between successive 2’s in Dn,k (by Fact 3). There-
fore, since the blocks Ωn,i with 2 ≤ i ≤ k − 1 end with the letter n, it follows
that P overlaps the blocks Ωn,1 and Ωn,2. Now, by construction, Ωn,1 ends with
1k−1 = 11 . . . 1 (k − 1 times), and hence P contains k of the 2(k − 1) = 2k − 2
occurrences of the letter 1 in Ωn,1Ωn,2. But then P must contain the letter 2
because Ωn,1 contains exactly (k−1) occurrences of the letter 1 (as a suffix) and
all (k− 1) of the 1’s in Ωn,2 occur after the letter 2 (by Fact 2); a contradiction.

We have now shown that Dn,k is abelian k-power-free. It remains to show
that Dn,kx ends with an abelian k-th power for each letter x = 1, 2, . . . , n.

Cruciality: By construction, Dn,kn is clearly an abelian k-th power. It is also
easy to see that Dn,k1 ends with the (abelian) k-th power ∆11 := 11 . . .1 (k
times). Furthermore, for all m = n, n−1, . . . , 4, we deduce from the construction
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that

Ωm,1 = (m − 1)mk−1Ωm−1,1,

Ωm,2 = (m − 1)mk−2Ωm−1,2m,

...

Ωm,k−2 = (m − 1)m2Ωm−1,k−2m
k−3,

Ωm,k−1 = m(m − 1)Ωm−1,k−1m
k−2,

Ω′

m,k = (m − 1)Ω′

m−1,k[1k−1]−1(m − 1)mk−21k−1,

where Ω′

m−1,k[1k−1]−1 indicates the deletion of the suffix 1k−1 of Ω′

m−1,k.
Consequently, for x = n − 1, n − 2, . . . , 3, 2, the word Dn,kx ends with the

abelian k-th power ∆x given by

∆x+1 = x(x + 1)k−1∆x where ∆n = Dn,k.

⊓⊔

Observe that |Dn,2| = 4n − 7 and |Dn,3| = 9n − 13. Hence, since Dn,k is a
crucial abelian k-power-free word (by the proof of Theorem 5), it follows from [6,
Theorem 5] and Corollary 1 that the words Dn,2 and Dn,3 are minimal crucial
words over An avoiding abelian squares and abelian cubes, respectively. That
is, for k = 2, 3, the word Dn,k gives the length of a minimal crucial word over
An avoiding abelian k-th powers. In the case of k ≥ 4, we make the following
conjecture.

Conjecture 1. For k ≥ 4 and sufficiently large n, the length of a minimal crucial
word over An avoiding abelian k-th powers is given by k2(n − 1) − k − 1.

3.2 A Lower Bound for ℓk(n)

A trivial lower bound for ℓk(n) is nk−1 as all letters except n must occur at least
k times, whereas n must occur at least k − 1 times. We give here the following
slight improvement of the trivial lower bound, which must be rather imprecise
though.

Theorem 6. For n ≥ 5 and k ≥ 4, we have ℓk(n) ≥ k(3n − 4) − 1.

Proof. Notice that in proving Lemmas 1–4 we do not use the fact that one deals
with abelian cube-free words, which we use to obtain a lower bound for ℓk(n).
Indeed, assuming that X is a crucial word over the n-letter alphabet An with
respect to abelian k-th powers (k ≥ 4), we see that adjoining any letter from An

to the right of X must create a cube as a factor from the right. In particular,
adjoining n from the right side leads to creating a cube of length at least 9n−13
(by Lemmas 1–4). This cube will be Ωn,k−2Ωn,k−1Ω

′

n,k in X and thus Ωn,i, for
1 ≤ i ≤ k − 1, will have length at least 3n− 4, whereas Ω′

n,k has length at least
3n − 5, which yields the result. ⊓⊔
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4 Further Research

1. Prove or disprove Conjecture 1. Notice that the general construction uses a
greedy algorithm for going from k − 1 to k, which does not work for going
from n−1 to n for a fixed k. However, we believe that the conjecture is true.

2. A word W over An is maximal with respect to a given set of prohibitions if
W avoids the prohibitions, but xW and Wx do not avoid the prohibitions
for any letter x ∈ An. For example, the word 323121 is a maximal abelian
square-free word over {1, 2, 3} of minimal length. Clearly, the length of a min-
imal crucial word with respect to a given set of prohibitions is at most the
length of a shortest maximal word. Thus, obtaining the length of a minimal
crucial word we get a lower bound for the length of a shortest maximal word.

Can we use our approach to tackle the problem of finding maximal words
of minimal length? In particular, Korn [8] proved that the length ℓ(n) of a
shortest maximal abelian square-free word over An satisfies 4n− 7 ≤ ℓ(n) ≤
6n − 10 for n ≥ 6, while Bullock [1] refined Korn’s methods to show that
6n − 29 ≤ ℓ(n) ≤ 6n − 12 for n ≥ 8. Can our approach improve Bullock’s
result (probably too much to ask when taking into account how small the
gap is), or can it provide an alternative solution?
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