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Abstract

We generalize the concept of pattern occurrence in permutations,
words or matrices to that in n-dimensional objects, which are basically
sets of (n + 1)-tuples. In the case n = 3, we give a possible interpreta-
tion of such patterns in terms of bipartite graphs. For zero-box patterns
we study vanishing borders related to bipartite Ramsey problems in the
case of two dimensions. Also, we study the maximal number of 1’s in
binary objects avoiding (in two different senses) a zero-box pattern.

Keywords: (segmented-)occurrence of a pattern, pattern avoidance,
zero-box pattern, vanishing border, maximal number of 1’s in binary
objects

1 Introduction

In this paper we generalize the concept of pattern occurrence in permuta-
tions, words or matrices [4, 5] to pattern occurrence in n-dimensional objects,
which are essentially sets of (n + 1)-tuples.

It is well-known (e.g., see [4] and references therein) that the consider-
ation of (1-dimensional) patterns has proven to be a useful language in a



variety of seemingly unrelated problems, from the theory of Kazhdan-Lusztig
polynomials, to singularities of Schubert varieties, to Chebyshev polynomi-
als, to planar maps, to rock polynomials for a rectangular board, to various
sorting algorithms including sorting stacks and sortable permutations. In-
creasing the number of dimensions by one, and considering avoidance of
certain (2-dimensional) numbered polyomino patterns [5] also led to some
interesting connections to other combinatorial problems involving hyper-
cubes, spanning trees, the placing of non-attacking kings on certain boards
[3], and Ramsey numbers for bipartite graphs [5].

A natural question arises: What happens if we further increase the num-
ber of dimensions?

In Section 2, we define the notion of an n-dimensional pattern, which
agrees with the cases n = 1, 2. In Section 3, we define a coloring problem
for bipartite graphs which provides some motivation for studying pattern
avoidance in 3-dimensional objects. In Section 4, we examine vanishing
borders of zero-box patterns; this is an extension of the 2-dimensional results
in [5] to the n-dimensional case. Finally, in Section 5, we study the maximal
number of 1’s in binary objects avoiding a zero-box pattern. We find an
explicit formula for the maximal number of 1’s in the case of segmented-
occurrences of a zero-box pattern, and we obtain a tight recursive lower
bound for usual (non-segmented) pattern occurrence.

2 Preliminaries

Note that throughout this paper we use [m] to represent {1, 2, . . . , , m}.
Let n ∈ N and α1, α2, . . . , αn ∈ N ∪ {∞}. Then the n-dimensional box

bounded by α1, α2, . . . , αn is the subset of N n defined by

Xα1,α2,...,αn = {(x1, x2, . . . , xn) | 1 ≤ xi ≤ αi, 1 ≤ i ≤ n}.
(Note that by 1 ≤ xi ≤ ∞ we mean that xi ∈ N ; that is, xi will never
assume the value ∞.)

Let A be an ordered alphabet on k letters, say A = {0, 1, . . . , k−1}, and
f a function from Xα1,α2,...,αn into A. By an n-dimensional object we mean
a set of (n + 1)-tuples of the form

{(x1, x2, . . . , xn, f(x1, x2, . . . , xn)) | (x1, x2, . . . , xn) ∈ Xα1,α2,...,αn}.
Notice that 1-dimensional objects are words, whereas 2-dimensional objects
are matrices. We denote an n-dimensional object on the box Xα1,α2,...,αn by
Ω(α1, α2, . . . , αn).
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An n-dimensional pattern is basically an n-dimensional object with two
exceptions: we include the symbol “#” in our alphabet to allow for the
possibility of “holes” in our patterns and we require that each letter from
the alphabet B = {0, 1, 2, . . . , ` − 1} occurs at least once in the pattern for
some `. More formally, an n-dimensional pattern on the box Xβ1,β2,...,βn ,
denoted p = p(β1, β2, . . . , βn), is a set of (n + 1)-tuples of the form

{(x1, x2, . . . , xn, g(x1, x2, . . . , xn)) | (x1, x2, . . . , xn) ∈ Xβ1,β2,...,βn},
where g is a function from Xβ1,β2,...,βn onto B or B ∪ {#}, depending on
whether or not there are holes in the pattern. For instance, the right angled
pattern 0 1

0 considered in [5] is the set {(1, 1, 0), (1, 2, 1), (2, 1, 0), (2, 2,#)} in
our terminology. When B = {0} and p does not contain holes, we call p the
β1 × β2 × . . . × βn zero-box. In keeping with the notation of [5], we denote
the β1 × β2 × . . .× βn zero-box by Oβ1,β2,...,βn .

We will be given an n-dimensional pattern p on the alphabet B =
{0, 1, . . . , `−1} and an n-dimensional object Ω on the alphabetA = {0, 1, . . . ,
k − 1}. We wish to know if there is an n-dimensional sub-object, Ω′, of Ω
which reduces to p. To be more precise, we can easily generalize the defini-
tion of pattern occurrence in matrices given in [5]. Let Ω = Ω(α1, α2, . . . , αn)
be an object on the alphabet A and p = p(β1, β2, . . . , βm) a pattern on the
alphabet B. Further, let T be a subset of [α1] × [α2] × · · · × [αn]. We
say that the pattern p occurs on T in the object Ω if there exists a bijec-
tion φ : Xβ1,β2,...,βn → T that satisfies the following condition: Given any
two points x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) in Xβ1,β2,...,βn with
g(x), g(y) 6= # and their images (x′1, x

′
2, . . . , x

′
n) = φ(x), (y′1, y

′
2, . . . , y

′
n) =

φ(y) we have:
xi < yi ⇐⇒ x′i < y′i

and

g(x1, x2, . . . , xn) < g(y1, y2, . . . , yn) ⇐⇒ f(x′1, x
′
2, . . . , x

′
n) < f(y′1, y

′
2, . . . , y

′
n).

If the pattern p does not occur in Ω, we say that Ω avoids p.
For a given n-dimensional pattern p and a non-negative integer t we can

define aα1,α2,...,αn to be the number of α1 × α2 × · · · × αn n-dimensional
objects on the alphabet {0, 1, . . . , t} which avoid p. We can then extend the
notion of vanishing borders defined in [5]. Specifically, the vanishing border
of p, denoted V (p), is defined to be the set of all (α1, α2, . . . , αn) such that
aα1,α2,...,αn = 0 but all of aα1−1,α2,...,αn , aα1,α2−1,...,αn , . . . , and aα1,α2,...,αn−1

are greater than zero. It was shown in [5] that (2l− 1, 2(k− 1)
(
2l−1

l

)
+ 1) is

in the vanishing border of the zero-box Ol,k when the alphabet is {0, 1}. In
Section 4 we will study vanishing borders in higher dimensions.
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3 3-dimensional patterns and bipartite graphs

Let A be an m × n matrix (that is, a 2-dimensional object). Consider the
complete bipartite graph Km,n with vertex classes corresponding to the row
and column labels of A. We can view A as an edge-coloring of Km,n by
assigning the color ai,j to the edge corresponding to the ith row and the jth

column.
For the remainder of this discussion, we assume that the entries of our

objects and patterns are in the alphabet {0, 1}. If A is an m× n matrix on
{0, 1}, it corresponds to a 2-edge-coloring of Km,n. Now let Om′,n′ be the
m′×n′ zero-box. As discussed in [5], A avoids p if and only if the coloring of
Km,n corresponding to A does not contain a monochromatic copy of Km′,n′ .

Let A1, A2, . . . , Ah be m × n matrices with entries in {0, 1}. We can
create a 3-dimensional m×n×h object, Ω, by layering these matrices. This
object corresponds to a 2h-edge-coloring of Km,n, that is, the color on edge
(i, j) is given by the binary number ah

i,ja
h−1
i,j . . . a1

i,j .
Now let Om′,n′,h′ be the m′ × n′ × h′ zero-box pattern. If h′ = h and Ω

contains Om′,n′,h′ , then the corresponding edge-coloring of Km,n contains a
monochromatic copy of Km′,n′ . Unlike the two-dimensional case, the con-
verse of the previous statement is false since a monochromatic coloring of
Km′,n′ by any of the 2h− 2 colors not consisting of all zeros or all ones does
not result in an occurrence of Om′,n′,h′ .

If h′ < h and Ω contains p, then the corresponding edge-coloring of Km,n

contains a copy of Km′,n′ for which the Hamming distance between any two
colors assigned to Km′,n′ is at most h − h′. On the other hand, suppose
that Ω avoids p. Consider a 2h-edge-coloring of Km′,n′ . For 1 ≤ i ≤ m′ and
1 ≤ j ≤ n′, let ch

i,jc
h−1
i,j . . . c1

i,j denote the color assigned to edge (i, j). We
say that the coloring of Km′,n′ is inconsistent in position r (1 ≤ r ≤ h) if
there exist 1 ≤ i1, i2 ≤ m′ and 1 ≤ j1, j2 ≤ n′ such that cr

i1,j1
6= cr

i2,j2
. If Ω

avoids p, then the corresponding edge-coloring of each Km′,n′ is inconsistent
in at least h− h′ + 1 positions.

4 Vanishing Borders of Zero-Box Patterns

Recall that the vanishing border of the pattern p, denoted V (p), is defined
to be the set of all (α1, α2, . . . , αn) such that aα1,α2,...,αn = 0 but all of
aα1−1,α2,...,αn , aα1,α2−1,...,αn , . . . , and aα1,α2,...,αn−1 are greater than zero. In
this section we study vanishing borders for the zero-box pattern Oβ1,β2,...,βn .
The results in this section are a direct extension of Proposition 7 in [5].
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Theorem 1. Consider the zero-box pattern Oβ1,β2,...,βn, and set

x1 = 2(β1 − 1) + 1

and

xj = 2(βj − 1)
j−1∏

i=1

(
xi

βi

)
+ 1

for 2 ≤ j ≤ n. Then (x1, x2, . . . , xn) ∈ V (Oβ1,β2,...,βn).

Proof. The proof is by induction on n. The base case was established in
Proposition 7 of [5]. So we may suppose that (x1, x2, . . . , xn−1) is in the
vanishing border of V (Oβ1,β2,...,βn−1).

Now consider the n-dimensional object Ω = Ω(α1, α2, . . . , αn). We
can view Ω as a sequence Ψ1, Ψ2, . . . , Ψαn of α1 × α2 × · · · × αn−1 (n −
1)-dimensional objects, which we call layers of Ω. The zero-box pattern
Oβ1,β2,...,βn occurs in Ω if and only if there is a sub-sequence Ψi1 ,Ψi2 , . . . ,Ψiβn

and a subset T of [α1] × [α2] × · · · × [αn−1] such that Oβ1,β2,...,βn−1 occurs
on T in Ψi for all i ∈ {i1, i2, . . . , iβn}. Therefore, if (y1, y2, . . . , yn) is in the
vanishing border for Oβ1,β2,...,βn , then yi ≥ xi for 1 ≤ i ≤ n − 1 by the
induction hypothesis.

Suppose Ω = Ω(x1, x2, . . . , xn). By the induction hypothesis, the zero-
box patternOβ1,β2,...,βn−1 occurs in each layer of Ω. In each layer,Oβ1,β2,...,βn−1

may occur in
∏j−1

i=1

(
xi
βi

)
different positions. Moreover, it may occur as a

box of zeros or a box of ones. It follows from the Dirichlet Principle that
Oβ1,β2,...,βn occurs in Ω.

It remains to show that there is an object Ω = Ω(x1, x2, . . . , xn − 1)
which does not contain an occurrence of Oβ1,β2,...,βn . We need the following
lemma.

Lemma 2. There exists an object Ω = Ω(x1, x2, . . . , xn) that contains ex-
actly one occurrence of Oβ1,β2,...,βn.

Proof. Once again, the proof is by induction on n and the base case was es-
tablished in the proof of Proposition 7 in [5]. By the induction hypothesis,
we can construct an (n−1)-dimensional object Ψ = Ψ(x1, x2, . . . , xn−1) that
contains exactly one occurrence of Oβ1,β2,...,βn−1 . By permuting [x1], [x2],
. . ., and [xn−1] we may position the occurrence of Oβ1,β2,...,βn−1 in any of the
k =

∏j−1
i=1

(
xi
βi

)
possible positions. Place an order on these positions. Let

Ψq,pi be the (n−1)-dimensional object that contains exactly one occurrence
of Oβ1,β2,...,βn−1 as a box of q’s (q ∈ {0, 1}) in position pi. We can ob-
tain the desired Ω by layering each of Ψ0,p1 , Ψ0,p2 , . . . ,Ψ0,pk

, Ψ1,p1 ,Ψ1,p2 , . . .,
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and Ψ1,pk
exactly βn − 1 times and adding an additional layer Ψ where Ψ

is any (n − 1)-dimensional object that contains exactly one occurrence of
Oβ1,β2,...,βn−1 .

Since the object Ω = Ω(x1, x2, . . . , xn − 1) obtained by layering each of
Ψ0,p1 , Ψ0,p2 , . . . ,Ψ0,pk

, Ψ1,p1 , Ψ1,p2 , . . ., and Ψ1,pk
exactly βn − 1 times does

not contain an occurrence of Oβ1,β2,...,βn , the theorem follows.

5 Maximal number of 1’s in binary objects avoid-
ing zero-box patterns

Let p be a pattern. We define f(α1, α2, . . . , αk; p) to be the maximal number
of 1’s in a binary object of size α1×α2×· · ·×αk not containing an occurrence
of p.

Studying f(α1, α2; p) is related to Turán’s theory in extremal graph the-
ory where we have the following question: Given a graph G, what is the
maximum number of edges in an n-vertex graph which does not contain
G as a subgraph? If we restrict our attention to the universe of bipartite
graphs, then we may view the bipartite graphs as matrices (2-dimensional
objects). As was mentioned in [2], the key difference between Turán’s the-
ory and our question is order; that is, the vertices in our case (the rows and
columns) are ordered. However, in some special cases the restriction on the
order is insignificant.

Another example more closely related to our work is the problem of
determining the maximal number of 1’s in a matrix that avoids a specified
configuration [2]. A configuration, C = (cij) (1 ≤ i ≤ u, 1 ≤ j ≤ v),
is a partial matrix with 1’s and blanks (holes) as the entries (rather than
1’s, 0’s and holes as in our case). A binary matrix M = (mij) has the
configuration C if there exist u rows i1 < i2 < · · · < iu and v columns
j1 < j2 < · · · < jv in M such that the corresponding sub-matrix contains
C, i.e. miα,jβ

= 1 whenever cα,β = 1. For a configuration C, one usually
considers the problem of determining the asymptotics of f(n1, n2; C). If
n1 = n2 = n, then the asymptotic behavior of f(n;C) = f(n, n;C) for
several forbidden C’s is determined in [2]. In [7], a conjecture of Füredi
and Hajnal was proven which states that f(n,C) grows linearly if C is a
permutation matrix. Intriguingly, the proof of that result settled at once
the well-known conjecture of Stanley-Wilf on the asymptotics of the number
of permutations avoiding a given pattern (e.g., see [4, 6]).

For the sake of simplicity, we assume that the patterns and the objects
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under our consideration have no holes. If a pattern p contains both 0’s and
1’s, then the α1 × α2 × · · · × αk object containing only 1’s obviously avoids
p, so f(α1, α2, . . . , αk; p) = α1 · α2 · . . . · αk. Thus, we restrict our attention
to zero-box patterns.

It is worth mentioning that determining the maximal number of 1’s in
a binary object which avoids a given zero-box pattern can be formulated as
a 0/1-integer linear programming problem (0/1-IP). Unfortunately, this IP
has a large number of constraints. Specifically, if we set

S = {I1 × I2 × · · · × In | Ij ⊆ [αj ], |Ij | = βj}

then f(α1, α2, . . . , αn;Oβ1,β2,...,βn) is equal to the objective function value of
the following 0/1-IP:

max z =
∑

(i1,i2,...,in)∈Xα1,α2,...,αn

xi1i2...in

subject to ∑

(i1,i2,...,in)∈S

xi1i2...in ≥ 1 (1)

∑

(i1,i2,...,in)∈S

xi1i2...in ≤ β1 · β2 · . . . · βn − 1 (2)

xj1j2...jn ∈ {0, 1} ∀(j1, j2, . . . , jn) ∈ Xα1,α2,...,αn

Here (1) prohibits the occurrence of Oβ1,β2,...,βn as a box of zeros and (2)
prohibits its occurrence as a box of ones. Since this IP contains α1 ·α2 · . . . ·
αn variables and 2

∏n
i=1

(
αi
βi

)
equations, we note that it is not practical to

solve even moderate instances of this problem with the integer programming
approach. Hence we seek combinatorial methods for solving this problem.

Let us first consider segmented-occurrence of patterns which is more
structured than the pattern occurrence we have considered thus far. We will
call S ⊆ [k] a consecutive subset of [k] if there exist 1 ≤ i ≤ j ≤ k such that
S = {i, i + 1, . . . , j} and T ⊆ Xα1,α2,...,αn a consecutive block of Xα1,α2,...,αn

if there are consecutive subsets T1, T2, . . . , and Tn of [α1], [α2], . . . , and [αn],
respectively, such that T = T1 × T2 × · · · × Tn. We then say that the
object Ω = Ω(α1, α2, . . . , αn) has a segmented-occurrence of the pattern
p = p(β1, β2, . . . , βn) if there exists a consecutive block T of Xα1,α2,...,αn

such that p occurs on T in Ω. For instance, in the case of matrices and
p = p(β1, β2), a segmented-occurrence of p corresponds to the intersection
of β1 consecutive rows and β2 consecutive columns.
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For a given pattern p, we define fs(α1, α2, . . . , αn; p) to be the maxi-
mal number of 1’s in a binary object of size α1 × α2 × · · · × αn avoiding a
segmented-occurrence of p. Observe, that if we formulate a 0-1 IP in the
case of segmented-occurrence of patterns, the number of constraints is sig-
nificantly reduced to 2

∏n
i=1(αi−βi+1) for the general case of n dimensional

patterns and objects.

Theorem 3. Let Oβ1,β2,...,βn be a zero-box pattern and α1, α2, . . . , αn be
integers with αi ≥ βi for all i ∈ [n]. Then

f s(α1, α2, . . . , αn;Oβ1,β2,...,βn) =
n∏

i=1

αi −
n∏

i=1

⌊
αi

βi

⌋
.

Proof. Partition the object Ω = Ω(α1, α2, . . . , αn) into the consecutive blocks
B(i1, i2, . . . , in) = {(x1, x2, . . . , xn, f(x1, x2, . . . , xn)) ∈ Ω | 1 + βjij ≤ xj ≤
1 + βj(ij + 1)} where ij ∈ {0, 1, . . . , bαj

βj
c} for all j ∈ [n]. Clearly, the object

contains
∏n

i=1bαi
βi
c consecutive blocks of size β1 × β2 × · · · × βn. In order

to avoid an occurrence of Oβ1,β2,...,βn , each of these blocks must contain at

least one zero. Hence f s(α1, α2, . . . , αn;Oβ1,β2,...,βn) ≤ ∏n
i=1 αi−

∏n
i=1

⌊
αi
βi

⌋
.

On the other hand, suppose that for all (x1, x2, . . . , xn) ∈ Xα1,α2,...,αn

f(x1, x2, . . . , xn) =

{
0, if xj is a multiple of βj ∀ j ∈ [n]
1, otherwise

In the two-dimensional case we have the object in Figure 5. In this case,
any consecutive block of Ω of size β1 × β2 × · · · × βn contains a zero and,
thus, avoids Oβ1,β2,...,βn . Hence, f s(α1, α2, . . . , αn;Oβ1,β2,...,βn) ≥ ∏n

i=1 αi −∏n
i=1

⌊
αi
βi

⌋
.

0 0

1 1 1 1

1 1 1 1

1 1 1
0

000

1

Figure 1: Partition of a matrix into the blocks.
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Let us now consider our usual (non-segmented) pattern occurrence. The
crucial difference between segmented- and non-segmented pattern occur-
rence is the existence of vanishing borders (see Section 4). For the zero-box
pattern O = Oβ1,β2,...,βn , we restrict our attention to objects of dimensions
α1 × α2 × · · · × αn where aα1,α2,...,αn > 0.

Theorem 4. Suppose O = Oβ1,β2,...,βn is a zero-box pattern, and for all
i ∈ [n], aα1,α2,...,αi > 0. Then, f(α1;Oβ1) = β1 − 1, and for n ≥ 2,

f(α1, α2, . . . , αn;O) ≥ α1·α2·. . .·αn−1·(βn−1)+(αn−βn+1)f(α1, α2, . . . , αn−1;O′),

where O′ = Oβ1,β2,...,βn−1.

Proof. The case n = 1 is easy to see.
Now consider the case n ≥ 2. As in the proof of Theorem 1, we view

our object Ω as a sequence containing αn elements where each element is
an α1 × α2 × · · · × αn−1 layer. Construct an object Ω as follows: fill any
βn − 1 of these layers with 1’s (this gives α1 · α2 · . . . · αn−1 · (βn − 1) 1’s)
and fill the other layers in such way that each of them avoids the pattern
O′. The maximum number of ones we can include in these layers is given
by (αn − βn + 1)f(α1, α2, . . . , αn−1;O′). It is easy to see that the object Ω
constructed in this way avoids O, and thus we obtained a lower bound for
the maximum number of 1’s.

.

−1
2

β

1α −

−α2

2

+12β

..

1

.1
1 1

1

1

1

1 +1

. . .

..

0

1

0

−1

1

β

β

α

α

1 1

1
0

Figure 2: A matrix avoiding Oβ1,β2 with a large number of 1’s.

Remark 5. The lower bound in the statement of Theorem 4 is tight. For
example, it is not hard to see that we have equality if n = 2, α1 = β1, and
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α2 = β2. So, in general we can not get a better lower bound. However,
for some particular cases, the lower bound can be improved. For instance,
suppose that n = 2, β1 ≥ α1/2 and β2 ≥ α2/2. The following statement
holds in this case: f(α1, α2;O) is greater than or equal to

α1 · α2 − (α2 − β2 + 1)(α1 − β1 + 1) + α1 − β1,

if α1 − β1 ≤ α2 − β2, and

α1 · α2 − (α2 − β2 + 1)(α1 − β1 + 1) + α2 − β2,

otherwise.
To prove this, we may assume that α1−β1 ≤ α2−β2 (the second case is

similar). Construct a matrix M as shown schematically in Figure 2, where
M(β1 − 1, β2 − 1) = 0, M(β1, β2) = 1, M(β1 + 1, β2 + 1) = 1, and so on up
to M(α1, β2 +α1−β1) = 1; all other elements in the three blocks are 1s and
in the lower-right block are 0’s. It is easy to see that the lower-right block
indicated by a dashed line does not contain an occurrence of O2,2 as a box
of 1′s, and thus M does not contain an occurrence of Oβ1,β2 as a box of 1’s.

Moreover, since β1 ≥ α1/2 and β2 ≥ α2/2, M does not contain an
occurrence of Oβ1,β2 as a box of 0’s. Hence M avoids Oβ1,β2 , and the number
of 1’s in M is as stated.
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