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Abstract

This paper is a continuation of the systematic study of the distributions of simple
marked mesh patterns initiated in [6]. We study simple marked mesh patterns on
132-avoiding permutations. We derive generating functions for the number of oc-
currences of 4-parameter simple marked mesh patterns where only one parameter is
allowed to be non-zero or a non-empty set. We show that specializations of such gen-
erating functions count a number of classical combinatorial sequences. Generating
functions for the number of occurrences of 4-parameter simple marked mesh patterns
where two or more of the parameters are allowed to be non-zero are studied in the
upcoming paper [7].
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1 Introduction

The notion of mesh patterns was introduced by Brändén and Claesson [1] to provide explicit
expansions for certain permutation statistics as (possibly infinite) linear combinations of
(classical) permutation patterns. This notion was further studied in [4, 6, 10]. The present
paper, as well as the upcoming paper [7], are continuations of the systematic study of
distributions of simple marked mesh patterns on permutations initiated by Kitaev and
Remmel [6].

In this paper, we study the number of occurrences of what we call simple marked mesh
patterns. To start with, let σ = σ1 . . . σn be a permutation written in one-line notation.
Then we will consider the graph of σ, G(σ), to be the set of points {(i, σi) : 1 ≤ i ≤ n}. For
example, the graph of the permutation σ = 471569283 is pictured in Figure 1. Then if we
draw a coordinate system centered at a point (i, σi), we will be interested in the points that
lie in the four quadrants I, II, III, and IV of that coordinate system as pictured in Figure 1.
For any a, b, c, d ∈ N, where N = {0, 1, 2, . . .} is the set of natural numbers, we say that σi

matches the simple marked mesh pattern MMP (a, b, c, d) in σ if, in the coordinate system
centered at (i, σi), G(σ) has ≥ a, ≥ b, ≥ c, and ≥ d points in Quadrants I, II, III, and IV,
respectively. For example, if σ = 471569283, then σ4 = 5 matches the simple marked mesh
pattern MMP (2, 1, 2, 1), since relative to the coordinate system with origin (4, 5), G(σ)
has 3, 1, 2, and 2 points in Quadrants I, II, III, and IV, respectively.

Note that if a coordinate in MMP (a, b, c, d) is 0, then there is no condition imposed
on the points in the corresponding quadrant. In addition, we shall consider patterns
MMP (a, b, c, d) where a, b, c, d ∈ N ∪ {∅}. Here, when a coordinate of MMP (a, b, c, d)
is the empty set, there must be no points in the corresponding quadrant for σi to match
MMP (a, b, c, d) in σ. For example, if σ = 471569283, then σ3 = 1 matches the marked mesh
pattern MMP (4, 2, ∅, ∅), since relative to the coordinate system with origin (3, 1), G(σ)
has 6, 2, 0, and 0 points in Quadrants I, II, III, and IV, respectively. We let mmp(a,b,c,d)(σ)
denote the number of i such that σi matches the marked mesh pattern MMP (a, b, c, d) in
σ.

Given a sequence w = w1 . . . wn of distinct integers, let red(w) be the permutation found
by replacing the i-th largest integer that appears in w by i. For example, if w = 2754, then
red(w) = 1432. Given a permutation τ = τ1 . . . τj ∈ Sj, we say that the pattern τ occurs
in σ ∈ Sn if there exist 1 ≤ i1 < · · · < ij ≤ n such that red(σi1 . . . σij) = τ . We say that a
permutation σ avoids the pattern τ if τ does not occur in σ. We will let Sn(τ) denote the
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Figure 1: The graph of σ = 471569283.

set of permutations in Sn that avoid τ . In the theory of permutation patterns, τ is called
a classical pattern. See [5] for a comprehensive introduction to the area of permutation
patterns.

It has been a rather popular direction of research in the literature on permutation
patterns to study permutations avoiding a 3-letter pattern subject to extra restrictions
(see [5, Subsection 6.1.5]). The main goal of this paper and the upcoming paper [7] is to
study the generating functions

Q
(a,b,c,d)
132 (t, x) = 1 +

∑
n≥1

tnQ
(a,b,c,d)
n,132 (x) (1)

where for any a, b, c, d ∈ N ∪ {∅},

Q
(a,b,c,d)
n,132 (x) =

∑
σ∈Sn(132)

xmmp(a,b,c,d)(σ). (2)

More precisely, this paper deals with the case when only one of a, b, c and d is allowed to
be non-zero or non-empty set while [7] deals with the cases where at least two of a, b, c
and d are greater than 0.

For example, here are two tables of statistics for S3(132) that we will be interested in.

σ mmp(1,0,0,0)(σ) mmp(0,1,0,0)(σ) mmp(0,0,1,0)(σ) mmp(0,0,0,1)(σ)
123 2 0 2 0
213 2 1 1 1
231 1 1 1 2
312 1 2 1 1
321 0 2 0 2
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σ mmp(2,0,0,0)(σ) mmp(0,2,0,0)(σ) mmp(0,0,2,0)(σ) mmp(0,0,0,2)(σ)
123 1 0 1 0
213 0 0 1 0
231 0 1 0 0
312 0 0 0 1
321 0 1 0 1

Note that there is one obvious symmetry in this case. That is, we have the following
lemma.

Lemma 1. For any a, b, c, d ∈ {∅} ∪ N,

Q
(a,b,c,d)
n,132 (x) = Q

(a,d,c,b)
n,132 (x).

Proof. If we start with the graph G(σ) of a permutation σ ∈ S(132) and reflect the graph
about the line y = x, then we get the permutation σ−1, which is also in S(132). It is
easy to see that points in Quadrants I, II, III, and IV in the coordinate system with origin
(i, σi) in G(σ) will reflect to points in Quadrants I, IV, III, and II, respectively, in the
coordinate system with origin (σi, i) in G(σ−1). It follows that the map σ → σ−1 shows

that Q
(a,b,c,d)
n,132 (x) = Q

(a,d,c,b)
n,132 (x).

As a matter of fact, avoidance of a marked mesh patternMMP (a, b, c, d) with a, b, c, d ∈
N can always be expressed in terms of multi-avoidance of (usually many) classical patterns.
Thus, among our results we will re-derive several known facts in the permutation pattern
theory. However, our main goals are more ambitious in that we will compute the generating
function for the distribution of the occurrences of the pattern in question, not just the
generating function for the number of permutations that avoid the pattern. Moreover, we
shall show that sequences of the form (Q

(a,b,c,d)
n,132 (x)|xr)n≥s count a variety of combinatorial

objects that appear in the On-line Encyclopedia of Integer Sequences (OEIS) [8]. Thus our
results will give new combinatorial interpretations of such classical sequences such as the
Fine numbers and the Fibonacci numbers, as well as provide certain sequences that appear
in the OEIS with a combinatorial interpretation where none had existed before.

Given a permutation σ ∈ Sn, we say that σi is a right-to-left maximum of σ if σi > σj

for all j > i. Similarly, one can define a right-to-left minimum, a left-to-right minimum,
and a left-to-right maximum.

2 Connections with other combinatorial objects

It is well-known that the cardinality of Sn(132) is the n-th Catalan number Cn = 1
n+1

(
2n
n

)
.

There are many combinatorial interpretations of the Catalan numbers. For example, in
his book [9], Stanley lists 66 different interpretations and there are many more such inter-
pretations that can be found on his web site. Hence, any time one has a natural bijection
from Sn(132) into a set of combinatorial objects On counted by the n-th Catalan number,
one can use the bijection to transfer our statistics mmp(a,b,c,d) to corresponding statistics
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on the elements of On. In this section, we shall briefly describe some of these statistics in
two of the most well-known interpretations of the Catalan numbers, namely, Dyck paths
and binary trees.

A Dyck path of length 2n is a path that starts at (0, 0) and ends at the point (2n, 0)
that consists of a sequence of up-steps (1, 1) and down-steps (1,−1) such that the path
always stays on or above the x-axis. We will generally encode a Dyck path by its sequence
of up-steps and down-steps. Let D2n denote the set of Dyck paths of length 2n. Then it is
easy to construct a bijection ϕn : Sn(132) → D2n by induction. To define ϕn, we need to
define the lifting of a path P ∈ D2n to a path L(P ) ∈ D2n+2. Here L(P ) is constructed by
simply appending an up-step at the start of P and a down-step at the end of P . That is,
if P = (p1, . . . , p2n), then L(P ) = ((1, 1), p1, . . . , p2n, (1,−1)). An example of this map is
pictured in Figure 2. If P1 ∈ D2k and P2 ∈ D2n−2k, we let P1P2 denote the element of D2n

which consists of the path P1 followed by the path P2.

0 1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

P = 

L(P) =

0 1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

5

4

5

4

3

3

Figure 2: The lifting of a Dyck path.

Then we let ϕ1(1) = ((1, 1), (1,−1)). For any n > 1 and any σ ∈ Sn(132), we define
ϕn(σ) by cases as follows.

Case 1. σn = n.
Then ϕn(σ) = L(ϕn−1(σ1 . . . σn−1)).

Case 2. σi = n where 1 ≤ i < n. In this case, ϕn(σ) = P1P2 where
P1 = ϕi(red(σ1 . . . σi)) and P2 = ϕn−i(red(σi+1 . . . σn)) = ϕn−i(σi+1 . . . σn).

We have pictured the first few values of this map by listing the permutation σ on the
left and the value of ϕn(σ) on the right in Figure 3.

Suppose we are given a path P = (p1, . . . , p2n) ∈ D2n. Then we say that a step pi has
height s if pi is an up-step and the right-hand end point of pi is (i, s) or pi is a down-step
and the left-hand end point of pi is (i− 1, s). We say that (pi, . . . , pi+2k−1) is an interval of
length 2k if pi is an up-step, pi+2k−1 is a down-step, pi and pi+2k−1 have height 1, and, for
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Figure 3: Some initial values of the map ϕn.

all i < j < 2k− 1, the height of pj is strictly greater than 1. Thus an interval is a segment
of the path which starts and ends on the x-axis but does not hit the x-axis in between.
For example, if we consider the path ϕ3(312) = (p1, . . . , p6) pictured in Figure 3, then the
heights of the steps reading from left to right are 1, 1, 1, 2, 2, 1 and there are two intervals,
one of length 2 consisting of (p1, p2) and one of length 4 consisting of (p3, p4, p5, p6).

This given, the following theorem is straightforward to prove by induction.

Theorem 2. Let k ≥ 1.

1. For any σ ∈ Sn(132), mmp(k,0,0,0)(σ) is equal to the number of up-steps (equivalently,
to the number of down-steps) of height ≥ k + 1 in ϕn(σ).

2. For any σ ∈ Sn(132), 1 plus the maximum k such that mmp(0,0,k,0)(σ) ̸= 0 is equal to
one half the maximum length in an interval in ϕn(σ).

Proof. We proceed by induction on n. Clearly the theorem is true for n = 1. Now sup-
pose that n > 1 and the theorem is true for all m < n. Let σ ∈ Sn(132) with σi = n.
Then it must be the case that σ1, . . . , σi−1 are all strictly bigger than all the elements in
{σi+1, . . . , σn}, so {1, . . . , n − i} = {σi+1, . . . , σn} and {n − i + 1, . . . , n} = {σ1, . . . , σi}.
Now consider the two cases in the definition of ϕn.

Case 1. σn = n.
In this case, ϕn(σ) = L(P ) where P = ϕn−1(σ1 . . . σn−1). Thus for k ≥ 2, the num-
ber of up-steps of height > k in ϕn(σ) equals the number of up-steps of height ≥ k in
ϕn−1(σ1 . . . σn−1), which equals mmp(k−1,0,0,0)(σ1 . . . σn−1) by induction. But since σn = n,
it is clear that for k ≥ 2, mmp(k−1,0,0,0)(σ1 . . . σn−1) = mmp(k,0,0,0)(σ). Thus mmp(k,0,0,0)(σ)
equals the number of up-steps of height > k in ϕn(σ). Finally, mmp(1,0,0,0)(σ) = n− 1 and
there are n− 1 up-steps of height ≥ 2 in ϕn(σ).

In this case, the maximum length of an interval in ϕn(σ) equals 2n and σn = n shows
that mmp(0,0,n−1,0)(σ) = 1, so one half of the maximum length interval in ϕn(σ) equals 1
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plus the maximum k such that mmp(0,0,k,0)(σ) ̸= 0.

Case 2. σi = n where 1 ≤ i ≤ n− 1.
In this case, ϕn(σ) = P1P2 where P1 = ϕi(red(σ1 . . . σi)) and P2 = ϕn−i(σi+1 . . . σn). It fol-
lows that for any k ≥ 1, the number of up-steps of height > k in ϕn(σ) equals the number
of up-steps of height > k in P1 plus the number of up-steps of height > k in P2, which by
induction is equal to

mmp(k,0,0,0)(red(σ1 . . . σi)) + mmp(k,0,0,0)(σi+1 . . . σn).

But clearly

mmp(k,0,0,0)(σ) = mmp(k,0,0,0)(red(σ1 . . . σi)) + mmp(k,0,0,0)(σi+1 . . . σn)

so that mmp(k,0,0,0)(σ) is equal to the number of up-steps of height > k in ϕn(σ).
Finally, in this case the maximum length of an interval in ϕn(σ) is the maximum

of the maximum length intervals in P1 and P2. On the other hand, the maximum k
such that mmp(0,0,k,0)(σ) ̸= 0 is the maximum k such that mmp(0,0,k,0)(red(σ1 . . . σi)) ̸= 0
or mmp(0,0,k,0)(σi+1 . . . σn) ̸= 0. Thus it follows from the induction hypothesis that one
half of the maximum length of an interval in ϕn(σ) is 1 plus the maximum k such that
mmp(0,0,k,0)(σ) ̸= 0.

We have the following corollary to Theorem 2.

Corollary 1. Let k ≥ 1.

1. The number of permutations σ ∈ Sn(132) such that mmp(k,0,0,0)(σ) = 0 equals the
number of Dyck paths P ∈ D2n such that all steps have height ≤ k.

2. The number of permutations σ ∈ Sn(132) such that mmp(0,0,k,0)(σ) = 0 equals the
number of Dyck paths P ∈ D2n such that the maximum length of an interval is ≤ 2k.

Another set counted by the Catalan numbers is the set of rooted binary trees on n
nodes where each node is either a leaf, a node with a left child, a node with a right child,
or a node with both a right and a left child. Let Bn denote the set of rooted binary trees
with n nodes. Then it is well-known that |Bn| = Cn. Again it is easy to define a bijection
θn : Sn(132) → Bn by induction. Start with a single node, denoted the root, and let i be
such that σi = n. Then, if i > 1, the root will have a left child, and the subtree above that
child is θi−1(red(σ1 . . . σi−1)). If i < n, then the root will have a right child, and the subtree
above that child is θn−i(σi+1 . . . σn). We have pictured the first few values of this map by
listing a permutation σ on the left and the value of θn(σ) on the right in Figure 4.

If T ∈ Bn and η is a node of T , then the left subtree of η is the subtree of T whose
root is the left child of η and the right subtree of η is the subtree of T whose root is the
right child of η. The edge that connects η to its left child will be called a left edge and the
edge that connects η to its right child will be called a right edge. This given, the following
theorem is straightforward to prove by induction.

7



312

123

21

12

1

321

231

213

Figure 4: Some initial values of the map θn.

Theorem 3. Let k ≥ 1.

1. For any σ ∈ Sn(132), mmp(k,0,0,0)(σ) is equal to the number of nodes η in θn(σ) such
that there are ≥ k left edges on the path from η to the root of θn(σ).

2. For any σ ∈ Sn(132), mmp(0,0,k,0)(σ) is the number of nodes η in θn(σ) whose left
subtree has size ≥ k.

Proof. We proceed by induction on n. Clearly the theorem is true for n = 1. Now suppose
that n > 1 and the theorem is true for all m < n. Let σ ∈ Sn(132) with σi = n, r be the
root of θn(σ), and η be a node in θn(σ).

If η is in the left subtree of the root, then η has ≥ k left edges on the path to r if and
only if it has ≥ k − 1 left edges on the path to the root of the left subtree of r. If η is
in the right subtree of the root, then η has ≥ k left edges on the path to r if and only if
it has ≥ k left edges on the path to the root of the right subtree of r. Therefore, by the
induction hypothesis the number of nodes with ≥ k left edges on the path to the root is
mmp(k−1,0,0,0)(red(σ1 . . . σi−1)) + mmp(k,0,0,0)(σi+1 . . . σn), regarding each term as 0 if there
is no corresponding subtree. However, since each term in σ1 . . . σi−1 has n to the right
of it and n never matches MMP (k, 0, 0, 0), we see that mmp(k−1,0,0,0)(red(σ1 . . . σi−1)) =
mmp(k,0,0,0)(red(σ1 . . . σi)). Thus, the number of nodes with ≥ k left edges on the path to
the root is mmp(k,0,0,0)(red(σ1 . . . σi)) + mmp(k,0,0,0)(σi+1 . . . σn) = mmp(k,0,0,0)(σ).

It is clear that the number of nodes with left subtrees of size ≥ k is equal to the
sum of those from each subtree of the root, possibly plus one for the root itself. In
other words, if χ(statement) equals 1 if the statement is true and 0 otherwise, then
by the induction hypothesis, the number of such nodes is mmp(0,0,k,0)(red(σ1 . . . σi−1)) +
mmp(0,0,k,0)(σi+1 . . . σn) + χ(i > k), again regarding each term as 0 if there is no cor-
responding subtree. However, since n does not affect whether any other point matches
MMP (0, 0, k, 0) and matches itself whenever i > k, we see this is precisely equal to
mmp(0,0,k,0)(σ).
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Thus we have the following corollary.

Corollary 2. Let k ≥ 1.

1. The number of permutations σ ∈ Sn(132) such that mmp(k,0,0,0)(σ) = 0 equals the
number of rooted binary trees T ∈ Bn which have no nodes η with ≥ k left edges on
the path from η to the root of T .

2. The number of permutations σ ∈ Sn(132) such that mmp(0,0,k,0)(σ) = 0 equals the
number of rooted binary trees T ∈ Bn such that there is no node η of T whose left
subtree has size ≥ k.

3 The function Q
(k,0,0,0)
n,132 (x)

Throughout this paper, we shall classify the 132-avoiding permutations σ = σ1 . . . σn by
the position of n in σ. Let S

(i)
n (132) denote the set of σ ∈ Sn(132) such that σi = n.

Clearly each σ ∈ S
(i)
n (132) has the structure pictured in Figure 5. That is, in the graph

of σ, the elements to the left of n, Ai(σ), have the structure of a 132-avoiding permutation,
the elements to the right of n, Bi(σ), have the structure of a 132-avoiding permutation,
and all the elements in Ai(σ) lie above all the elements in Bi(σ). As mentioned above, the
number of 132-avoiding permutations in Sn is the Catalan number Cn = 1

n+1

(
2n
n

)
, and the

generating function for these numbers is given by

C(t) =
∑
n≥0

Cnt
n =

1−
√
1− 4t

2t
=

2

1 +
√
1− 4t

. (3)

1

1

n

n

i

A (   )σ

B (   )σ

i

i

Figure 5: The structure of 132-avoiding permutations.

Clearly,

Q
(0,0,0,0)
132 (t, x) =

∑
n≥0

Cnx
ntn = C(xt) =

1−
√
1− 4xt

2xt
.
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Next we consider Q
(k,0,0,0)
132 (t, x). If k ≥ 1, then it is easy to see that as we sum

over all the permutations σ in S
(i)
n (132), our choices for Ai(σ) will contribute a factor

of Q
(k−1,0,0,0)
i−1,132 (x) to Q

(k,0,0,0)
n,132 (x), since each of the elements to the left of n will match the

patternMMP (k, 0, 0, 0) if it matches the patternMMP (k−1, 0, 0, 0) in the graph of Ai(σ),

and our choices for Bi(σ) will contribute a factor of Q
(k,0,0,0)
n−i,132 (x) to Q

(k,0,0,0)
n,132 (x) because the

elements to the left of Bi(σ) have no effect on whether an element in Bi(σ) matches the
pattern MMP (k, 0, 0, 0). It follows that

Q
(k,0,0,0)
n,132 (x) =

n∑
i=1

Q
(k−1,0,0,0)
i−1,132 (x)Q

(k,0,0,0)
n−i,132 (x). (4)

Multiplying both sides of (4) by tn and summing for n ≥ 1, we see that

−1 +Q
(k,0,0,0)
132 (t, x) = tQ

(k−1,0,0,0)
132 (t, x) Q

(k,0,0,0)
132 (t, x).

Hence for k ≥ 1,

Q
(k,0,0,0)
132 (t, x) =

1

1− tQ
(k−1,0,0,0)
132 (t, x)

.

Thus we have the following theorem.

Theorem 4.

Q
(0,0,0,0)
132 (t, x) = C(xt) =

1−
√
1− 4xt

2xt
(5)

and, for k ≥ 1,

Q
(k,0,0,0)
132 (t, x) =

1

1− tQ
(k−1,0,0,0)
132 (t, x)

. (6)

Theorem 4 immediately implies the following corollary.

Corollary 3.

Q
(1,0,0,0)
132 (t, 0) =

1

1− t
(7)

and, for k ≥ 2,

Q
(k,0,0,0)
132 (t, 0) =

1

1− tQ
(k−1,0,0,0)
132 (t, 0)

. (8)
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Thus one can easily compute that

Q
(2,0,0,0)
132 (t, 0) =

1− t

1− 2t
,

Q
(3,0,0,0)
132 (t, 0) =

1− 2t

1− 3t+ t2
,

Q
(4,0,0,0)
132 (t, 0) =

1− 3t+ t2

1− 4t+ 3t2
,

Q
(5,0,0,0)
132 (t, 0) =

1− 4t+ 3t2

1− 5t+ 6t2 − t3
,

Q
(6,0,0,0)
132 (t, 0) =

1− 5t+ 6t2 − t3

1− 6t+ 10t2 − 4t3
, and

Q
(7,0,0,0)
132 (t, 0) =

1− 6t+ 10t3 − 4t3

1− 7t+ 15t2 − 10t3 + t4
.

By Corollary 1, Q
(k,0,0,0)
132 (t, 0) is also the generating function for Dyck paths whose maxi-

mum height is less than or equal to k. For example, this interpretation is given to sequence
A080937 in the OEIS, which is the sequence (Q

(5,0,0,0)
n,132 (0))n≥0, and to sequence A080938

in the OEIS, which is the sequence (Q
(7,0,0,0)
n,132 (0))n≥0. However, similar interpretations are

not given to (Q
(k,0,0,0)
n,132 (0))n≥0 where k /∈ {5, 7}. For example, such an interpretation is not

found for (Q
(2,0,0,0)
n,132 (0))n≥0, (Q

(3,0,0,0)
n,132 (0))n≥0, (Q

(4,0,0,0)
n,132 (0))n≥0, or (Q

(6,0,0,0)
n,132 (0))n≥0, which are

sequences A011782, A001519, A124302, and A024175 in the OEIS, respectively. Similarly,
by Corollary 2, the generating function Q

(k,0,0,0)
132 (t, 0) is the generating function of rooted

binary trees T which have no nodes η such that there are ≥ k left edges on the path from
η to the root of T .

We can easily compute the first few terms ofQ
(k,0,0,0)
132 (t, x) for small k using Mathematica

or Maple. For example, we have computed the following.

Q
(1,0,0,0)
132 (t, x) = 1 + t+ (1 + x)t2 +

(
1 + 2x+ 2x2

)
t3 +

(
1 + 3x+ 5x2 + 5x3

)
t4(

1 + 4x+ 9x2 + 14x3 + 14x4
)
t5 +

(
1 + 5x+ 14x2 + 28x3 + 42x4 + 42x5

)
t6 +(

1 + 6x+ 20x2 + 48x3 + 90x4 + 132x5 + 132x6
)
t7 +(

1 + 7x+ 27x2 + 75x3 + 165x4 + 297x5 + 429x6 + 429x7
)
t8 +(

1 + 8x+ 35x2 + 110x3 + 275x4 + 572x5 + 1001x6 + 1430x7 + 1430x8
)
t9 + · · · .

Note in this case, it is quite easy to explain some of the coefficients that appear in the
polynomials Q

(1,0,0,0)
n,132 (x). That is, we have the following theorem.

Theorem 5. 1. Q
(1,0,0,0)
n,132 (0) = 1 for n ≥ 1,

2. Q
(1,0,0,0)
n,132 (x)|x = n− 1 for n ≥ 2,

3. Q
(1,0,0,0)
n,132 (x)|x2 =

(
n
2

)
− 1 for n ≥ 3,

11



4. Q
(1,0,0,0)
n,132 (x)|xn−1 = Cn−1 for n ≥ 1, and

5. Q
(1,0,0,0)
n,132 (x)|xn−2 = Cn−1 for n ≥ 2.

Proof. There is only one permutation σ ∈ Sn with mmp(1,0,0,0)(σ) = 0, namely, σ =

n(n− 1) . . . 1. Thus the constant term in Q
(1,0,0,0)
n,132 (x) is always 1. Also the only way to get

a permutation σ ∈ Sn that has mmp(1,0,0,0)(σ) = n − 1 is to have σn = n. It follows that

the coefficient of xn−1 in Q
(1,0,0,0)
n,132 (x) is the number of permutations σ ∈ Sn(132) such that

σn = n which is clearly Cn−1. It is also easy to see that the only permutations σ ∈ Sn(132)
with mmp(1,0,0,0)(σ) = 1 are the permutations of the form

σ = n(n− 1) . . . (i+ 1)(i− 1)i(i− 2) . . . 21.

Thus the coefficient of x in Q
(1,0,0,0)
n,132 (x) is always n− 1.

For (3), note that we have Q
(1,0,0,0)
3,132 (x)|x2 = 2 =

(
3
2

)
− 1. For n ≥ 4, let a(n) denote the

coefficient of x2 in Q
(1,0,0,0)
n,132 (x). The permutations σ ∈ Sn(132) such that mmp(1,0,0,0)(σ) = 2

must have either σ1 = n, σ2 = n, or σ3 = n. If σ3 = n, it must be the case that {σ1, σ2} =
{n − 1, n − 2} and that mmp(1,0,0,0)(σ4 . . . σn) = 0. Thus σ4 . . . σn must be decreasing, so
there are exactly two permutations σ ∈ Sn(132) such that σ3 = n and mmp(1,0,0,0)(σ) = 2. If
σ2 = n, it must be the case that σ1 = n−1 and that mmp(1,0,0,0)(σ3 . . . σn) = 1. In that case,
we know that there are n−3 choices for σ3 . . . σn, so there are n−3 permutations σ ∈ Sn(132)
such that σ2 = n and mmp(1,0,0,0)(σ) = 2. Finally, it is clear that if σ1 = n, then we must
have that mmp(1,0,0,0)(σ2 . . . σn) = 2, so there are a(n− 1) permutations σ ∈ Sn(132) such
that σ1 = n and mmp(1,0,0,0)(σ) = 2. Thus we have shown that a(n) = a(n − 1) + n − 1
from which it easily follows by induction that a(n) =

(
n
2

)
− 1.

Finally, for (5), let σ = σ1 . . . σn ∈ Sn(132) be such that mmp(1,0,0,0)(σ) = n − 2. We
clearly cannot have σn = n so that n and σn must be the two elements of σ that do not
match the pattern MMP (1, 0, 0, 0) in σ. Now if σi = n, then Bi(σ) consists of the elements
1, . . . , n− i. But then it must be the case that σn = n− i. Note that this implies that σn

can be removed from σ in a completely reversible way. That is, σ → red(σ1 . . . σn−1) is a
bijection onto Sn−1(132). Hence there are Cn−1 such σ.

Q
(2,0,0,0)
132 (t, x) = 1 + t+ 2t2 + (4 + x)t3 +

(
8 + 4x+ 2x2

)
t4 +(

16 + 12x+ 9x2 + 5x3
)
t5 +

(
32 + 32x+ 30x2 + 24x3 + 14x4

)
t6 +(

64 + 80x+ 88x2 + 85x3 + 70x4 + 42x5
)
t7 +(

128 + 192x+ 240x2 + 264x3 + 258x4 + 216x5 + 132x6
)
t8 +(

256 + 448x+ 624x2 + 760x3 + 833x4 + 819x5 + 693x6 + 429x7
)
t9 + · · · .

Again it is easy to explain some of these coefficients. That is, we have the following
theorem.

Theorem 6. 1. Q
(2,0,0,0)
n,132 (0) = 2n−1 if n ≥ 3,
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2. for n ≥ 3, the highest power of x which appears in Q
(2,0,0,0)
n,132 (x) is xn−2 and

Q
(2,0,0,0)
n,132 (x)|xn−2 = Cn−2, and

3. Q
(2,0,0,0)
n,132 (x)|x = (n− 2)2n−3 for n ≥ 3.

Proof. It is easy to see that the only σ ∈ Sn(132) that have mmp(2,0,0,0)(σ) = n − 2 must
have σn−1 = n − 1 and σn = n. Note that if σn−1 = n and σn = n − 1 then we have an

occurrence of 132 for n ≥ 3. Thus the coefficient of xn−2 in Q
(2,0,0,0)
n,132 (x) is Cn−2 if n ≥ 3.

The fact that Q
(2,0,0,0)
n,132 (x) = 2n−1 for n ≥ 1 is an immediate consequence of the fact

that Q(2,0,0,0)(t, 0) = 1−t
1−2t

. In fact, this is a known result [5] since avoidance of the pattern
MMP (2, 0, 0, 0) is equivalent to avoiding simultaneously the (classical) patterns 132 and
123. One can also give a simple combinatorial proof of this fact. Clearly it is true for n = 1.
For n ≥ 2, note that σ1 must be either n or n − 1. Also, red(σ2 . . . σn) must avoid the
pattern MMP (2, 0, 0, 0). Since every permutation red(σ2 . . . σn) avoiding MMP (2, 0, 0, 0)
can be obtained in this manner in exactly two ways, once with σ1 = n and once with
σn = n− 1, we see that there are 2 · 2n−2 = 2n−1 such σ.

The sequence (Q
(2,0,0,0)
n,132 (x)|x)n≥3 is the sequence

1, 4, 12, 32, 80, 192, 448, . . . ,

which is sequence A001787 in OEIS, whose n-th term is an = n2n−1. Now an has many
combinatorial interpretations including the number of edges in the n-dimensional hypercube
and the number of permutations in Sn+2(132) with exactly one occurrence of the pattern
123. The ordinary generating function of the sequence is x

(1−2x)2
, which implies that

Q
(2,0,0,0)
132 (t, x)|x =

t3

(1− 2t)2
. (9)

This can be proved in two different ways. That is, for any k ≥ 2,

Q
(k,0,0,0)
132 (t, x)|x =

(
1

1− tQ
(k−1,0,0,0)
132 (t, x)

)∣∣
x

=

(
1 +

∑
n≥1

tn(Q
(k−1,0,0,0)
132 (t, x))n

)∣∣
x

=
∑
n≥1

ntn(Q
(k−1,0,0,0)
132 (t, 0))n−1Q

(k−1,0,0,0)
132 (t, x)|x

= Q
(k−1,0,0,0)
132 (t, x)|x

∑
n≥1

ntn(Q
(k−1,0,0,0)
132 (t, 0))n−1. (10)

However

d

dt
Q(k,0,0,0)(t, 0) =

d

dt

(
1

1− tQ
(k−1,0,0,0)
132 (t, 0)

)
=

∑
n≥1

n(tQ
(k−1,0,0,0)
132 (t, 0))n−1 d

dt

(
tQ

(k−1,0,0,0)
132 (t, 0)

)
13



so that
t d
dt
Q(k,0,0,0)(t, 0)

d
dt

(
tQ

(k−1,0,0,0)
132 (t, 0)

) =
∑
n≥1

ntn(Q
(k−1,0,0,0)
132 (t, 0))n−1. (11)

Combining (10) and (11), we obtain the recursion

Q
(k,0,0,0)
132 (t, x)|x = Q

(k−1,0,0,0)
132 (t, x)|x

t d
dt
Q(k,0,0,0)(t, 0)

d
dt

(
tQ

(k−1,0,0,0)
132 (t, 0)

) . (12)

But then

Q
(1,0,0,0)
132 (t, x)|x =

∑
n≥2

(n− 1)tn =
t2

(1− t)2

and

Q
(1,0,0,0)
132 (t, 0) =

1

1− t
and Q

(2,0,0,0)
132 (t, 0) =

1− t

1− 2t
.

Thus

Q
(2,0,0,0)
132 (t, x)|x = Q

(1,0,0,0)
132 (t, x)|x

t d
dt
Q(2,0,0,0)(t, 0)

d
dt

(
tQ

(1,0,0,0)
132 (t, 0)

)
=

t2

(1− t)2
t d
dt

(
1−t
1−2t

)
d
dt

t
1−t

=
t3

(1− 2t)2
. (13)

We can also give a direct proof of this result. That is, we can give a direct proof of the
fact that for n ≥ 3, b(n) = Q

(2,0,0,0)
n,132 (x)|x = (n − 2)2n−3. Note that b(3) = 1 = (3 − 2)23−3

and b(4) = (4−2)24−3 = 4 so that our claim holds for n = 3, 4. Then let n ≥ 5 and assume

by induction that b(k) = (k − 2)2k−3 for 3 ≤ k < n. Now suppose that σ ∈ S
(i)
n (132) and

mmp(2,0,0,0) = 1. If the element of σ that matches MMP (2, 0, 0, 0) occurs in Ai(σ), then it
must be the case that mmp(1,0,0,0)(Ai(σ)) = 1 and mmp(2,0,0,0)(Bi(σ)) = 0. By our previous
results, we have (i−2) choices for Ai(σ) and a(n− i) = 2n−i−1 choices for Bi(σ). Note that
this can happen only for 3 ≤ i ≤ n− 1 so that such permutations contribute

n−1∑
i=3

(i− 2)2n−i−1 =
n−3∑
j=1

j2n−3−j =
n−4∑
k=0

2k(n− 3− k)

to b(n). If the element of σ which matches MMP (2, 0, 0, 0) occurs in Bi(σ), then it
must be the case that mmp(1,0,0,0)(Ai(σ)) = 0 which means that Ai(σ) is decreasing and
mmp(2,0,0,0)(Bi(σ)) = 1. This can happen only for 1 ≤ i ≤ n− 3. Thus such permutations
will contribute

b(3) + · · ·+ b(n− 1) =
n−1∑
i=3

(i− 2)2(i−3) =
n−4∑
k=0

2k(k + 1)

14



to b(n). The only permutations that we have not accounted for are the permutations
σ = σ1 . . . σn ∈ Sn(132) where σn = n and mmp(2,0,0,0)(σ1 . . . σn−1) = 1, and there are n− 2
such permutations. Thus

b(n) = (n− 2) +
n−4∑
k=0

2k(n− 3− k + k + 1)

= (n− 2)(1 +
n−4∑
k=0

2k)

= (n− 2)(1 + 2n−3 − 1) = (n− 2)2n−3.

Problem 1. Comparing the sequence (Q
(2,0,0,0)
n,132 (x)|xn−3)n≥4 with sequence A038629 in the

OEIS, it seems that Q
(2,0,0,0)
n,132 (x)|xn−3 = Cn−2 + 2Cn−3. Is this the case?

Q
(3,0,0,0)
132 (t, x) = 1 + t+ 2t2 + 5t3 + (13 + x)t4 +

(
34 + 6x+ 2x2

)
t5 +(

89 + 25x+ 13x2 + 5x3
)
t6 +

(
233 + 90x+ 58x2 + 34x3 + 14x4

)
t7 +(

610 + 300x+ 222x2 + 158x3 + 98x4 + 42x5
)
t8 +(

1597 + 954x+ 783x2 + 628x3 + 468x4 + 300x5 + 132x6
)
t9 + · · · .

The sequence (Q
(3,0,0,0)
n (0))n≥0 is sequence A001519 in the OEIS whose terms satisfy the

recursion a(n) = 3a(n− 1)− a(n− 2) with a(0) = a(1) = 1. That is, since Q
(3,0,0,0)
132 (t, 0) =

1−2t
1−3t+t2

, it is easy to see that for n ≥ 2,

Q(3,0,0,0)
n (0) = 3Q

(3,0,0,0)
n−1 (0)−Q

(3,0,0,0)
n−2 (0) (14)

with Q
(3,0,0,0)
0 (0) = Q

(3,0,0,0)
1 (0) = 1. This is a known fact [5], since the avoidance of the

pattern MMP (3, 0, 0, 0) is equivalent to avoiding the six (classical) patterns of length 4
beginning with the smallest element plus the pattern 132. This is equivalent to simulta-
neously avoiding 132 and 1234 which is one of the combinatorial interpretations given to
sequence A001519 in the OEIS. We note that the OEIS also gives another combinatorial
interpretation of this sequence as the number of permutations σ ∈ Sn+1 that avoid the
patterns 321 and 3412.

Problem 2. Can one give a combinatorial proof of (14)?

Problem 3. Do any of the known bijections between Sn(132) and Sn(321) (see [5]) send
(132, 1234)-avoiding permutations to (321, 3412)-avoiding permutations? If not, find such
a bijection.
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The sequence (Q
(3,0,0,0)
n,132 (x)|x)n≥4 is sequence A001871 in the OEIS, which has the gen-

erating function 1
(1−3x+x2)2

. The n-th term of this sequence counts the number of 3412-
avoiding permutations containing exactly one occurrence of the pattern 321.

We can use the recursion (12) to prove this. That is,

Q
(3,0,0,0)
132 (t, x)|x = Q

(2,0,0,0)
132 (t, x)|x

t d
dt
Q(3,0,0,0)(t, 0)

d
dt

(
tQ

(2,0,0,0)
132 (t, 0)

)
=

t3

(1− 2t)2
·
t d
dt

(
1−2t

1−3t+t2

)
d
dt

t(1−t)
1−2t

=
t4

(1− 3t− t2)2
. (15)

Q
(4,0,0,0)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + (41 + x)t5 +

(
122 + 8x+ 2x2

)
t6 +(

365 + 42x+ 17x2 + 5x3
)
t7 +

(
1094 + 184x+ 94x2 + 44x3 + 14x4

)
t8 +(

3281 + 731x+ 431x2 + 251x3 + 126x4 + 42x5
)
t9 + · · · .

The sequence (Q(4,0,0,0)(t, 0))n≥1 is A007051 in the OEIS. It is easy to compute that

Q(4,0,0,0)(t, 0) =
1− 3t+ t2

1− 4t+ 3t2

=
1− 3t+ t2

(1− t)(1− 3t)

= 1 +
∑
n≥1

3n−1 + 1

2
tn.

Thus for n ≥ 1, Q
(4,0,0,0)
n (0) = 3n−1+1

2
, which also counts the number of ordered trees with

n− 1 edges and height at most 4.
The sequence (Q(4,0,0,0)(t, x)|x)n≥5, which is

1, 8, 42, 184, 731, . . . ,

does not appear in the OEIS. However, we can use the recursion (12) to find its generating
function. That is,

Q
(4,0,0,0)
132 (t, x)|x = Q

(3,0,0,0)
132 (t, x)|x

t d
dt
Q(4,0,0,0)(t, 0)

d
dt

(
tQ

(3,0,0,0)
132 (t, 0)

)
=

t4

(1− 3t+ t2)2

t d
dt

(
1−3t+t2

1−4t+3t2

)
d
dt

t(1−2t)
1−3t+t2

=
t5

(1− 4t+ 3t2)2
. (16)
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4 The function Q
(0,0,k,0)
n,132 (x)

Fix k ≥ 1. It is easy to see that as we sum over all the permutations σ in S
(i)
n (132),

our choices for Ai(σ) will contribute a factor of Q
(0,0,k,0)
i−1,132 (x) to Q

(0,0,k,0)
n,132 (x) since neither n

nor any of the elements to the right of n have any effect on whether an element in Ai(σ)
matches the pattern MMP (0, 0, k, 0) in σ. Similarly our choices for Bi(σ) will contribute

a factor of Q
(0,0,k,0)
n−i,132 (x) to Q

(0,0,k,0)
n,132 (x) since neither n nor any of the elements to the left of

n have any effect on whether an element in Bi(σ) matches the pattern MMP (0, 0, k, 0) in

σ. Note that n will contribute a factor of x to Q
(0,0,k,0)
n,132 (x) if and only if k < i.

It follows that

Q
(0,0,k,0)
n,132 (x) =

k∑
i=1

Q
(0,0,k,0)
i−1,132 (x)Q

(0,0,k,0)
n−i,132 (x) + x

n∑
i=k+1

Q
(0,0,k,0)
i−1,132 (x)Q

(0,0,k,0)
n−i,132 (x). (17)

Note that if i ≤ k, Q
(0,0,k,0)
i−1,132 (x) = Ci−1. Thus

Q
(0,0,k,0)
n,132 (x) =

k∑
i=1

Ci−1Q
(0,0,k,0)
n−i,132 (x) + x

n∑
i=k+1

Q
(0,0,k,0)
i−1,132 (x)Q

(0,0,k,0)
n−i,132 (x). (18)

Multiplying both sides of (18) by tn and summing for n ≥ 1, will show that

−1 +Q
(0,0,k,0)
132 (t, x) = t(C0 + C1t+ · · ·+ Ck−1t

k−1)Q
(0,0,k,0)
132 (t, x) +

txQ
(0,0,k,0)
132 (t, x)(Q

(0,0,k,0)
132 (t, x)− (C0 + C1t+ · · ·+ Ck−1t

k−1)).

Hence we obtain the quadratic equation

0 = 1− (−1+ (t− tx)(C0 +C1t+ · · ·+Ck−1t
k−1))Q

(0,0,k,0)
132 (t, x) + tx(Q

(0,0,k,0)
132 (t, x))2. (19)

This implies the following theorem.

Theorem 7. For k ≥ 1,

Q
(0,0,k,0)
132 (t, x) =

1 + (tx− t)(
∑k−1

j=0 Cjt
j)−

√
(1 + (tx− t)(

∑k−1
j=0 Cjtj))2 − 4tx

2tx
(20)

=
2

1 + (tx− t)(
∑k−1

j=0 Cjtj) +
√

(1 + (tx− t)(
∑k−1

j=0 Cjtj))2 − 4tx

and

Q
(0,0,k,0)
132 (t, 0) =

1

1− t(C0 + C1t+ · · ·+ Ck−1tk−1)
. (21)

By Corollary 1, Q
(0,0,k,0)
132 (t, 0) is also the generating function of all Dyck paths that have

no interval of length ≥ 2k and the generating function of all rooted binary trees T such
that T has no node η whose left subtree has size ≥ k.

It is easy to explain the highest power and the second highest power of x which occurs
in Q

(0,0,k,0)
n,132 (x) for any k ≥ 1.
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Theorem 8. 1. For all k ≥ 1 and n > k, the highest power of x which occurs in
Q

(0,0,k,0)
n,132 (x) is xn−k and Q

(0,0,k,0)
n,132 (x)|xn−k = Ck and

2. Q
(0,0,k,0)
n,132 (x)|xn−k−1 = Ck+1 − Ck + 2(n− k − 1)Ck−1.

Proof. For (1), it is easy to see that for any k ≥ 1, the maximum number ofMMP (0, 0, k, 0)-
matches occurs in a permutation σ = σ1 . . . σn ∈ Sn(132) only when σ1 . . . σk ∈ Sk(132)

and σk+1 . . . σn is strictly increasing. Thus Q
(0,0,k,0)
n,132 (x)|xn−k = Ck for n ≥ k + 1.

For (2), suppose that k ≥ 3 and an,k = Q
(0,0,k,0)
n,132 (x)|xn−k−1 where n ≥ k + 1. Then

suppose that σ = σ1 . . . σn+1 ∈ Sn+1(132) is such that mmp(0,0,2,0)(σ) = n − k. Then if
σn+1 = n+ 1, we must have mmp(0,0,2,0)(σ1 . . . σn) = n− k− 1 so that we have an,k choices
for σ1 . . . σn. If σ1 = n, then mmp(0,0,2,0)(σ2 . . . σn+1) = n− k so that we have Ck−1 choices
for σ2 . . . σn+1. If σn = n, then σn+1 = 1 and mmp(0,0,2,0)(σ1 . . . σn) = n− k so that we have
Ck−1 choices for σ1 . . . σn. If σi = n where 2 ≤ i ≤ k, then σ1 . . . σk cannot contribute to
mmp(0,0,k,0)(σ) so that mmp(0,0,k,0)(σ) = mmp(0,0,k,0)(σk+1 . . . σn+1) ≤ n− i− k < n− k− 1.
If σi = n where n − k + 1 ≤ n − 1, then σi+1 . . . σn+1 cannot contribute to mmp(0,0,k,0)(σ)
so that mmp(0,0,k,0)(σ) = mmp(0,0,k,0)(σ1 . . . σi) ≤ n − i − k < n − k − 1. Finally if σi = n
where k + 1 ≤ i ≤ n− k − 2, then

mmp(0,0,k,0)(σ) = mmp(0,0,k,0)(σ1 . . . σi) + mmp(0,0,k,0)(σi+1 . . . σn+1)

≤ i− k + (n+ 1− i− k) = n+ 1− 2k < n− k − 1.

Thus it follows that for n ≥ k + 1, an,k satisfies the recursion

an+1,k = an,k + 2Ck−1. (22)

In general, if n = k + 1, then there are Ck+1 − Ck permutations in Sn(132) avoiding
MMP (0, 0, k, 0), namely, those that do not have σk+1 = k+1. Using this as the base case,
we may solve recursion (22) to obtain that an,k = Ck+1 − Ck + 2(n− k − 1)Ck−1.

Again, we can easily use Mathematica to compute some examples of these generating
functions.

Q
(0,0,1,0)
132 (t, x) = 1 + t+ (1 + x)t2 +

(
1 + 3x+ x2

)
t3 +

(
1 + 6x+ 6x2 + x3

)
t4 +(

1 + 10x+ 20x2 + 10x3 + x4
)
t5 +

(
1 + 15x+ 50x2 + 50x3 + 15x4 + x5

)
t6 +(

1 + 21x+ 105x2 + 175x3 + 105x4 + 21x5 + x6
)
t7 +(

1 + 28x+ 196x2 + 490x3 + 490x4 + 196x5 + 28x6 + x7
)
t8 +(

1 + 36x+ 336x2 + 1176x3 + 1764x4 + 1176x5 + 336x6 + 36x7 + x8
)
t9 + · · · .

It is easy to explain several of the coefficients of Q
(0,0,1,0)
n,132 (x). That is, the following hold.

Theorem 9. 1. Q
(0,0,1,0)
n,132 (0) = 1 for n ≥ 1,

2. Q
(0,0,1,0)
n,132 (x)|xn−1 = 1 for n ≥ 2,
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3. Q
(0,0,1,0)
n,132 (x)|x =

(
n
2

)
for n ≥ 2, and

4. Q
(0,0,1,0)
n,132 (x)|xn−2 =

(
n
2

)
for n ≥ 3.

Proof. It is easy to see that n(n − 1) . . . 1 is the only permutation σ ∈ Sn(132) such

that mmp(0,0,1,0)(σ) = 0. Thus Q
(0,0,1,0)
n,132 (0) = 1 for all n ≥ 1. Similarly, for n ≥ 2,

σ = 12 . . . (n− 1)n is the only permutation in Sn(132) with mmp(0,0,1,0)(σ) = n− 1 so that

Q
(0,0,1,0)
n,132 (x)|xn−1 = 1 for n ≥ 2.

To prove (3), let σ(i,j) = n(n−1) . . . (j+1)(j−1) . . . ij(i−1) . . . 1 for any 1 ≤ i < j ≤ n.
It is easy to see that mmp(0,0,1,0)(σ(i,j)) = 1 and that these are the only permutations σ in

Sn(132) such that mmp(0,0,1,0)(σ) = 1. Thus Q
(0,0,1,0)
n,132 (x)|x =

(
n
2

)
for n ≥ 2.

For (4), we prove by induction that Q
(0,0,1,0)
n,132 (x)|xn−2 =

(
n
2

)
for n ≥ 3. Clearly the theo-

rem holds for n = 3, 4. Now suppose that n ≥ 5 and σ ∈ Sn(132) and mmp(0,0,1,0)(σ) = n−2.
Then if σn = n, it must be the case that σ1 . . . σn−1 ∈ Sn−1 and mmp(0,0,1,0)(σ1 . . . σn−1) =
n− 3 so by induction we have

(
n−1
2

)
choices for σ1 . . . σn−1. If σi = n, then it must be the

case that σ = (n−k+1) . . . (n−1)n12 . . . (n−k) so that there are n−1 such permutations
where σn ̸= n.

More generally, one can observe that xj and xn−j−1 have the same coefficient inQ
(0,0,1,0)
n,132 (x).

This will be proved later; see the discussion of (42).

Q
(0,0,2,0)
132 (t, x) = 1 + t+ 2t2 + (3 + 2x)t3 +

(
5 + 7x+ 2x2

)
t4 +(

8 + 21x+ 11x2 + 2x3
)
t5 +

(
13 + 53x+ 49x2 + 15x3 + 2x4

)
)t6 +(

21 + 124x+ 174x2 + 89x3 + 19x4 + 2x5
)
t7 +(

34 + 273x+ 546x2 + 411x3 + 141x4 + 23x5 + 2x6
)
t8 +(

55 + 577x+ 1557x2 + 1635x3 + 804x4 + 205x5 + 27x6 + 2x7
)
t9 + · · · .

We then have the following proposition.

Proposition 1. 1. Q
(0,0,2,0
n,132 (0) = Fn where Fn is the n-th Fibonacci number and

2. Q
(0,0,2,0)
n,132 (x)|xn−3 = 3 + 4(n− 3).

Proof. In this case, we know that Q
(0,0,2,0)
132 (t, 0) = 1

1−t(C0+C1t)
= 1

1−t−t2
, so the sequence

{Q(0,0,2,0)
n,132 (0)}n≥0 is the Fibonacci numbers. This result is known [5], since the avoidance of

MMP (0, 0, 2, 0) is equivalent to the avoidance of the patterns 123 and 213 simultaneously,
so in this case we are dealing with the multi-avoidance of the classical patterns 132, 123,
and 213.

The fact that Q
(0,0,2,0)
n,132 (x)|xn−3 = 3 + 4(n− 3) is a special case of Theorem 8.

The sequence (Q
(0,0,2,0)
n,132 (x)|x)n≥3 which is 2, 7, 21, 53, 124, 273, 577, . . . does not appear

in the OEIS.
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Q
(0,0,3,0)
132 (t, x) = 1 + t+ 2t2 + 5t3 + (9 + 5x)t4 +

(
18 + 19x+ 5x2

)
t5 +(

37 + 61x+ 29x2 + 5x3
)
t6 +

(
73 + 188x+ 124x2 + 39x3 + 5x4

)
t7 +

(146 + 523x+ 500x2 + 207x3 + 49x4 + 5x5)t8 +

(293 + 1387x+ 1795x2 + 1013x3 + 310x4 + 59x5 + 5x6)t9 + · · · .

In this case, the sequence {Q(0,0,3,0)
n,132 (0)}n≥0 is A077947 in the OEIS which also counts

the number of sequences of codewords of total length n from the code C = {0, 10, 110, 111}.
The basic idea of a combinatorial explanation of this fact is not that difficult to present.
Indeed, a permutation avoiding the patterns 132 and MMP (0, 0, 3, 0) is such that to the
left of n, the largest element, one can either have no elements, one element (n − 1), two
elements in increasing order (n−2)(n−1), or two elements in decreasing order (n−1)(n−2).
We can then recursively build the codeword corresponding to the permutation beginning
with, say, 0, 10, 110 and 111, respectively, corresponding to the four cases; one then applies
the same map to the subpermutation to the right of n.

The sequence (Q
(0,0,3,0)
n,132 (x)|x)n≥4 which is

5, 19, 61, 188, 532, 1387, . . .

does not appear in the OEIS.

Q
(0,0,4,0)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + (28 + 14x)t5 + (62 + 56x+ 14x2)t6 +

(143 + 188x+ 84x2 + 14x3)t7 + (331 + 603x+ 307x2 + 112x3 + 14x4)t8 +

(738 + 1907x+ 1455x2 + 608x3 + 140x4 + 14x5)t9 + · · · .

Here neither the sequences (Q
(0,0,4,0)
n,132 (0))n≥1 nor the sequence (Q

(0,0,4,0)
n,132 (x)|x)n≥5 appear

in the OEIS.

5 Q
(0,k,0,0)
n,132 (x) = Q

(0,0,0,k)
n,132 (x)

Note it follows from Lemma 1 that Q
(0,k,0,0)
n,132 (x) = Q

(0,0,0,k)
n,132 (x) for all k ≥ 1. Thus in this

section, we shall only consider the generating functions Q
(0,k,0,0)
132 (t, x).

First we consider the case k = 1. It is easy to see that as we sum over all the per-
mutations σ in S

(i)
n (132), our choices for Ai(σ) will contribute a factor of Q

(0,1,0,0)
i−1,132 (x) to

Q
(0,1,0,0)
n,132 (x), since neither n nor any of the elements to the right of n have any effect on

whether an element in Ai(σ) matches the pattern MMP (0, 1, 0, 0) in σ. Similarly our

choices for Bi(σ) will contribute a factor of Cn−ix
n−i to Q

(0,1,0,0)
n,132 (x), since the presence of

n to the left of these elements guarantees that they all match the pattern MMP (0, 1, 0, 0)
in σ. Note that n does not match the pattern MMP (0, 1, 0, 0) in σ. It follows that

Q
(0,1,0,0)
n,132 (x) =

n∑
i=1

Q
(0,1,0,0)
i−1,132 (x)Cn−ix

n−i. (23)

20



Multiplying both sides of (23) by tn and summing for n ≥ 1 will show that

−1 +Q
(0,1,0,0)
132 (t, x) = tQ

(0,1,0,0)
132 (t, x) C(tx). (24)

Thus

Q
(0,1,0,0)
132 (t, x) =

1

1− tC(tx)

which is the same as the generating function for Q
(1,0,0,0)
132 (t, x).

Next suppose that k > 1. Again, it is easy to see that as we sum over all the per-
mutations σ in S

(i)
n (132), our choices for Ai(σ) will contribute a factor of Q

(0,k,0,0)
i−1,132 (x) to

Q
(0,k,0,0)
n,132 (x), since neither n nor any of the elements to the right of n have any effect on

whether an element in Ai(σ) matches the pattern MMP (0, k, 0, 0) in σ. Now if i ≥ k, then

our choices for Bi(σ) will contribute a factor of Cn−ix
n−i to Q

(0,k,0,0)
n,132 (x), since the presence

of n and the elements of Ai(σ) guarantee that the elements of Bi(σ) all match the pattern
MMP (0, k, 0, 0) in σ. However, if i < k, then our choices for Bi(σ) will contribute a factor

of Q
(0,k−i,0,0)
n,132 (x) to Q

(0,k,0,0)
n,132 (x) since the presence of n and the elements of Ai(σ) to the left

of n element guarantees that the elements of Bi(σ) match the pattern MMP (0, k, 0, 0) in
σ if and only if they match the pattern MMP (0, k− i, 0, 0) in Bi(σ). Note that n does not
match the pattern MMP (0, k, 0, 0) for any k ≥ 1. It follows that

Q
(0,k,0,0)
n,132 (x) =

k−1∑
i=1

Q
(0,k,0,0)
i−1,132 (x)Q

(0,k−i,0,0)
n−i,132 (x) +

n∑
i=k

Q
(0,k,0,0)
i−1,132 (x)Cn−ix

n−i

=
k−1∑
i=1

Ci−1Q
(0,k−i,0,0)
n−i,132 (x) +

n∑
i=k

Q
(0,k,0,0)
i−1,132 (x)Cn−ix

n−i. (25)

Here the last equation follows from the fact that Q
(0,k,0,0)
i−1,132 (x) = Ci−1 if i ≤ k−1. Multiplying

both sides of (25) by tn and summing for n ≥ 1 will show that

− 1 +Q
(0,k,0,0)
132 (t, x)

= t
k−1∑
i=1

Ci−1t
i−1Q

(0,k−i,0,0)
132 (t, x) + tC(tx)(Q

(0,k,0,0)
132 (t, x)− (C0 + C1t+ · · ·+ Ck−2t

k−2)).

Thus we have the following theorem.

Theorem 10.

Q
(0,1,0,0)
132 (t, x) =

1

1− tC(tx)
. (26)

For k > 1,

Q
(0,k,0,0)
132 (t, x) =

1 + t
∑k−2

j=0 Cjt
j(Q

(0,k−1−j,0,0)
132 (t, x)− C(tx))

1− tC(tx)
(27)

and

Q
(0,k,0,0)
132 (t, 0) =

1 + t
∑k−2

j=0 Cjt
j(Q

(0,k−1−j,0,0)
132 (t, 0)− 1)

1− t
. (28)
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Then one can compute that

Q
(0,1,0,0)
132 (t, 0) =

1

(1− t)
;

Q
(0,2,0,0)
132 (t, 0) =

1− t+ t2

(1− t)2
;

Q
(0,3,0,0)
132 (t, 0) =

1− 2t+ 2t2 + t3 − t4

(1− t)3
;

Q
(0,4,0,0)
132 (t, 0) =

1− 3t+ 4t2 − t3 + 3t4 − 5t5 + 2t6

(1− t)4
, and

Q
(0,5,0,0)
132 (t, 0) =

1− 4t+ 7t2 − 5t3 + 4t4 + 6t5 − 21t6 + 18t7 − 5t8

(1− t)5
.

We can explain the highest coefficient of x in Q
(0,k,0,0)
n (x) for any k ≥ 1.

Proposition 2. For all k ≥ 1, the highest power of x that occurs in Q
(0,k,0,0)
n (x) is xn−k

and Q
(0,k,0,0)
n (x)|xn−k = CkCn−k.

Proof. It is easy to see that to obtain the largest number of matches of MMP (0, k, 0, 0) for
a permutation σ ∈ Sn(132), we need only arrange the largest k elements n, n− 1, . . . , n−
k + 1 such that they avoid 132, followed by the elements 1, . . . , n − k under the same
condition. Thus the highest power of x that occurs in Q

(0,k,0,0)
n (x) is xn−k and its coefficient

is CkCn−k.

Again we can use Mathematica or Maple to compute the first few terms of the generating
function Q

(0,k,0,0)
132 (t, x) for small k. Since Q

(0,1,0,0)
132 (t, x) = Q

(1,0,0,0)
132 (t, x), we will not list that

generating function again.

Q
(0,2,0,0)
132 (t, x) = 1 + t+ 2t2 + (3 + 2x)t3 +

(
4 + 6x+ 4x2

)
t4 +(

5 + 12x+ 15x2 + 10x3
)
t5 +

(
6 + 20x+ 36x2 + 42x3 + 28x4

)
t6 +(

7 + 30x+ 70x2 + 112x3 + 126x4 + 84x5
)
t7 +(

8 + 42x+ 120x2 + 240x3 + 360x4 + 396x5 + 264x6
)
t8 +(

9 + 56x+ 189x2 + 450x3 + 825x4 + 1188x5 + 1287x6 + 858x7
)
t9 + · · · .

The only permutations σ ∈ Sn(132) such that mmp(0,2,0,0)(σ) = 0 are the identity

permutation plus all the adjacent transpositions (i, i+1) which explains whyQ
(0,2,0,0)
n (0) = n

for all n ≥ 1. This is a known result [5] since avoiding MMP (0, 2, 0, 0) is equivalent to
avoiding simultaneously the classical patterns 321 and 231. Hence in this case, we are
dealing with the simultaneous avoidance of the patterns 132, 321 and 231. The sequence
(Q

(0,2,0,0)
n (x)|xn−3)n≥3, which is

3, 6, 15, 42, 126, 396, 1287, . . . ,
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appears to be sequence A120589 in the OEIS which has no listed combinatorial interpre-
tation.

Q
(0,3,0,0)
132 (t, x) = 1 + t+ 2t2 + 5t3 + (9 + 5x)t4 +

(
14 + 18x+ 10x2)

)
t5 +(

20 + 42x+ 45x2 + 25x3
)
t6 +

(
27 + 80x+ 126x2 + 126x3 + 70x4

)
t7 +(

35 + 135x+ 280x2 + 392x3 + 378x4 + 210x5
)
t8 +(

44 + 210x+ 540x2 + 960x3 + 1260x4 + 1088x5 + 660x6
)
t9 + · · · .

Q
(0,4,0,0)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + (28 + 14x)t5 +

(
48 + 56x+ 28x2

)
t6 +(

75 + 144x+ 140x2 + 70x3
)
t7 +

(
110 + 300x+ 432x2 + 392x3 + 196x4

)
t8 +(

154 + 550x+ 1050x2 + 1344x3 + 1176x4 + 588x5
)
t9 + · · · .

The sequences {Q(0,3,0,0)
n (0)}n≥1, (Q

(0,2,0,0)
n (x)|x)n≥4, (Q

(0,3,0,0)
n (x)|xn−4)n≥4, {Q(0,4,0,0)

n (0)}n≥1,

and {Q(0,4,0,0)
n (x)|x}n≥5 do not appear in the OEIS.

6 The function Q
(k,0,∅,0)
n,132 (x)

Note that the pattern MMP (k, 0, ∅, 0) is a generalization of the number of left-to-right
minima statistic (which corresponds to the case k = 0).

First we compute the generating function for Q
(∅,0,∅,0)
n,132 (x) which corresponds to the

elements that are both left-to-right minima and right-to-left maxima. Consider the per-
mutations σ ∈ Sn(132) where σ1 = n. Clearly such permutations contribute xQ

(∅,0,∅,0)
n−1,132(x)

to Q
(∅,0,∅,0)
n,132 (x). For i > 1, it is easy to see that as we sum over all the permutations σ in

S
(i)
n (132), our choices for Ai(σ) will contribute a factor of Ci−1 to Q

(∅,0,∅,0)
n,132 (x) since the pres-

ence of n to the right of these elements ensures that no point in Ai(σ) matches the pattern

MMP (∅, 0, ∅, 0). Similarly, our choices for Bi(σ) will contribute a factor of Q
(∅,0,∅,0)
n−i,132 (x)

to Q
(∅,0,∅,0)
n,132 (x) since neither n nor any of the elements to the left of n have any effect on

whether an element in Bi(σ) matches the pattern MMP (∅, 0, ∅, 0) in σ. Thus

Q
(∅,0,∅,0)
n,132 (x) = xQ

(∅,0,∅,0)
n−1,132(x) +

n∑
i=2

Ci−1Q
(∅,0,∅,0)
n−i,132 (x). (29)

Multiplying both sides of (29) by tn and summing over all n ≥ 1, we obtain that

−1 +Q
(∅,0,∅,0)
132 (t, x) = txQ

(∅,0,∅,0)
132 (t, x) + tQ

(∅,0,∅,0)
132 (t, x) (C(t)− 1). (30)

Thus we have the following theorem.
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Theorem 11.

Q
(∅,0,∅,0)
132 (t, x) =

1

1− tx+ t− tC(t)
(31)

and

Q
(∅,0,∅,0)
132 (t, 0) =

1

1 + t− tC(t)
. (32)

One can compute that

Q
(∅,0,∅,0)
132 (t, x) = 1 + xt+

(
1 + x2

)
t2 +

(
2 + 2x+ x3

)
t3 +

(
6 + 4x+ 3x2 + x4

)
t4 +(

18 + 13x+ 6x2 + 4x3 + x5
)
t5 +

(
57 + 40x+ 21x2 + 8x3 + 5x4 + x6

)
t6 +(

186 + 130x+ 66x2 + 30x3 + 10x4 + 6x5 + x7
)
t7 +(

622 + 432x+ 220x2 + 96x3 + 40x4 + 12x5 + 7x6 + x8
)
t8 +(

2120 + 1466x+ 744x2 + 328x3 + 130x4 + 51x5 + 14x6 + 8x7 + x9
)
t9 + · · · .

Clearly the highest degree term in Q
(∅,0,∅,0)
n,132 (x) is xn which comes from the permutation

n(n − 1) . . . 21. Similarly, the coefficient of xn−2 in Q
(∅,0,∅,0)
n,132 (x) is n − 1 which comes from

the permutations n(n− 1) . . . (i+ 3)(i+ 2)i(i+ 1)(i− 1)(i− 2) . . . 21 for i = 1, . . . , n− 1.

The sequence (Q
(∅,0,∅,0)
n,132 (0))n≥1 is the Fine numbers (A000957 in the OEIS). The Fine

numbers (Fn)n≥0 can be defined by the generating function

F(t) =
∑
n≥0

Fnt
n =

1−
√
1− 4t

3t−
√
1− 4t

.

It is straightforward to verify that

1−
√
1− 4t

3t−
√
1− 4t

· 1 +
√
1− 4t

1 +
√
1− 4t

=
1

1 + t− tC(t)
.

Fn counts the number of 2-Motzkin paths with no level steps at height 0; see [2, 3]. Fn also
counts the number of ordered rooted trees with n edges that have root of even degree.
The sequence (Q

(∅,0,∅,0)
n,132 (x)|x)n≥1 is A065601 in the OEIS, which counts the number of Dyck

paths of length 2n with exactly one hill.

Problem 4. Find simple bijective proofs for the last two facts.

Next we compute the generating function for Q
(0,0,∅,0)
n,132 (x). First consider the permuta-

tions σ ∈ S
(1)
n (132). Clearly such permutations contribute xQ

(0,0,∅,0)
n−1,132(x) to Q

(0,0,∅,0)
n,132 (x). For

i > 1, it is easy to see that as we sum over all the permutations σ in S
(i)
n (132), our choices

for Ai(σ) will contribute a factor of Q
(0,0,∅,0)
i−1,132 (x) to Q

(0,0,∅,0)
n,132 (x) since neither n nor any of

the elements to the right of n have any effect on whether an element in Ai(σ) matches the
pattern MMP (0, 0, ∅, 0) in σ. Similarly, our choices for Bi(σ) will contribute a factor of
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Q
(0,0,∅,0)
n−i,132 (x) to Q

(0,0,∅,0)
n,132 (x) since neither n nor any of the elements to the left of n have any

effect on whether an element in Bi(σ) matches the pattern MMP (0, 0, ∅, 0) in σ. Thus

Q
(0,0,∅,0)
n,132 (x) = xQ

(0,0,∅,0)
n−1,132(x) +

n∑
i=2

Q
(0,0,∅,0)
i−1,132 (x)Q

(0,0,∅,0)
n−i,132 (x). (33)

Multiplying both sides of (33) by tn and summing over all n ≥ 1, we obtain that

−1 +Q
(0,0,∅,0)
132 (t, x) = txQ

(0,0,∅,0)
132 (t, x) + tQ

(0,0,∅,0)
132 (t, x) (Q

(0,0,∅,0)
132 (t, x)− 1), (34)

so that
0 = 1 +Q

(0,0,∅,0)
132 (t, x)(tx− t− 1) + t(Q

(0,0,∅,0)
132 (t, x))2.

Thus

Q
(0,0,∅,0)
132 (t, x) =

(1 + t− tx)−
√

(1 + t− tx)2 − 4t

2t
.

Next we compute a recursion for Q
(k,0,∅,0)
n,132 (x) where k ≥ 1. It is clear that n can never

match the pattern MMP (k, 0, ∅, 0) for k ≥ 1 in any σ ∈ Sn(132). For i ≥ 1, it is easy

to see that as we sum over all the permutations σ in S
(i)
n (132), our choices for Ai(σ) will

contribute a factor of Q
(k−1,0,∅,0)
i−1,132 (x) to Q

(k,0,∅,0)
n,132 (x) since none of the elements to the right of

n have any effect on whether an element in Ai(σ) matches the pattern MMP (k, 0, ∅, 0) and
the presence of n ensures that an element in Ai(σ) matchesMMP (k, 0, ∅, 0) in σ if and only
if it matches MMP (k − 1, 0, ∅, 0) in Ai(σ). Similarly, our choices for Bi(σ) will contribute

a factor of Q
(k,0,∅,0)
n−i,132 (x) to Q

(k,0,∅,0)
n,132 (x) since neither n nor any of the elements to the left of

n have any effect on whether an element in Bi(σ) matches the pattern MMP (k, 0, ∅, 0).
Thus

Q
(k,0,∅,0)
n,132 (x) =

n∑
i=1

Q
(k−1,0,∅,0)
i−1,132 (x)Q

(k,0,∅,0)
n−i,132 (x). (35)

Multiplying both sides of (35) by tn and summing over all n ≥ 1, we obtain that

−1 +Q
(0,0,∅,0)
132 (t, x) = tQ

(k−1,0,∅,0)
132 (t, x) Q

(k,0,∅,0)
132 (t, x). (36)

Thus we have the following theorem.

Theorem 12.

Q
(0,0,∅,0)
132 (t, x) =

(1 + t− tx)−
√

(1 + t− tx)2 − 4t

2t
. (37)

For k ≥ 1,

Q
(k,0,∅,0)
132 (t, x) =

1

1− tQ
(k−1,0,∅,0)
132 (t, x)

. (38)

Thus
Q

(0,0,∅,0)
132 (t, 0) = 1

and for k ≥ 1,

Q
(k,0,∅,0)
132 (t, 0) =

1

1− tQ
(k−1,0,∅,0)
132 (t, 0)

. (39)
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Next we consider the constant term and the coefficient of of x in Q
(k,0,∅,0)
n,132 (x) for k ≥ 1.

Proposition 3. For all k ≥ 1,

Q
(k,0,∅,0)
132 (t, 0) = Q

(k,0,0,0)
132 (t, 0).

Proof. Note that Q
(1,0,∅,0)
132 (t, 0) = 1

1−t
= Q

(1,0,0,0)
132 (t, 0). If we compare the recursions (39)

and (8), we see that we have that Q
(k,0,∅,0)
132 (t, 0) = Q

(k,0,0,0)
132 (t, 0) for all k ≥ 1. This fact is

easy to see directly. That is, suppose that σ ∈ Sn(132) has a MMP (k, 0, 0, 0)-match. Then
it is easy to see that if i is the smallest t such that σt matches MMP (k, 0, 0, 0) in σ, then
there can be no j < i such that σj < σi because otherwise, σj would matchMMP (k, 0, 0, 0).
That is, σi is also a MMP (k, 0, ∅, 0)-match. Thus if σ has a MMP (k, 0, 0, 0)-match, then
it also has a MMP (k, 0, ∅, 0)-match. The converse of this statement is trivial. Hence the
number of σ ∈ Sn(132) with no MMP (k, 0, 0, 0)-matches equals the number of σ ∈ Sn(132)
with no MMP (k, 0, ∅, 0)-matches.

The recursion (38) has the same form as the recursion (6). Thus we can use the same
method of proof that we did to establish the recursion (12) to prove that

Q(k,0,∅,0)(t, x)|x = Q(k−1,0,∅,0)(t, x)|x
t d
dt
Q(k,0,∅,0)(t, 0)

d
dt
tQ(k−1,0,∅,0)(t, 0)

. (40)

For example, we know that

Q(1,0,∅,0)(t, x)|x = Q(0,0,1,0)(t, x)|x =
∑
n≥2

(
n

2

)
tn =

t2

(1− t)3
. (41)

Since Q(k,0,∅,0)(t, 0) = Q(k,0,0,0)(t, 0) for all k ≥ 1, one can use (40) and Mathematica to
show that

Q(2,0,∅,0)(t, x)|x =
t3

(1− t)(1− 2t)2
,

Q(3,0,∅,0)(t, x)|x =
t4

(1− t)(1− 3t+ t2)2
,

Q(4,0,∅,0)(t, x)|x =
t5

(1− t)3(1− 3t)2
, and

Q(5,0,∅,0)(t, x)|x =
t6

(1− t)(1− 5t+ 6t2 − t3)2
.

We also have the following proposition concerning the coefficient of the highest power
of x in Q

(k,0,∅,0)
n,132 (x).

Proposition 4. For all k ≥ 1, the highest power of x appearing in Q
(k,0,∅,0)
n,132 (x) is xn−k and

for all n ≥ k, Q
(k,0,∅,0)
n,132 (x)|xn−k = 1.
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Proof. It is easy to see that for any k ≥ 1, the permutation σ ∈ Sn(132) with the maximal
number of MMP (k, 0, ∅, 0)-matches for n ≥ k + 1, will be of the form (n − k)(n − k −
1) . . . 21(n − k + 1)(n − k + 2) . . . n. Thus the highest coefficient xs that will appear in

Q
(k,0,∅,0)
n,132 (x) will be xn−k, with coefficient 1.

Using Theorem 12, one can compute that

Q
(0,0,∅,0)
132 (t, x) = 1 + xt+ x(1 + x)t2 + x

(
1 + 3x+ x2

)
t3 + x

(
1 + 6x+ 6x2 + x3

)
t4 +(

1 + 10x+ 20x2 + 10x3 + x4
)
t5 + x

(
1 + 15x+ 50x2 + 50x3 + 15x4 + x5

)
t6 +

x
(
1 + 21x+ 105x2 + 175x3 + 105x4 + 21x5 + x6

)
t7 +

x
(
1 + 28x+ 196x2 + 490x3 + 490x4 + 196x5 + 28x6 + x7

)
t8 +

x
(
1 + 36x+ 336x2 + 1176x3 + 1764x4 + 1176x5 + 336x6 + 36x7 + x8

)
t9 + · · · .

If we compare Q
(0,0,∅,0)
132 (t, x) to Q

(0,0,1,0)
132 (t, x), we see that for n ≥ 1,

Q
(0,0,∅,0)
n,132 (x) = xQ

(0,0,1,0)
n,132 (x). (42)

Note the Q
(0,0,∅,0)
n,132 (x) has an obvious symmetry property. That is, the following holds.

Theorem 13. For all n ≥ 1,

xn+1Q
(0,0,∅,0)
n,132

(
1

x

)
= Q

(0,0,∅,0)
n,132 (x).

Proof. Since the distribution of occurrences of the pattern MMP (0, 0, ∅, 0) is the same as
the distribution of the statistic the number of left-to-right minima, and the distribution of
occurrences of MMP (0, 0, 1, 0) is the distribution of the statistic the number of non-left-
to-right minima, this shows that the statistics the number of left-to-right minima and 1 +
the number of non-left-to-right minima are equidistributed on 132-avoiding permutations.
Actually, this proves a more general claim, namely, that on Sn(132), the joint distribu-
tion of the pair (MMP (0, 0, ∅, 0) − 1,MMP (0, 0, 1, 0)) is the same as the distribution of
(MMP (0, 0, 1, 0),MMP (0, 0, ∅, 0)−1), which often is not the case, but is here because the
sum MMP (0, 0, ∅, 0) +MMP (0, 0, 1, 0) applied to a permutation equals the length of the
permutation. That is, if we let

Rn(x, y) =
∑

σ∈Sn(132)

xmmp(0,0,∅,0)(σ)ymmp(0,0,1,0)(σ), (43)

then this shows that yRn(x, y) is symmetric in x and y for all n.
We shall sketch a combinatorial proof of this fact. First we construct a bijection T

from Sn(132) onto Sn(123) that will make the fact that yRn(x, y) is symmetric apparent.
If σ = σ1 . . . σk ∈ Sk and τ = τ1 . . . τℓ ∈ Sℓ, then we let

σ ⊕ τ = σ1 . . . σk(k + τ1) . . . (k + τℓ)
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and
σ ⊖ τ = (ℓ+ σ1) . . . (ℓ+ σk)τ1 . . . τℓ.

Then
∪

n Sn(132) is recursively generated by starting with the permutation 1 and clos-
ing under the operations of σ ⊖ τ and σ ⊕ 1. Then we can define a recursive bijec-
tion T :

∪
n Sn(132) →

∪
n Sn(123) by letting T (1) = 1, T (σ ⊖ τ) = T (σ) ⊖ T (τ), and

T (σ ⊕ 1) = X(T (σ)), where X(σ) is constructed from σ as follows.

Take the permutation σ ∈ Sn(123) and fix the positions and values of the left-to-right
minima. Append one position to the end of σ, and renumber the non-left-to-right minima
in decreasing order. For example, if σ = 4762531, then 4, 2, and 1 are the left-to-right
minima. After fixing those positions and values and appending one position, the permuta-
tion looks like 4xx2xx1x. Then we fill in the x’s with 8, 7, 6, 5, 3, in that order, to obtain
48726513. The map X is essentially based on the Simion-Schmidt bijection described in [5].

It is straightforward to prove by induction that if T (σ) = τ , then σj matches the pat-
tern MMP (0, 0, ∅, 0) in σ if and only if τj matches the pattern MMP (0, 0, ∅, 0) in τ . That
is, the map T preserves left-to-right minima. Note that if σj does not match the pattern
MMP (0, 0, ∅, 0) in σ, then it must match the pattern MMP (0, 0, 1, 0) in σ. Thus it follows
that

Rn(x, y) =
∑

σ∈Sn(132)

xmmp(0,0,∅,0)(σ)ymmp(0,0,1,0)(σ)

=
∑

σ∈Sn(123)

xLRmin(σ)ynon-LRmin(σ)

where LRmin(σ) is the number of left-to-right minima of σ and non-LRmin(σ) = n −
LRmin(σ).

Next observe that specifying the left-to-right minima of a permutation σ ∈ Sn(123)
completely determines σ. That is, if σ1 > σi2 > · · · > σik are the left-to-right minima of
σ, where 1 < i2 < · · · < ik ≤ n, then the remaining elements must be placed in decreasing
order, as in the map X, since any pair that are not decreasing will form a 123-pattern with
a previous left-to-right minimum. This means that X : Sn(123) → Sn+1(123) is one-to-
one, and since LRmin(X(σ)) = LRmin(σ) and non-LRmin(X(σ)) = 1 + non-LRmin(σ), it
follows that

yRn(x, y) =
∑

σ∈Sn(123)

xLRmin(X(σ))ynon-LRmin(X(σ)).

But it is easy to see that for any permutation X(σ), reversing and then complementing
X(σ), which rotates the graph of X(σ) by 180◦ around its center, produces a permutation
of the form X(τ) for some τ ∈ Sn(123) such that LRmin(X(σ)) = non-LRmin(X(τ)) and
non-LRmin(X(σ)) = LRmin(X(τ)). Thus∑

σ∈Sn(123)

xLRmin(X(σ))ynon-LRmin(X(σ))

28



is symmetric in x and y. Hence, yRn(x, y) is symmetric in x and y. Thus, if r and c
are the reverse and complement maps, respectively, then Y : Sn(132) → Sn(132) given
by Y (σ) = T−1X−1rcXTσ is a bijection that swaps the statistics mmp(0, 0, ∅, 0) − 1 and
mmp(0, 0, 1, 0).

One can compute that

Q
(1,0,∅,0)
132 (t, x) = 1 + t+ (1 + x)t2 +

(
1 + 3x+ x2

)
t3 +(

1 + 6x+ 6x2 + x3
)
t4 +

(
1 + 10x+ 20x2 + 10x3 + x4

)
t5 +(

1 + 15x+ 50x2 + 50x3 + 15x4 + x5
)
t6 +(

1 + 21x+ 105x2 + 175x3 + 105x4 + 21x5 + x6
)
t7 +(

1 + 28x+ 196x2 + 490x3 + 490x4 + 196x5 + 28x6 + x7
)
t8 +(

1 + 36x+ 336x2 + 1176x3 + 1764x4 + 1176x5 + 336x6 + 36x7 + x8
)
t9 + · · · .

One can observe that Q
(1,0,∅,0)
132 (t, x) = Q

(0,0,1,0)
132 (t, x). We provide here a combinatorial

proof of this fact. Actually, we will prove a stronger statement that we record as the
following theorem.

Theorem 14. The two pairs of statistics (MMP (1, 0, ∅, 0),MMP (0, 0, 1, 0)) and
(MMP (0, 0, 1, 0),MMP (1, 0, ∅, 0)) are equidistributed on Sn(132). That is, there are as
many permutations in Sn(132) with k occurrences of the pattern MMP (1, 0, ∅, 0) and
ℓ occurrences of the pattern MMP (0, 0, 1, 0) as those with k occurrences of the pattern
MMP (0, 0, 1, 0) and ℓ occurrences of the pattern MMP (1, 0, ∅, 0).

Proof. We will construct a map φ on ∪nSn(132), recursively interchanging occurrences of
the involved patterns. The base case, n = 1, obviously holds: φ(1) := 1 and neither of the
patterns occurs in 1.

Assume that the claim holds for 132-avoiding permutations of lengths less than n, and
consider a permutation π ∈ Sn(132) such that π = π1nπ2 and each letter in π1, if any, is
larger than any letter in π2. Consider two cases.

Case 1. π1 is empty. In this case, we can define φ(π) := nφ(π2). Since n is neither an
occurrence of MMP (1, 0, ∅, 0) nor an occurrence of MMP (0, 0, 1, 0). We get the desired
property by the induction hypothesis.

Case 2. π1 is not empty. Note that n is an occurrence of the pattern MMP (0, 0, 1, 0),
and because of n, each left-to-right minimum in π1 is actually an occurrence of the pattern
MMP (1, 0, ∅, 0). Further, each non-left-to-right minimum in π1 is obviously an occurrence
of the pattern MMP (0, 0, 1, 0). We now let φ(π) := (Y (red(π1)) ⊕ 1) ⊖ φ(π2) where Y ,
⊕, and ⊖ are defined while proving combinatorially (42), which deals with the equidis-
tribution of the statistics MMP (0, 0, ∅, 0) − 1 and MMP (0, 0, 1, 0). Indeed, φ(π2) will
interchange the occurrences of the patterns by the induction hypothesis. Also, assuming
that π1n has k occurrences of the pattern MMP (1, 0, ∅, 0) and ℓ occurrences of the pattern
MMP (0, 0, 1, 0), Y (red(π1)) ⊕ 1 will have ℓ occurrences of the pattern MMP (1, 0, ∅, 0)
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and k occurrences of the pattern MMP (0, 0, 1, 0) (because n will stay an occurrence of the
pattern MMP (0, 0, 1, 0)).

One can compute that

Q
(2,0,∅,0)
132 (t, x) = 1 + t+ 2t2 + (4 + x)t3 +

(
8 + 5x+ x2

)
t4 +

(
16 + 17x+ 8x2 + x3

)
t5 +(

32 + 49x+ 38x2 + 12x3 + x4
)
t6 +

(
64 + 129x+ 141x2 + 77x3 + 17x4 + x5

)
t7 +(

128 + 321x+ 453x2 + 361x3 + 143x4 + 23x5 + x6
)
t8 +(

256 + 769x+ 1326x2 + 1399x3 + 834x4 + 247x5 + 30x6 + x7
)
t9 + · · · .

The sequence (Q
(2,0,∅,0)
n,132 (x)|x)n≥4 is sequence A000337 in the OEIS, whose n-th term is

(n − 1)2n + 1. Thus Q
(2,0,∅,0)
n,132 (x)|x = (n − 4)2n−3 + 1 for n ≥ 4. One further can compute

the following functions.

Q
(3,0,∅,0)
132 (t, x) = 1 + t+ 2t2 + 5t3 + (13 + x)t4 +

(
34 + 7x+ x2

)
t5 +(

89 + 32x+ 10x2 + x3
)
t6 +

(
233 + 122x+ 59x2 + 14x3 + x4

)
t7 +(

610 + 422x+ 272x2 + 106x3 + 19x4 + x5
)
t8 +(

1597 + 1376x+ 1090x2 + 591x3 + 182x4 + 25x5 + x6
)
t9 + · · · .

Q
(4,0,∅,0)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + (41 + x)t5 +

(
122 + 9x+ x2

)
t6 +(

365 + 51x+ 12x2 + x3
)
t7 +

(
1094 + 235x+ 84x2 + 16x3 + x4

)
t8 +(

3281 + 966x+ 454x2 + 139x3 + 21x4 + x5
)
t9 + · · · .

Q
(5,0,∅,0)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + (131 + x)t6 +

(
417 + 11x+ x2

)
t7 +(

1341 + 74x+ 14x2 + x3
)
t8 +

(
4334 + 396x+ 113x2 + 18x3 + x4

)
t9 + · · · .

The second highest power of x that occurs in Q
(k,0,∅,0)
n,132 (x) is xn−k−1. Our next result will

show that Q
(k,0,∅,0)
n,132 (x)|xn−k−1 has a regular pattern for large enough n. That is, we have the

following theorem.

Theorem 15. For n ≥ 3 and k ≥ 1,

Q
(k,0,∅,0)
n+k−1,132|xn−2 = 2(k − 1) +

(
n

2

)
. (44)

Proof. Note that Q(1,0,∅,0)(t, x) = Q(0,0,1,0)(t, x) and by Theorem 9, we have that

Q
(0,0,1,0)
n,132 (x)|xn−2 =

(
n
2

)
. Thus the theorem holds for k = 1.
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By induction, assume that Q
(k,0,∅,0)
n+k−1,132|xn−2 = 2(k − 1) +

(
n
2

)
. We know by (35) that

Q
(k+1,0,∅,0)
n+k,132 (x) =

n+k∑
i=1

Q
(k,0,∅,0)
i−1,132 (x)Q

(k+1,0,∅,0)
n+k−i,132 (x). (45)

Note that for 2 ≤ i ≤ n−k−2, the highest coefficient of x in Q
(k+1,0,∅,0)
n+k−i,132 (x) is x

n+k−i−(k+1) =

xn−i−1. However the highest coefficient of x in Q
(k,0,∅,0)
i−1,132 (x) is xi−2 so that the only terms

on the RHS of (45) that can contribute to the coefficient of xn−2 is i = 1, i = n − k − 1,
and i = n− k. By Proposition 4, we know that

Q
(k+1,0,∅,0)
n+k−1,132(x)|xn−2 = 1 = Q

(k,0,∅,0)
n+k−2,132(x)|xn−2

so that the i = 1 and i = n− k − 1 terms in (45) contribute 2 to Q
(k+1,0,∅,0)
n+k,132 (x)|xn−2 . Now

the i = n+ k term in (45) contributes

Q
(k,0,∅,0)
n+k−1,132(x)|xn−2 = 2(k − 1) +

(
n

2

)
to Q

(k+1,0,∅,0)
n+k,132 (x)|xn−2 . Thus

Q
(k+1,0,∅,0)
n+k,132 (x)|xn−2 = 2k +

(
n

2

)
.

The sequences (Q
(3,0,∅,0)
n,132 (x)|x)n≥4, (Q

(4,0,∅,0)
n,132 (x)|x)n≥5, and (Q

(5,0,∅,0)
n,132 (x)|x)n≥5 do not ap-

pear in the OEIS.

7 The function Q
(∅,0,k,0)
n,132 (x)

First we compute the generating function for Q
(∅,0,0,0)
n,132 (x). Observe that n will always match

the pattern MMP (∅, 0, 0, 0) in any σ ∈ Sn. For i ≥ 1, it is easy to see that as we sum over

all the permutations σ in S
(i)
n (132), our choices for Ai(σ) will contribute a factor of Ci−1 to

Q
(∅,0,0,0)
n,132 (x) since the presence of n to the right of an element in Ai(σ) ensures that it does

match the pattern MMP (∅, 0, 0, 0) in σ. Similarly our choices for Bi(σ) will contribute a

factor of Q
(∅,0,0,0)
n−i,132 (x) to Q

(∅,0,0,0)
n,132 (x) since neither n nor any of the elements to the left of

n have any effect on whether an element in Bi(σ) matches the pattern MMP (∅, 0, 0, 0).
Thus

Q
(∅,0,0,0)
n,132 (x) = x

n∑
i=1

Ci−1Q
(∅,0,0,0)
n−i,132 (x). (46)

Multiplying both sides of (46) by tn and summing over all n ≥ 1, we obtain that

−1 +Q
(∅,0,0,0)
132 (t, x) = txC(t) Q

(∅,0,0,0)
132 (t, x), (47)
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so that

Q
(∅,0,0,0)
132 (t, x) =

1

1− txC(t)
.

Next suppose that k ≥ 1. In this case n in σ ∈ S
(i)
n (132) will match the pattern

MMP (∅, 0, k, 0) in σ if and only if i > k. For i ≥ 1, it is easy to see that as we sum over

all the permutations σ in S
(i)
n (132), our choices for Ai(σ) will contribute a factor of Ci−1

to Q
(∅,0,k,0)
n,132 (x) since the presence of n to the right ensures that none of these elements will

match the pattern MMP (∅, 0, k, 0). Similarly, our choices for Bi(σ) will contribute a factor

of Q
(∅,0,k,0)
n−i,132 (x) to Q

(∅,0,k,0)
n,132 (x) since neither n nor any of the elements to the left of n have

any effect on whether an element in Bi(σ) matches the pattern MMP (∅, 0, k, 0). Thus

Q
(∅,0,k,0)
n,132 (x) =

k∑
i=1

Ci−1Q
(∅,0,k,0)
n−i,132 (x) + x

n∑
i=k+1

Ci−1Q
(∅,0,k,0)
n−i,132 (x). (48)

Multiplying both sides of (48) by tn and summing over all n ≥ 1, we obtain that

−1 +Q
(∅,0,k,0)
132 (t, x) = t(

k−1∑
j=0

Cjt
j)Q

(∅,0,k,0)
132 (t, x) + xtQ

(∅,0,k,0)
132 (C(t)−

k−1∑
j=0

Cjt
j). (49)

Thus we have the following theorem.

Theorem 16.

Q
(∅,0,0,0)
132 (t, x) =

1

1− txC(t)
. (50)

For k ≥ 1,

Q
(∅,0,k,0)
132 (t, x) =

1

1−−txC(t)− t(1− x)(
∑k−1

j=0 Cjtj)
(51)

and

Q
(∅,0,k,0)
132 (t, 0) =

1

1− t(
∑k−1

j=0 Cjtj)
. (52)

Proposition 5. Q
(∅,0,k,0)
132 (t, 0) = Q(0,0,k,0)(t, 0) for all k ≥ 1.

Proof. The proposition follows immediately from Theorems 7 and 16. That is, we have

Q
(0,0,k,0)
132 (t, 0) =

1

1− t(
∑k−1

j=0 Cjtj)
= Q

(∅,0,k,0)
132 (t, 0).

This fact is easy to see directly. That is, suppose that σ = σ1 . . . σn ∈ Sn(132) and σ
contains a MMP (0, 0, k, 0)-match. Then it is easy to see that if i is the largest such
that σi matches MMP (0, 0, k, 0), then there can be no j > i such that σj > σi because
otherwise, σj would match MMP (0, 0, k, 0). Thus if σ has a MMP (0, 0, k, 0)-match, then
it also has a MMP (∅, 0, k, 0)-match. Again, the converse is trivial. Hence the number of
σ ∈ Sn(132) with no MMP (0, 0, k, 0)-matches equals the number of σ ∈ Sn(132) with no
MMP (∅, 0, k, 0)-matches.
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One can compute

Q
(∅,0,0,0)
132 (t, x) = 1 + xt+

(
x+ x2

)
t2 +

(
2x+ 2x2 + x3

)
t3 +

(
5x+ 5x2 + 3x3 + x4

)
t4 +(

14x+ 14x2 + 9x3 + 4x4 + x5
)
t5 +

(
42x+ 42x2 + 28x3 + 14x4 + 5x5 + x6

)
t6 +(

132x+ 132x2 + 90x3 + 48x4 + 20x5 + 6x6 + x7
)
t7 +(

429x+ 429x2 + 297x3 + 165x4 + 75x5 + 27x6 + 7x7 + x8
)
t8 +(

1430x+ 1430x2 + 1001x3 + 572x4 + 275x5 + 110x6 + 35x7 + 8x8 + x9
)
t9 + · · · .

Recall that Q
(1,0,0,0)
132 (t, x) = 1

1−tC(tx)
so that Q

(1,0,0,0)
132 (tx, 1

x
) = Q

(∅,0,0,0)
132 (t, x). This can

easily be explained by the fact that every σi, 1 ≤ i ≤ n, matches either MMP (1, 0, 0, 0) or
MMP (∅, 0, 0, 0).

One can then compute the following.

Q
(∅,0,1,0)
132 (t, x) = 1 + t+ (1 + x)t2 + (1 + 4x)t3 +

(
1 + 12x+ x2

)
t4 +(

1 + 34x+ 7x2
)
t5 +

(
1 + 98x+ 32x2 + x3

)
t6 +

(
1 + 294x+ 124x2 + 10x3

)
t7 +(

1 + 919x+ 448x2 + 61x3 + x4
)
t8 +

(
1 + 2974x+ 1576x2 + 298x3 + 13x4

)
t9 + · · · .

In this case, it is easy to see that the only σ ∈ Sn(132) that avoids the pattern

MMP (∅, 0, 1, 0) is the strictly decreasing permutation. Thus Q
(∅,0,1,0)
n,132 (0) = 1 for all n ≥ 1.

It is also easy to see that the permutation that maximizes the number of matches of
MMP (∅, 0, 1, 0) in S2n(132) is (2n− 1)(2n)(2n− 3)(2n− 2) . . . 12 which explains why the

highest power of x in Q
(∅,0,1,0)
2n,132 (x) is xn which has coefficient 1. More generally, one can

see that the permutations that maximize the number of matches of MMP (∅, 0, k− 1, 0) in
Skn(132) are the permutations of the form

τ (n)(kn)τ (n−1)(k(n− 1))τ (n−2)(k(n− 2)) . . . τ (1)k,

where for each i = 1, . . . , n, τ (i) is a permutation of (i− 1)k+1, . . . , (i− 1)k+ k− 1 which

avoids 132. It follows that the highest power of x occurring in Q
(∅,0,k,0)
kn,132 (x) is xn which

occurs with a coefficient of Cn
k−1.

It is also not difficult to see that the highest power of x in Q
(∅,0,1,0)
2n+1,132(x) is x

n which has
the coefficient 3n+ 1. That is, we can get a coefficient of xn in a σ ∈ Sn(132) by taking

(2n+ 1)(2n− 1)(2n)(2n− 3)(2n− 2) . . . 12,

(2n− 1)(2n)(2n+ 1)(2n− 3)(2n− 2) . . . 12, or

(2n)(2n− 1)(2n+ 1)(2n− 3)(2n− 2) . . . 12,

or starting with (2n)(2n + 1)τ where τ ∈ S2n−1(132) which has n − 1 occurrences of
MMP (∅, 0, 1, 0).

The sequence (Q
(∅,0,1,0)
n,132 (x)|x)n≥2 seems to be A014043 in the OEIS which has the gen-

erating function 1−2z
√
1−4z

2z2(1−z)2
.
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Q
(∅,0,2,0)
132 (t, x) = 1 + t+ 2t2 + (3 + 2x)t3 + (5 + 9x)t4 +

(8 + 34x)t5 +
(
13 + 115x+ 4x2

)
t6 +

(
21 + 376x+ 32x2

)
t7 +(

34 + 1219x+ 177x2
)
t8 +

(
55 + 3980x+ 819x2 + 8x3

)
t9 + · · · .

The sequence (Q
(∅,0,2,0)
n,132 (0))n≥2 is the Fibonacci numbers. We can give a combinatorial

explanation for this fact as well. That is, the permutations in Sn(132) that avoid the
pattern MMP (∅, 0, 2, 0) are of the form nα, where α is a permutation in Sn−1(132) that
avoids MMP (∅, 0, 2, 0), or of the form (n − 1)nβ, where β is a permutation in Sn−2(132)
that avoids MMP (∅, 0, 2, 0). It follows that

Q
(∅,0,2,0)
n,132 (0) = Q

(∅,0,2,0)
n−1,132(0) +Q

(∅,0,2,0)
n−2,132(0).

The sequence (Q
(∅,0,2,0)
n,132 (x)|x)n≥3 does not appear in the OEIS.

Q
(∅,0,3,0)
132 (t, x) = 1 + t+ 2t2 + 5t3 + (9 + 5x)t4 + (18 + 24x)t5 + (37 + 95x)t6 +

(73 + 356x)t7 +
(
146 + 1259x+ 25x2

)
t8 +

(
293 + 4354x+ 215x2

)
t9 + · · · .

The sequence (Q
(∅,0,3,0)
n,132 (0))n≥0 is sequence A077947 in the OEIS, which has the gener-

ating function 1
1−x−x2−2x3 . However, the sequence (Q

(∅,0,3,0)
n,132 (x)|x)n≥4 does not appear in the

OEIS.

Q
(∅,0,4,0)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + (28 + 14x)t5 + (62 + 70x)t6 +

(143 + 286x)t7 + (331 + 1099x)t8 + (738 + 4124x)t9 + · · · .

The sequence (Q
(∅,0,4,0)
n,132 (0))n≥0 does not appear in the OEIS.
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