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Abstract
Given a permutation ¢ = 07 . .. g, in the symmetric group .5,,, we say that o; matches
the marked mesh pattern MM P(a,b,c,d) in o if there are at least a points to the
right of ¢; in o which are greater than o;, at least b points to the left of ¢; in ¢ which
are greater than o;, at least ¢ points to the left of o; in ¢ which are smaller than o;,
and at least d points to the right of o; in o which are smaller than o;.

This paper is continuation of the systematic study of the distribution of quadrant
marked mesh patterns in 132-avoiding permutations started in [9] and [10] where we
studied the distribution of the number of matches of M M P(a, b, ¢, d) in 132-avoiding
permutations where at most two elements of of a, b, ¢, d are greater than zero and the
remaining elements are zero. In this paper, we study the distribution of the number
of matches of MM P(a,b,c,d) in 132-avoiding permutations where at least three of
a, b, c,d are greater than zero. We provide explicit recurrence relations to enumerate
our objects which can be used to give closed forms for the generating functions asso-
ciated with such distributions. In many cases, we provide combinatorial explanations
of the coefficients that appear in our generating functions.
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1 Introduction

The notion of mesh patterns was introduced by Brandén and Claesson [2] to provide explicit
expansions for certain permutation statistics as, possibly infinite, linear combinations of
(classical) permutation patterns. This notion was further studied in [1, 3, 5, 6, 9, 12].

Kitaev and Remmel [6] initiated the systematic study of distribution of quadrant marked
mesh patterns on permutations. The study was extended to 132-avoiding permutations by
Kitaev, Remmel and Tiefenbruck in [9, 10|, and the present paper continues this line
of research. Kitaev and Remmel also studied the distribution of quadrant marked mesh
patterns in up-down and down-up permutations [7, 8.

Let 0 = 01...0, be a permutation written in one-line notation. Then we will consider
the graph of o, G(¢), to be the set of points (i, 0;) for i = 1,...,n. For example, the graph
of the permutation o = 471569283 is pictured in Figure 1. Then if we draw a coordinate
system centered at a point (i,0;), we will be interested in the points that lie in the four
quadrants I, IT, III, and IV of that coordinate system as pictured in Figure 1. For any
a,b,c,d € N =14{0,1,2,...} and any 0 = 0y...0, € S, the set of all permutations of
length n, we say that o; matches the quadrant marked mesh pattern MMP(a,b, ¢, d) in o
if, in G(o) relative to the coordinate system which has the point (i, 0;) as its origin, there
are at least a points in quadrant I, at least b points in quadrant II, at least ¢ points in
quadrant III, and at least d points in quadrant IV. For example, if ¢ = 471569283, the
point o4 = 5 matches the marked mesh pattern MMP(2, 1,2, 1) since, in G(o) relative to
the coordinate system with the origin at (4,5), there are 3 points in quadrant I, 1 point in
quadrant II, 2 points in quadrant I, and 2 points in quadrant IV. Note that if a coordinate
in MMP(a, b, ¢, d) is 0, then there is no condition imposed on the points in the corresponding
quadrant.

In addition, we considered patterns MMP(a, b, c,d) where a,b,c,d € N U {(}. Here
when a coordinate of MMP(a, b, ¢, d) is the empty set, then for o; to match MMP(a, b, ¢, d)
ino=oy...0, €85, it must be the case that there are no points in G(o) relative to the
coordinate system with the origin at (i, 0;) in the corresponding quadrant. For example, if
o = 471569283, the point o3 = 1 matches the marked mesh pattern MMP (4,2, ), () since
in G(o) relative to the coordinate system with the origin at (3,1), there are 6 points in



quadrant I, 2 points in quadrant II, no points in quadrants IIT and IV. We let mmp(®>¢ ()
denote the number of i such that o; matches MMP(a, b, ¢, d) in o.
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Figure 1: The graph of o = 471569283.

Note how the (two-dimensional) notation of Ulfarsson [12] for marked mesh patterns
corresponds to our (one-line) notation for quadrant marked mesh patterns. For example,

MMP(0,0, k, 0) = , MMP(k,0,0,0) =

Y

u

Given a sequence w = wy . . . w,, of distinct integers, let red(w) be the permutation found
by replacing the i-th largest integer that appears in o by <. For example, if 0 = 2754, then
red(o) = 1432. Given a permutation 7 = 7y ...7; in the symmetric group S;, we say that
the pattern 7 occurs in o = oy...0, € S, provided there exists 1 < i; < --- < i; < n
such that red(o;, ...0y,) = 7. We say that a permutation o avoids the pattern 7 if 7 does
not occur in o. Let S,(7) denote the set of permutations in S,, which avoid 7. In the
theory of permutation patterns, 7 is called a classical pattern. See [4] for a comprehensive
introduction to patterns in permutations.

It has been a rather popular direction of research in the literature on permutation
patterns to study permutations avoiding a 3-letter pattern subject to extra restrictions
(see [4, Subsection 6.1.5]). In [9], we started the study of the generating functions

MMP(0, a, b, c) = and  MMP(0,0,0,k) = -

a,b,c,d n (a,b,c,d
Qg32 )(t7x> = 1+Zt Q£,132 )(x)

n>1

where for any a,b,c,d € {0} UN,

At = 3



For any a, b, c,d, we will write Qnaf},;d (z)|4x for the coefficient of 2% in Qn“l‘;; D).

There is one obvious symmetry for such generating functions which is induced by the
fact that if o € S,,(132), then o~ € S,(132). That is, the following lemma was proved in

[9].
Lemma 1. ([9]) For any a,b,c,d € {0} UN,

a,b,c,d a,d,c,b
c»27(1,132 )(37> = Qg,wz )(x)

lc ,0,0,0 0,k,0,0 0,0,0,k
't 2), QU0 (1, ) = QNN (1, x),

and Qloo k:0) (t, x) where k can be either the empty set or a positive integer as well as the

generating functions legzo,@,o)< t,x) and leko (t,x). In [10], we studied the generating

functions Q135" (t, 2), Q15 (t.2) = Q15" (t.2), QUi () = Qi (t,x), and
Qg?gg ) (t,x), where k, ¢ > 1. We also showed that sequences of the form (Qﬁffgg o (@) |2 )n>s
count a variety of combinatorial objects that appear in the On-line Encyclopedia of Integer
Sequences (OEIS) [11]. Thus, our results gave new combinatorial interpretations of certain
classical sequences such as the Fine numbers and the Fibonacci numbers as well as pro-
vided certain sequences that appear in the OEIS with a combinatorial interpretation where
none had existed before. Another particular result of our studies in [9] is enumeration of
permutations avoiding simultaneously the patterns 132 and 1234, while in [10], we made a
link to the Pell numbers. o)

The main goal of this paper is to continue the study of Q132

interpretations of sequences of the form (Q;‘ffggd (2)|zr )n>s in the case where a,b,¢,d € N

and at least three of these parameters are non-zero.
Next we list the key results from [9] and [10] which we need in this paper.

In [9], we studied the generating functions Q!

(t, x) and combinatorial

Theorem 2. (/9, Theorem 4])

— 1 —A4xt

1
0,0,0,0
§32 )(tw) = C(t) =

2xt
and, for k>1,
(k,o,o,O)(t ) = ‘
T Q)
Hence ]
1,0,0,0
Q§32 )(t,O) —1_¢
and, for k> 2,
1

QU0 (t,0) = - .
1 —1Q, "V (t,0)



Theorem 3. (/9, Theorem 8]) For k > 1,
L (t2 — (S5 Cit) — /(1 + (b — (4o Cyt9))2 — 4t

2tx
2

L (tr = (S50 Cith) + /(1 + (b2 — 1)(S42y Cit))? — At

1
(0,0,k,0)

t,0) = .
Q132 ( ’ ) 1 — t(CO 4 Clt 4+ 4 Ckfltkfl)
Theorem 4. ([10, Theorem 5]) For all k,{ > 1,

£,0,£,0
Q§32 )<t7 T) =

0,0,k,0
Q§32 )(t, I) =

and

1
1= 1Qu (t )
Theorem 5. ([10, Theorem 11]) For all k,{ > 1,
Qi " (t,7) =
Cet' + 300 Cit? (1 = Q1™ (1, 2) + Qi ™ (1, 0) — 55025 Cut?))
1_tQ1§21000)( t,x) '
Theorem 6. ([10, Theorem 14]) For all k,{ > 1,

0,k,0,0
532 )(t, T) =

2, k—i—1, —i— s
Crort*™ + 2520 Gt (1= 4Q50 (1 2) + QU0 (t,2) - 4T o))

1 1Qi" 0t )
Theorem 7. ([10, Theorem 17]) For all k,{ > 1,

(2)

(3)

Dy o(t, x)
0,k,0,¢ ke (L,
532 )(tux) =9 _; (4)
1—t
where
k-1 ke+0—2 k—2 ' k—j—2
Oy o(t, x) Z Cjt! — Z Cjt9+1+t< Cjt? ( R (O RN C’Sts>) +
7=0 7=0 s=0

0,k,0,0 m 0,0,0,¢ v
u=0 v=0
-1 ‘ ktl—j—2
t <Z Cjtj < gg’,zk,(),éfj)@’ :L') _ Z thw>> _
j=1 w=0

As it was pointed out in [9], avoidance of a marked mesh pattern without quadrants
containing the empty set can always be expressed in terms of multi-avoidance of (possibly
many) classical patterns. Thus, among our results we will re-derive several known facts in
permutation patterns theory. However, our main goals are more ambitious aimed at finding
distributions in question.



2 QW) = Q" (x) where k,£,m > 1

By Lemma 1, we know that anI%;” E)( ) = ngi%;nvo) (). Thus, we will only consider
fof},? 0)( ) in this section.

Throughout this paper, we shall classn“y the 132-avoiding permutations 0 = oy ...0, by
the position of n in a That is, let S (132) denote the set of o € S,,(132) such that g =n.
Clearly each o € Sn (132) has the structure pictured in Figure 2. That is, in the graph of
o, the elements to the left of n, A;(¢), have the structure of a 132-avoiding permutation,
the elements to the right of n, B;(¢), have the structure of a 132-avoiding permutation,
and all the elements in A;(o) lie above all the elements in B;(0). It is well-known that the
number of 132-avoiding permutations in S,, is the Catalan number C, = #1(2:) and the
generating function for the C),’s is given by

1—1—1 2
t)=> Cut" = L

ot 141 -4t

n>0

A; (o)

B; (0)

1 i n
Figure 2: The structure of 132-avoiding permutations.

Suppose that n > ¢. It is clear that n can never match the pattern MMP(k, ¢, m,0)
for k,m > 1in any o € 5,(132). For 1 <1i < n, it is easy to see that as we sum over all
the permutations o in ST(J)(132), our choices for the structure for A;(c) will contribute a

factor of Q' 111§2m 9 (z) to Qﬁff’g”’“)( ). Similarly, our choices for the structure for B;(c) will

contribute a factor of Q™ i 0 (1) to ané;n 9(z) if i < € since oy ... 0; will automatically
be in the second quadrant relative to the coordinate system with the origin at (s, o) for
any s > i. However if ¢ > ¢, then our choices for the structure for B;(o) will contribute a

factor of Qﬁf_’?’g’g)( ) to anlg;n 0) (x). It follows that for n > ¢,
kZmO (k—1,¢,m,0 k,£—i,m,0) k— 1Zm0 k,0,m,0
i 132 Z Qz 1,132 ) QfEL—i,132 ) + Z QE 1,132 QEz—i,lBQ)(x)'
(k—1,6m,0), \ _
Note that for i < ¢, Ql 1132 (7) = Ci_y. Thus, for n > ¢,

k@m[) (k,t—i,m,0 (k— 1€m0 k,0,m,0
n132 Zcz 1Qn $,132 ) +ZQ1 1,132 Qq(H',132)(5U>- (5)



Multiplying both sides of (5) by ¢” and summing for n > ¢, we see that for k,¢ > 1,

k,é,m,O 7 k Efi,m,O U
Ot x) = ZCtJ+ZC 1t Z 1(1132 ()t +

u>l—i

k—1,6,m,0 (k,0,m,0) —i
tZZQE 1132m ) tl lQn 17;?’)2 ( )tn

n>0 i=1

-1 -1 r—i-1
= D Gt +) Gt (Q&@f‘“mm(m) -y cjtf) +
Jj=0 i=1 =0
-2
k,0,m,0 k—1,4,m,0 s
th32 )(t>$) < §32 )(t,:E) — Z Cst )
s=0

= c ,1# Lt QUm0 (4, 2) QU O (8, ) +
—2—s

chts <1+th’§§ om0 g ) — Q™0 (4, ) — ¢t Z Ct”)
s=0

Thus, we have the following theorem.

Theorem 8.
k,t,m,0 (k,0,m,0) k—1,,m,0
Q§32 )(t,x) = Cé—ltg L4 tQ132 (t, ) §32 )(t,x)+
-2 —2—s
s (k,4—1—s,m,0 k,0,m,0 ;
> Cit (1 + QU f(t,2) — QY ™ (t ) =t Y Cjtﬂ> . (6)
s=0 7=0

Note that since we can compute Q1]§20 m0) ( x) by Theorem 4 and ng’m’o)(t,z) by

Theorem 6, we can use (6) to compute Qllgfmo) (t,z) for any k,¢,m > 1.

2.1 Explicit formulas for fo’fg;n’o)(x) -
It follows from Theorem & that
U Ot 2) = 1+ 1Q ™ (1) QY5 MO (8, x) (7)

and
k,2,m,0 (k,0,m,0) k—1,2,m,0 k,1,m,0)
532 )(t r) =1+ tQ1 (t, z)( §32 )(t r)—1)+ tQ§32 (ta ).

Note that it follows from Theorems 4 and 6 that

1,1,1,0 1,0,1,0) 0,1,1,0
532 )(t,O) = 1+tQ§32 (t>0) §32 )(t>0)

1—t 1—t 1-3t+22 41
1—2t1—2t  (1—2t)?2

= 1+t

7



Thus, the generating function of the sequence (Qﬁfg;’o) (0))n>1 is (%)2 which is the gen-
erating function of the sequence A045623 in the OEIS. The n-th term a,, of this sequence
has many combinatorial interpretations including the number of 1s in all partitions of n+1
and the number of 132-avoiding permutations of 5, o which contain exactly one occurrence
of the pattern 213. We note that for a permutation o to avoid the pattern MMP(1, 1,1, 0),
it must simultaneously avoid the patterns 3124, 4123, 1324, and 1423. Thus, the number
of permutations o € S,,(132) which avoid MMP(1, 1, 1,0) is the number of permutations in

S, that simultaneously avoid the patterns 132, 3124, and 4123.

Problem 1. Find simple bijections between the set of permutations o € S,(132) which
avoid MMP(1,1,1,0) and the other combinatorial interpretations of the sequence A045623
in the OEIS.

Note that it follows from Theorem 4 and our previous results that

2,1,1,0 2,0,1,0 1,1,1,0
§32 )(tao) = 1+tQ§32 )(t,O) 532 )(ta())

1—2t 1—3t+2t2 4¢3
1—3t+t2( (1 —2t)2 )
1 — 4t + 42 + ¢4
1 —5t+ 712 — 23

— 14t

The sequence (Q,(f’llgjé’o)(O))nzl is the sequence A142586 in the OIES which has the generat-

: : 1—3t42¢2 4¢3 s 1—dt44e24t 1 t(1-3t42t2443) .
ing functlor.l [8tr2)(1-20)" Tha.t I8, o — 1= st 1-20)" Thls sequence hgs no
listed combinatorial interpretation so that we have found a combinatorial interpretation of
this sequence.

Similarly,

G 0(0) = 1+Q (1 0)QE (¢, 0)
1—3t+t> 1—4t+42 4+t
1—4t+3t2 1 —5t+ 72 — 23
1 —5t+T7t2 =283 +¢°
1 —6t+11¢2 —6t3

= 141

5 200) = 1+tQ1 Y (£,00Q1% Y (t.0)
1—t—t> 1—t—¢>
1—2t—12 1—2t—¢2

1 —3t+334+3t1+¢°
(1—2t —2)?

— 14t

Qi 0(t0) = 1+1Q%5" (¢,00Q5 > (t,0)
1—2t—t2 1 -3t+33 43t +¢°
1—3t+1 (1 — 2t —12)2
1 — 4t 4+ 26> + 413 + 1 + 25 + 16
(1—2t —2)(1 — 3t + 3)

= 1+4¢

8



Using (7) and Theorem 4, we have computed the following.

Ut w) = 14t + 202 + 58 4 (12 + 22)t* + (28 + 122 + 22%) 74

(64 + 48z + 18z + 22%) t° + (144 + 160z + 972° + 262° + 22*) t+
(320 + 480z + 4082* + 1842 + 362" + 22°) t5+
(704 + 1344 4 14792° + 9582° + 3272* + 482° 4 22°) ¢° + - - - .

U ?0 (1, 2) = 14 ¢+ 20% 4 5% + 141% + (38 + 42)t° + (102 + 262 + 4a?) 1+
(271 + 1202 + 342® + 42%) 7 + (714 + 470z + 2002 + 422° + 42”) t3+
(1868 + 1672z + 9642” + 3042” 4 502" + 42°) t* + - - -

B0 (4, 2) = 1+t + 22 + 5t° 4 14¢* + 4265 + (122 4 10z)t°+
(351 + 68z + 102°) t7 + (1006 + 3262 + 88z” + 102%) t5+
(2868 + 13642 + 5122 + 108z" + 10z*) t? + - - -

We can explain the highest and second highest coefficients of = in these series. That is,
we have the following theorem.

Theorem 9.

(i) For allm > 1 and n > 3 + m, the highest power of x that occurs in Qn1113;n 0)(x) is
2" 2™ which appears with a coefficient of 2C,,.

(ii) Forn > 5, Q5 ()]s = 6+ 2("}%).
(iii) Form >2 andn >4+ m infgg”‘o (x)|gn-3-m = 2041 + 8Cp, +4Cp,(n — 4).

Proof. 1t is easy to see that for the maximum number of MMP(1, 1, m, 0)-matches in a o €
S, (132), the permutation must be of the form (n—1)7(m+1)...(n—2)n or nt(m+1)...(n—
2)(n — 1) where 7 € 5,,(132). Thus, the highest power of x occurring in Q;{ilg;"’g) (x) is
2" ~2~™ which occurs with a coefficient of 2C,,.

For parts (ii) and (iii), we have the recursion that

11m0 0,1,m,0 (1,0,m,0
2132 ZQE 1132) @ 1132)(1’)- (8)

We proved in [10] that the highest power of x which occurs in either Q,(ff?;;” 0 (x) or

Quiss™”(x) is @1 and

QUL (@) n1-m = QLT (@) |y 1 = .



It is then easy to check that the highest coefficient of z in Qﬂ’}{’gf ) (SL‘)QS}_’%”%’S) (x) is
less than 2" 3~™ for i = 3,...,n — 3.
We also proved in [10] that

n—1
A @les = QU @los =2+ ("5 1) for x4 end

QU @armr = QU (@) g2

= Cpy1 +Cn+2C,(n—2—m) forn>3+m and m > 2.

For m = 1, we are left with 4 cases to consider in the recursion (8). We start with the
m =1 case.

Case 1. i = 1. In this case, ng_’ijé%)(x)lel_’%fz) () |gn—s = QM 0111??2( )|gn—a and
(1,0,1,0) -2
@ 1132( Nan—a =2+ 9 for n > 5.

Case 2. i =2. In this case, Q1133 (1)Q, 3153 (2)[ons = Q3133 (x)[on-s and
Q@) s =1 for n > 5.

Case 3. i = n — 1. In this case, on’i’iég)(w)in %’??2( )|gn—a = szovléllng( )| gn-1 and
QS ) (@) |ns = 1 for n > 5.

Case 4. i = n. In this case, Qlo’i’%é%) (a:)QS_%gZ) ()| gn-1 = ngo’ll’ll’gz( )|gn—a and

n—2
Q) s = 2+ ( ; ) for n > 5.

Thus, Q55" ()]s = 6+ 2(";) for n > 5.
Next we consider the case when m > 2. Again we have 4 cases.

Case 1. i = 1. In this case, ng_igé) (x )QSQES)( )| gn—3-m = le_’()l’ﬁgg)(m)hnfsfm and
QS 01’?32)( Ngn-s-t = Cruz1 + Cpy + 2C(n — 3 —m) for n > 4+ m.

Case 2. i = 2. In this case, Qlo’}”{;f (x)QiLl;g:%g)(x)]In_g_m = Q;l_’(;’ffég)(x)\xn_g_m and

QS 0273(2) (x)|gn-3-m = Cy, for n > 4+ m.

Case 3. i =n — 1. In this case, on’i’gg (1:)@7(11;2:%3)( )|gn—a-m = Qno’lz’%g ()| gn-3-m and
Qiloilg’ﬁlég) ()| gn-3-m = Cy, for n >4+ m.

10



Case 4. i = n. In this case, ng_’i:fé%) (x)QS_’%:%S)(x)]xn_s_m = Q;O;Iff??;g) (2)|gn—3-m and

leoill’ﬁlég) (@)|gn-3-m = Cry1 + Cpy + 2C(n — 3 —m) for n > 4 + m.

Thus, for n > 4 +m,

QU (@) pr-a-m = 2041 + 4Cy, + 40, (n — 3 —m)
= 2C41 +8C, +4C,,(n — 4 —m).

Thus, when m = 2, we obtain that

Qg?i§§70)<$>|xnf5 =26+8(n—6) forn>6

and, for m = 3, we obtain that

QUL (3] ume = 68 + 20(n — T)for n > 7

which agrees with our computed series. O

We also have computed that

QU0 (t,w) = 1+t + 262+ 56° + 14" + (39 + 32)t° + (107 + 22z + 322) 15+
(290 + 105z + 312* + 32%) 7 + (779 + 415z + 1902” + 432° + 327) t*+

(2079 + 14772 + 9092® + 3362° + 58z" + 32°) t7+

(5522 + 4922 + 37652 + 1938z> + 570x* + 762° + 32°) 10 + - - -,

QU w) = 1+ + 2% + 5% + 141% + 426° + (126 + 62t + (376 + 472 + 62°) 7+
(1115 + 250z + 592% + 62°) ¢* + (3289 4 1110z + 386x” + T12® + 62*) 1"+
(9660 + 4444z + 20452> 4 558z% 4 83z + 62°) t'" 4+ -+ , and

QB0 (4, 2) = 1+t + 262 + 5t° + 14¢* + 425 + 1326° + (414 + 152)t"+
(1293 + 122z + 152%) % + (4025 + 670z + 1522° + 152%) 7+

(12486 + 3124z + 9892” + 1822% + 152*) 10 + - - .

Again one can easily explain the highest coefficient in follg;” 0 (). That is, to have the

maximum number of MMP(2, 1, m, 0)-matches in a o € S,,(132), the permutation must be
of the form
(n—2)r(m+1)...(n—3)(n— 1)n,
(n—1)71(m+1)...(n—3)(n—2)n,or
ntim+1)...(n—3)(n—2)(n—1)

11



where 7 € S,,(132). Thus, the highest power of x occurring in Q1(127,113,;n,0) (x) is 2"3~™ which
occurs with a coefficient of 3C,,.
We have computed that
QU™ (t,x) = 1+t + 2% + 5> + 14t* + (37 + 52)t° + (94 + 33z + 522) 15+
(232 + 1442 + 482% + 52°) t + (560 + 520z + 2772° + 682° 4 bz*) t°+
(1328 + 1680 + 1248z + 5082° + 932" 4 52°) ¢” + - --

QU0 2) = 1+t 4 26% 4 5t° 4 14¢* 4 426° + (122 4 102) 5+
(348 + 71z + 102°) t7 + (978 + 351 + 91z” + 102%) 5+
(2715 + 1463z + 5632” + 1112° 4+ 102*) t* + -+, and

(2300 (¢ 2) =1+t + 26% + 5 + 14t + 4265 + 1325 + (404 + 252)¢7+

(1220 + 185z 4 252%) t° + (3655 + 947z + 2352”4 252°) ” + - --

Again, one can easily explain the highest coefficient in Qgé;ﬂ 0) (z). That is, to have
the maximum number of MMP(1,2, m,0)-matches in a o € 5,(132), one must be of the
form

—1)(n—2)r(m+1) —3)n,
n(n—2)r(m+1)...(n—3)(n—1),
nn—1)7r(m+1)...(n—3)(n—2), or
(n—1nr(m+1)...(n—3)(n—2)

where 7 € S,,(132). Thus, the highest power of x occurring in QS’%’;”’O) (x) is 2"3~™ which

occurs with a coefficient of 5C,,.
Finally, we have computed that
QU0 (t,x) = 1+t + 20 + 53 + 1481 + 4265 + (123 + 92)1° + (351 + 69z + 922) 17+
(982 + 343z + 962* + 92°) t* + (2707 + 1405z + 6092 + 1322° + 9z*) t7 4 - - -,
22001, 2) = 1+t + 262 + 56° + 14¢* + 425 + 1326° + (411 + 182)t"+
(1265 + 147z + 182%) t* + (3852 + 809z + 1832” + 182%) "+
(11626 + 3704 + 12292> 4 2192° + 18z*) ¢'%+ -+ | and

QU231 2) = 1+t + 2% + 56% + 14" + 4267 + 13266 + 42017 + (1385 + 452) 5+
(4436 + 381z + 452%) ¥ + (14118 + 2162z + 471z + 452°) t''+
(44670 + 103612 + 3149z* + 5612° + 452*) t'' + - -

12



Again, one can easily explain the highest coefficient in Qfé;" 0) (z). That is, to have

the maximum number of MMP (2,2, m,0)-matches in a o € S,(132), one must be of the
form

n(n—1r(m+1)...(n—4)(n —3)(n — 2),
(n—1nr(m+1)...(n —4)(n —3)(n — 2),
nn—2)r(m+1)...(n —4)(n —3)(n — 1),
n(n—3)r(m+1)...(n—4)(n —2)(n — 1),
(n—1)(n—-2)1(m+1)...(n—4)(n — 3)n,
(n—=2)(n—1)1(m+1)...(n—4)(n —3)n,
(mn—1)(n—=3)1(m+1)...(n—4)(n —2)n,
(n—2)(n—=3)T(m+1)...(n—4)(n — 1)n, or
(n—=3)(n—2)T(m+1)...(n—4)(n—1)n

where 7 € S,,(132). Thus, the highest power of x occurring in Qn o 0)( ) is 2"~*=™ which
occurs with a coefficient of 9C,,.

3 QWi (x) = QVin M (x) where k, £,m > 1

By Lemma 1, we only need to consider Qfﬁ’l’;’ﬁ’m) (x). Suppose that k,¢,m > 1 and n > k+m.
It is clear that m can never match the pattern MMP(0,k, ¢, m) for k,¢,m > 1 in any
o€ S,(132). If 0 =o0y...0, € S,(132) and 0; = n, then we have three cases, depending
on the value of 1.

Case 1. i < k. It is easy to see that as we sum over all the permutations o in S,(f)(132), our
choices for the structure for A;(o) will contribute a factor of C;_; to Qnollgf m)( ) since none
of the elements o; for j < k can match MMP(0, k, ¢, m) in o. Similarly, our choices for the
structure for B;(c) will contribute a factor of Qnmzl;; ™ (z) to Qnolggm (z) since oy ... 0;
will automatically be in the second quadrant relative to the coordinate system with the

origin at (s, o) for any s > i. Thus, the permutations in Case 1 will contribute

Zcz QU™ ()

(0,k£,m
to Qn 132 )(a;)

Case 2. k <i < n—m. Itis easy to see that as we sum over all the permutatlons
o in S(Z)(132), our choices for the structure for A;(o) will contribute a factor of QZO ]f f302)(x)

to Qnolgg ™) (z) since the elements in B;(c) will all be in the fourth quadrant relative to a
coordinate system centered at (r,o,) for r < i in this case. Similarly, our choices for the

13



structure for B;(o) will contribute a factor of Qf%g () t Qﬁfl’gf ™ () since oy . . . 0; will

automatically be in the second quadrant relative to the coordinate system with the origin
at (s,0,) for any s > 4. Thus, the permutations in Case 2 will contribute

n—

3

0,k,£,0 0,0,¢,m
Qz(fl,132) (35)@24,132) (z)

-
I
=

(0,k,8,
to Qn132m (x)

Case 3. i > n—m+ 1. It is easy to see that as we sum over all the permutations'a in
547(132), our choices for the structure for A;(o) will contribute a factor of Q” v =) ()
to Q,f’l’gf ™) (x) since the elements in B;(o) will all be in the fourth quadrant relative to a
coordinate system centered at (r,0,) for r < i in this case. Similarly, our choices for the

structure for B;(o) will contribute a factor of C,_; to Qnollgf m)(x) since the elements in

B;(0) do not have enough elements to the right to match MMP(O, k,¢,m) in o. Thus, the
permutations in Case 3 will contribute

> QD@

i=n—m+1

to Qnolggm (x). Hence, for n > k +m,

0,k,0,m) (0,k—i,l,m Okﬁ[) 0,0,¢,m
Q£,132 Z Ci- 1Qn 4,132 ) ) + Z Qz 1, 132 fz i,132) () +
i=k
0,k,4,m—(n—1i
Z Q§—1,132 ( ))(x)(]n_i. (9)

i=n—m-+1
Multiplying (9) by t" and summing, it is easy to compute that

k+m—1

0,k 4,m
532 )(t, T) = Z Cpt? +
k—2 k—i+m—2
> cit? <th3§ tobm)( Z Ctr>
=0
m—1
t( Ot ZCt“>< 1032(’5’")(15,3:)—20,,#) +
b=0
k+m—j—2
ZCtﬂ (th‘;Q’“M Mtyz)—t Cst5>.
s=0

Note that the 7 = 0 term in the last sum is th%QHm (t,x)—t Z’Hm > C,t*. Thus, taking

the term tho k.bm) (t,z) over to the other side and combining the sum thign 2 Ot with

14



the sum Zk+m L CLtP to obtain Crypm 1" 1 4+ (1 — 1) ZHm 2Oyt and then dividing
both sides by 1—t Wlll yield the following theorem.

Theorem 10.

Jelom Chotm—
Qp"(tx) = D Gt +

k=2 k—it+m—2
i 0,k—1—i,t,m ,
i=0 =0
¢ m—1
(0,k,£,0 a (0,0,£,m
1—¢ ( 132 ) ZCt ) ( 132 )(t,x)—ZC’btb> +
b=0
m k+m—j—2
] O,k,f,m— j S
— D Cit! (Q§32 Mt,x)— Y O ) .
j s=0

Note that since we can compute Q%500 (¢ z) = QIR (
(0,k,£,m) (

t,x) by Theorem 6, we can
compute Q132 x) for all k,¢,m > 1.

3.1 Explicit formulas for Qg’llg’g’m)(:r)

,:ET

It follows from Theorem 10 that

0,1,6,1 t t 0,1,6,0 0,0,6,1
V() = 14+ —— + ——Q%n "t 2) Q5 (t,x) — 1)

11—t 1-—t
1 (0,1,6,0 0,0,6,1
- 1 —Q132 )( z)( 532 )(t,x) - 1),
(0,1,6,2) B 2t b (0.1,60) (0,0,6,2)
32 (L) = 14+t+ 1—¢ + 1o (t, ) (Qizx 7 (t,2) — (L +1)) +
Q) — 1)
1—¢ 132 ) )
and
5t° t
O 2) = 1+t+202+ — Ot 2) — (1 +t +2%) +

t 0,2,6,0 0.0.62

(@5 () - D@ (tx) — (L+1) +
£ 0200 |

1—t( 132 (tax)_( +t))-

We used these formulas to compute the following.
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QU (t,x) =1+t 4202 + 5% + (13 + 2)t* + (33 + 8a + 22) 7+

(81 439z 4 112% + 2%) t° + (193 + 150z + 702 + 152° + 2*) t+

(449 + 501z + 3372% 4 1222° + 202" + 2°) t°+

(1025 + 1524z + 13632> + 7192° + 204" + 262° + 2°) ¢°+

(2305 + 43392 + 489127 + 34502° + 14502" + 3272° + 332° + 27) 10+ - -

QU (t,x) = 1+t + 202 4+ 563 + 14t* + 2(20 + 2)° + (113 + 17 + 222) 1°
(314 + 92z + 212% + 22°) t7 + (859 + 404 + 1402” + 252° 4 2z*) t°+

(2319 + 1567 + 7452° + 2002° + 292" 4 22°) ¢°+

(6192 + 5597z + 3438z* + 12622° + 272z* + 332° 4 22°) t1° + - - -

QU PV (t,x) = 1+ 1+ 262 + 56> + 1481 + 426° + (127 + 52)t° + (380 + 44 + 52) 17+
(1125 + 246z + 54a* + 52°) ° + (3299 + 1135z + 359z” + 642” + 5z*) 1"+
(9592 + 4691z + 19422* 4+ 4922° + T4z™* + 52°) t'0 4 - -

Our next theorem W111 explain the coefficient of the highest and second highest powers
of z that appear in Qn 0L Y(2) in these series.

Theorem 11.

(i) For n > 3 + {, the highest power of x that occurs in Qnofgﬁl (z) is 27 which

appears with a coefficient of Cy.
(ii) Forn 25, QU (@) s =5+ (137).
(#ii) For all ¢ >2 andn >4+ ¢, Qn0113; b (@)|gn-3-¢ = Cpp1 +6C; 4+ 2C(n — 4 — 0).

Proof. 1t is easy to see that the maximum number of matches of MMP(0, 1, ¢, 1) that are
possible in a 132-avoiding permutation is a permutation of the form n « (n — 1) 8 where «
is a 132-avoiding permutation on the elements n — ¢ —1,...,n — 2 and [ is the decreasing
permutation on the elements 1,...,n — ¢ —2. Thus, the highest power in QSM’“) is "2
which has a coeflicient of C,.

For parts (ii) and (iii), we note that it follows from (9) that

(0,1,6,1) 0141 0160 0061)
Qnis2 (¥) = Q2 1132 +ZQ1 1132 Qi 132(2)-

We proved in [10] that the highest power of = that appears in Qn 11350 (x) = Qgg’l%g’l)(x) is
2"~*~1 which appears with a coefficient of C, for n > ¢ 4 2. This implies that the highest
power of x that appears in QZO b f302( )QS)%;Q( ) is less than 2" ~73 for i = 3,...,n — 2.
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(0,1,1,1
Hence we have four cases to consider when we are computing @, 13, )(x)‘mn—4.

Case 1. i = 1. In this case, QEOHSOQ( )Qﬁ?‘ﬁgg( Vgt = Q' 0111:3( )|zn—1 and we proved

in [10] that

0,0,1,1) 0,1,1,0 n—2
ng 1 132( Man-1 = lefl,l?)%(x”z"*“ =2+ < 9 > for n > 5.

Case 2. ¢ = 2. In this case, QEO’HQOQ (:1:)@20;2”1512)(:5)]%_4 = Q" 02’%2( )|zn-+ and we proved
in [10] that

0,0,1,1) 0,1,1,0)
sz 5 139 (T)[gn-a = QTS 5.132()[gn-a = 1 for n > 5.

Case 3. i = n — 1. In this case, on’i’%é%)(x)Qno %312( Y| gn—1a = Qno’léll’gg( )|zn—1 and we
proved in [10] that
Qéo,’léll’g%(x)un% =1 for n > 5.

Case 4. Qn’ll’ll’;Q( )|zn-1. By part (i), we know that Qn0,11,1£;2( )|zn-a =1 for n > 5.

Thus ng’ll?;;l (x)|gn-1 =5+ (n_Q) for n > 5.

Again there are four cases to consider when computing Qno’ll’%Q( )| gn—3-¢ for £ > 2.

Case 1. i = 1. In this case, ng_ifo)(x)QflO_%;%(m)unfsfe = fo 01%2( )|zn—3-¢ and we
proved in [10] that

0,0,¢,1 0,1,£,0
Q1(’L—1,13)2(:E)|w"73*l = Qg_l’lg)z(l'”mnfnfii—e
== Cf+1 +Cg—|—2Cg(n—3—€)
= Cpp1+3C+2C(n—4—10) forn >4+

Case 2. i = 2. In this case, Qlo’i’f:& (m)@noozﬁ;%( Yanos—e = QO ()2[1?2( )|gn—s-¢ and we
proved in [10] that

,0,6, , ,E
Q%L (@) |anse = QWL (@) ans-c = Cy for n > 4+ £

Case 3. i = n — 1. In this case, QEO’%;Q (:C)Q,(@O_’g’ﬁ’;%(m)\xn—s_e = Q;O’lfng( )|gn—s-¢ and we

proved in [10] that
Q52 (w) om0 = o for m 2 4+ £

Case 4. leofl’ﬁéé(x)|xn73fe. By part (i), we know that
szo 1161;,2( Nan—s—¢ = Cp for n > 4+ L.

Thus,
QUL (1) | ynsr = Cpyy + 6Cy + 2C(n — 4 — ) for n > 4+ L.
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For example, when ¢ = 2, we have that
Qfﬁ’llgg’l)(:c)]xn—s =17+ 4(n—6) for n > 6
and, for ¢ = 3, we have that
QU ()]s = 44 +10(n — 7) forn > 7
which agrees with the series we computed. O

The sequence (QT(S’llgé’l)(O))nzl starts out 1,2,5,13,33,81,193,449,.... This is the se-

quence A005183 in OEIS. Using the fact that Qﬁ‘;’;’l’o) (t,0) = g%’g’l’l)(t, 0) = {=%, one can
show that

©0.1,1,1) 1 —4t+ 52 -3
t.x) =
132 ( ,l’) (1 . 2t)2(1 . t)
from which it is possible to show that fof?;;’”(o) =(n—-1)2"2+1forn>1.

The sequence (Qg’lls’;’l)(x)|x)n24 starts out 1,8,39, 150,501, 1524 .... This seems to be

the sequence A055281 in the OEIS. The n-th term of this sequence (n? —n+4)2"* —7—n
and is the number of directed column-convex polyominoes of area n + 5 having along the

lower contour exactly 2 reentrant corners.

Problem 2. Verify that the sequence (Qgﬁgé’”(x)\x)@; is counted by

(n®* —9n+24)2"3 -3 —n

and if so, find a bijective correspondence with the polyominoes described in A055281 in

the OEIS.

We have computed that
Ot (8, 2) = 141+ 202 + 58 + 14" + 2(20 + 2)t° + (111 + 192 + 22%) 4
(296 + 1062 + 25z* + 22°) ¢7 + (761 + 456z + 1782> + 332° + 22) t°+
(1898 + 16772 + 9472% + 2952° + 432" + 22°) °+

(4619 + 5553z + 4191z* + 19012® + 475z* + 552° + 22°) 10+ - - -

QUr2D(tx) =14t + 26> + 5t° + 14t* + 420° + 4(32 + 2)t5+
(385 + 40z + 427) t" 4 (1135 + 243z + 482” + 42°) 17+

(3281 + 1170z + 3512° + 562° + 4a*) 7+

(9324 + 4905 + 20162° + 4832° + 642 + 42°) ¢ + - --

O 32(t, 1) = 1+t + 262 + 513 + 14¢* + 4265 + 13245 + (419 + 102)¢7+

(1317 + 103z + 102%) t® + (4085 + 644z + 123z* + 102%) "+
(12514 + 32292 + 9002” + 1432° + 102*) t'%+
(37913 4 14282 + 52222° + 11962° + 1632 + 102°) t'' + - -

Again we can explain the coefficients of the highest and second highest coefficients in

Qi(ffg;ﬁ’z) (z) for large enough n.
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Theorem 12.
(i) For n > { + 4, the highest power of x that appears in Qnof?;ﬁ ) (z) is 237 which
occurs with a coefficient of 2CY.

-2
(i1) Forn>T7, ngfg;’”(a:)bnfs =13+ <n 5 >

(iii) For all ¢ >2 andn > 5+ ¢, Qno,llg,gz (@)|gn-a-¢ = 2Cy11 + 15C; + 4Cy(n — 5 — {).

Proof. For (i), it is easy to see that the maximum number of matches of MMP(0, 1,4, 1)
that are possible in a 132-avoiding permutation is a permutation of the form n a (n—1)
where « is a 132-avoiding permutation on the elements n — ¢ — 1,...,n — 2 and § =
(n—0—2)(n—¢—-3)...321or f=(n—{—2)(n—{¢—3)...312. Thus, the highest power
in Q,&?ﬁ,ﬁ’” (z) is 2™ %3 which has a coefficient of 2C;.

For (ii) and (iii), we note that the recursion for Qﬁfll?)ﬁ?)(x) is

0.1,62), N _ ~0,1,62) LD (0.1,£0) 1) (00£2)
Qs (1) = Q77 13(x) + Qn 2132(%) + Z Qz 1132 (2) Q3 152(2).

Since the highest power of x that occurs in Qnof?;ﬁ’o)( )is x

of x that occurs in Qnol(;,; 2)( ) is n—2—¢, it follows that the highest power of = that occurs

n Qlo’i’fgog( )Q;O %;2( ) is less than 2"~ fori=4,...,n — 3.

(0,1,6,2
Thus, we have to consider five cases when computing Qn 139 )(x)|xn747[.

n=1=t and the highest power

Case 1. Qflofl’féé(x)|xn74fe. By part (i),
QULE (2)|pns-e = 2C; for n > € + 5.
(0,1,,1) :
Case 2. Q"5 35(¥)|n-1-2. We have shown earlier that

leo,’ll’ﬁ’é)z(x)un%fz =Cyforn>/0+5.

Case 3. ¢ = n—2. In this case, Qfﬂ}f?f’; (x)Qfﬂ%Q( ) equals 2Q* 13613)2( ). We have shown
in [10] that Qno 13512,2( )|gn—a—e = Cy for n > ¢ + 5 so that we get a contribution of 2C} in

this case.

Case 4. i = 2. In this case, on’i’f?g( )ng ‘1‘;??;( ) equals ng 02%2( ). We have shown in
[10] that

0,0,6,2
QEL—3,13)2<5U)

- = 20, for n > 0+ 5.
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Case 5. i = 1. In this case, Ql(o_ifzg (x)@flo_%;%(x) equals Qfﬂ’ﬁﬁé(x). We have shown in

[10] that for n > ¢+ 5,
n—2 .
Q00e2) (@)| e+ 2("7) if =1,
n—3,132 gn—4—t — X
’ 20[+1+8Cz+403(n—5—€) if 0> 2.
Thus, for £ =1, we get
—2
ng,’l{jfg(x)unfs =13+ 2(n 5 ) forn > 6
and, for ¢ > 2,
Q;O_’liiel’;;(l’ﬂmnﬂpé =2Cp41 + 15C, + 40[(71 —5— 6) forn > 5+ /4.
For example, when ¢ = 2, we get
ng_’liﬁ’??(:v)]xn_e =40+8(n—"T7)forn>7
and, for ¢ = 3, we get
QW22 (2) | pns = 103+ 20(n — 8) for n > 8

which agrees with the series that we computed. [l

Ot () = 14 ¢+ 20% 4 5% + 148% + 426° + 44532 + =) + (380 + 45z + 4a?) 7+

(1083 + 286z + 572 + 4a®) 5 + (2964 + 1368z + 4532> + 732° + 4a*) 7+
(7831 4 55012 + 26502” 4 7172* + 932" + 42°) t'7+
(20092 4 196752 + 127492” + 50352° + 1114a* + 1172° + 42°) t"' + - - .

QU2 x) =14t + 26> + 5t° + 14t* 4 4265 + 132(% + (421 + 82)t™+
(1328 + 94z + 427) t* + (4103 + 641z + 1102> + 82°) t'+

(12401 + 3376 + 885z + 1262° + 8z*) t''+

(36740 4 15235z + 54842” + 11772° + 1422 + 82°) t'' +

(106993 + 62012z + 28872z + 84522° + 1517x* + 1582° + 82°) t'* + - - .

Q23D (4 x) =14t 4 20% + 53 + 14¢* 4 426° + 13215 + 429¢7+

(1410 + 202)t* + (4601 + 241z + 202%) t° + (14809 + 1686 + 2812” + 202”) '+

(46990 + 9187z + 2268z + 321z* + 202) t'' +

(147163 + 43394z + 141442* + 29302° + 361z* + 202°) t'2 4 - - -

It is easy to explain the coefficient of the highest power in Q%O’z’Z’Q)(x). That is, the max-
imum number of matches of MMP(0, 2, ¢, 2) that are possible in a 132-avoiding permutation
is a permutation of the form n(n—1) a (n—2) for (n—1)n o (n —2) [ where a is a 132-
avoiding permutation on the elements n—¢—2,... ,n—3 and f = (n—(—3)(n—{(—4)...321
or f=(n—0—-3)(n—~¢—4)...312. Thus, the highest power in Q52 i gn==5 which
has a coefficient of 4C).
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4 QU™ (x) = QY (x) where k,£,m > 1

By Lemma 1, we need only consider folkggm)(:p) Suppose that k,¢,m > 1 and n > k+m.

It is clear that n can never match MMP(¢, k,0,m) for k,¢,m > 1 in any o € S,(132). If
o=0y...0, € 5,(132) and g; = n, then we have three cases, depending on the value of i.

Case 1. i < k. It is easy to see that as we sum over all the permutations o in S,(f)(132),

our choices for the structure for A;(c) will contribute a factor of C;_; to Q,f o ™ (z) since

the elements in A;(0) do not have enough elements to the left to match MMP(E k,0,m) in

o Similarly, our choices for the structure for B;(o) will contribute a factor of an kl 1132 ™ (z)

to Q,ffgg ™) (x) since oy ...0; will automatically be in the second quadrant relative to the
coordinate system with the origin at (s, o) for any s > ¢. Thus, the permutations in Case 1
will contribute

Za QWA ()

(¢,k,0,
to inszm( )

Case 2. k <i <n—m. It is easy to see that as we sum over all the permutatlons o in
55(132), our choices for the structure for 4;(c) will contribute a factor of Qf 111§20 0 (z ) to

ng 1’“33 m)( ) since the elements in B;(o) will all be in the fourth quadrant and o; = n is in

the first quadrant relative to a coordinate system centered at (r,0,.) for r < i in this case.

Similarly, our choices for the structure for B;(o) will contribute a factor of Qnﬁ Ololgg)(:v)

to Qng f?)g ™) (x) since oy ...0; will automatically be in the second quadrant relative to the

coordinate system with the origin at (s, o) for any s > i. Thus, the permutations in Case 2
will contribute

£—1,k,0,0 €,0,0,m
Z QE 1,132 ) Q;—i,132)<x>

(0,k,0,
to Qn132m (7).

Case 3. 1 2 n —m + 1. It is easy to see that as we sum over all the permuta-
tions o in S$”(132), our choices for the structure for A;(o) will contribute a factor of
ng_l}lgfm "=D)(2) to Qnélk:sgm (7) since o; = n will be in the first quadrant and the ele-
ments in B;(o) will all be in the fourth quadrant relative to a coordinate system centered at

(r,0,) for r < 7 in this case. Similarly, our choices for the structure for B;(o) will contribute

a factor of C,,_; to ng 1033’” (x) since o; where j > ¢ does not have enough elements to its

right to match MMP(f k,0,m) in 0. Thus, the permutations in Case 3 will contribute

n

l—1,k,0,m—(n—i
Z Q§71,132 ( ))(x)cn—i

1=n—m-+1
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to Qnélk:sgm (). Thus, we have the following. For n > k + m,

k—1 n—m
(£,k,0,m) _ (£,k—i,0,m) (£—1,k,0 0) (£,0,0,m)
Quiz (x) = Zci—lani,llSQ )+ Z Qz iz (@)@ s () +
i=k

=1

Z QUL () Oy (10)

i=n—m+1
Multiplying (10) by ¢™ and summing over n will yield the following theorem.
Theorem 13. For all ¢, k,m > 1,

0,k,0,m
5 = Y G+
k—i+m—2
tZCt’ (Qé;“ L=H0m) 4 4 Z Ot’“)
m—1
t ( e - S ar) (o - S o)

b=0
m—1 ' k4+m—j—2
£y Cit? < (R Csts) . (11)
7=0 s=0
Note that we can compute Qégoo) (t,z) = %’S’O’k) (t,x) by Theorem 6 so that (11)

allows us to compute Q%gom)(t, x) for any k,¢,m > 0.

4.1 Explicit formulas for Q%’fég’m)(x)

x?”

It follows from Theorem 13 that

£,1,0,1 (¢—1,1,0,0 £,0,0,1 ¢—1,1,0,1
Qs V() = 141115 00t ) (QU Y (1 @) — 1)+ (@I V(1) - 1), (12)

CLOD G 0y = 14 ¢+ 222 + Q0 1) (Qgggvov?) (t,2) — (1+ t)) n
E(Q P ta) — (10 + ¢ Q5 V) -1))

and

G (e) = 1420450 46 QR V(0 a) — (L4t +2%) +

F(QG00 () 1) (@) - (1+1)) +

t (Q§§;1’2’°’2) (t,z) — (1 +t+2t°) + ¢ ( L2002y — (14 t))) .
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One can use these formulas to compute the following.

QU ™M (t,2) = 14t + 20 + 563 + 2(5 + 20)t* + (17 + 17z + 822) £+

(26 4 44z + 422° + 202°) t° + (37 + 90z + 1292% + 1172° + 562*) ¢+

(50 4 160z + 3052 + 397x* + 350z* + 168z°) t°

(65 4 259z + 6152% + 10292° + 12682" + 10982° 4- 5282°) "+

(82 + 392z + 11132* 4 2259z + 35032 + 41672° 4 35642° + 171627) t'° + - --

It is easy to explain the highest coefficient of x in infgg 1)(x).

Theorem 14. For n > 3 + {, the highest power of x that occurs in inlgg 1)(JU) s x

which occurs with a coefficient of 4C,C,,_y_5.

n—2—/¢

Proof. 1t is easy to see that the maximum number of MMP(/, 1,0, 1) matches occurs in
o € S,(132) when o is of the foomn 7« (n—1), n 7 (n—1) a, (n —1) 7 @ n, or
(n — 1) 7 n a where « is a 132-avoiding permutation on the elements 1,...,¢ and 7 is a
132-avoiding permutations of the elements ¢ + 1,...,n — 2. Thus, the highest power of x
in Q,(f’llég’l)(x) for n > £+ 3 is 2"~27* which occurs with a coefficient of 4C,C,,_;_». O

We can also explain the second highest coefficient in infgg 1)(x).

Theorem 15. Forn > 5,
QU159 ()| on-1 = 8Chus + O,

Proof. In this case, the recursion for Qf}’fgg’l)(x) is

(1,1,0,1) Q10D 01.0.0) (1) (100,
Qi (x) = @)~ 1132 ) + ZQz 1132 (2) @y 3 15 (@)

It was proved in [9] that for n > 1, the highest power of x that occurs in Qig’llég’o)(:p) is x

which occurs with a coefficient of C,,_;. It was proved in [10] that for n > 3, the highest

n—1

power of x that occurs in Qﬁi’f’g’g’”(as) is 2"~2 which occurs with a coefficient of 2C,_5. Tt
follows that

1,1,0,1 0,1,0,1) (1,0,0,1) 0,1,0,0)
Qq(@,132 )($)|w"*4 = Qa(q, 1132( )|:c“ 4+Qn 1132( )|w” 4+Q7(1 2132( )|:z:” 4+
(0,1,0,0 (1,0,0,1
ZQZ 1132) IZ QQn 1132)( )lxn_i_Q‘

It was shown in [9] and [10] that

QUL (@)t = 2C, 5+ Cpyfor n > 5,

Q,Ell_’of?l,;%(x”xn—él = 3C,_3 for n >5, and
QUL (@) s = Cus forn > 5.
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Thus, for n > 5,

n—2
Qi (@)t = 2Cu_g+ Cog +3Cu—3+ Cos + Y Cia2C,_i
i=2
n—2
= 6C,3+Cphq+2 Z Ci—oChn_i—s
i=2

= 607173 + Cnf4 + 2Cn73 = 801173 + Cnf4-
O

The sequence (Q\155"(0))ns1 starts out 1,2,5,10,17,26,37,50,82, . .. which is the se-

quence A002522 in the OEIS. The n-th element of the sequence has the formula (n—1)*+1.

This can be verified by computing the generating function Q%’;’O’l) (¢,0). That is, we proved

in [9] and [10] that

1
0,1,0,0
Qi "V(t.0) = T—¢
10,01 1— 2t +2t?
Qi (t,0) = o
2
(0,1,0,1) 1 l
Q132 (ta O) - 1—¢ + (1 o t)2
Plugging these formulas into (12), one can compute that
1,1,01 1—3t+45t% — 263 +
§32 )(t, 0) = (1—1t)3

Problem 3. Find a direct combinatorial proof of the fact that Q;{fg;””(o) =n-12+1

for n > 1.

B0V () = 1+ ¢+ 202 + 56 + 14t + (33 + 92)1° + (71 + 43z + 182%) 14

(146 + 137z + 1012* + 452°) t'+

(294 + 368z + 3672% + 2752° + 1262") t°+

(587 + 9062 + 11002” + 1079z” + 8122 + 378z°) "+

(1169 4 21252 + 29732” 4 34632° + 3352z + 25262° 4 11882°) 10 4- - -

QIO 2) =14t + 262 + 5¢° + 14t* + 426° + (116 + 162)t5+

308 + 89z + 3227) t7 + (807 + 341z + 2022° + 80z°%) t°+

2108 + 1140z + 8492” + 5412° + 2242*) t7+

5507 + 3583z + 3046z + 24062° + 1582z* + 6722°) t'°+

14397 4 108972 + 101412” 4 90392” + 7310z* + 48902° + 21122°) ! + - -

(
(
(
(
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It is not difficult to show that for n > k + 3, the highest power or x that occurs in
fof’lgg’”(x) is 2" *=2 which appears with a coefficient of (k + 1)2C,__». That is, the
maximum number of occurrences of MM P(k,1,0,1) for a o € S,,(132) occurs when o is of

the form z75 where x € {n—Fk, ... ,n}, §is a shuffle of 1 with the increasing sequence which
results from (n — k)(n — k + 1)...n by removing z, and 7 is a 132-avoiding permutation
on2,...,n—k—1. Thus we have k + 1 choices for x and, once z is chosen, we have k + 1

choices for 3, and C,,_;_o choices for 7.
U0 () = 14t + 2% + 56° 4 148" + (32 + 102)t°+
(62 + 50z + 202%) t° + (107 + 149z + 123z + 502%) ¢+
(170 + 345z + 4332” + 3422° + 140z*) t°+
(254 + 685z + 11542” + 13272" 4 1022z* + 4202°) t7+
(362 + 1225z + 25892 + 3868z° + 4228z* + 32042° + 13202°) t'0 4 - - - .

O (1 x) = 14 ¢+ 20% 4 5% + 141% + 426° + (105 + 272)t5+

(235 + 140z + 54x%) ¢7 + (494 + 470z + 3312> + 1352°) t°+
(1004 + 1301z + 12752° 4 9042® + 3782") t7+
(2007 + 3248z + 39602” 4 37732> + 2674 + 11342°) 0 + - -

L0 (1 m) =1+t + 26% + 53 + 14t + 4265 + 1325 + (373 + 562)t7+
(998 + 3202 + 1122%) ¢* + (2615 + 1233z + 7342* + 2802°) '+
(6813 + 4092z + 31312* 4+ 19762° 4 784x") t''+
(17749 4 12699z + 112232° + 89672° + 5796x* + 23522°) t'! + - - .

G202t ) = 1+t + 262 + 5% + 14t* + 425 + (107 + 252)1°+

(233 + 1462 + 502%) ¢7 + (450 + 498z + 3572” + 1252°) t°+
(794 + 1299z + 14292 + 9902° 4 3502") t°+
(1307 + 2869z 4 4263z + 43532° + 29542 4 10502°) ¢'% + - - -

Q20D (¢ 3) =14t + 202 + 53 + 14¢* + 420° + 13215 + (348 + 81z)t7+
(811 + 457z + 1622%) t° 4 (1747 + 1625z + 10852” + 405z%) "+

(3587 + 4663z + 44432” 4 29692° + 1134a*) ¢'°+

(7167 + 11864 + 143602” + 132012° + 8792z* + 34022°) t'! + - - .

QU2OD(t 2) = 1+ + 22 + 565 4 144 + 4265 + 13245 + 42917+
(1234 + 1962)t® + 2 (1657 4 578z + 1962%) t°+

(8643 + 4497z + 26762> + 9802°) t''+

(22345 + 148392 + 116222> + 72362° + 27442™) ¢! + - - -
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Problem 4. In all the cases above, it seems that for n > ¢+ k + m + 1, the highest power
of x in Q,flk?)g m)(:v) is 2" *~¢ which appears with a coefficient of ag pmCn—t—k—m for some

constant asy.,. Prove that this is the case and find a formula for ay  ,.

5 QU D(x) = Q" (x) where a,b,¢,d > 1

By Lemma 1, we only need to consider the case of Qfﬁ’fg;’d)(x). Suppose that a,b,c,d > 1

and n > b+d. It is clear that n can never match the pattern MMP(a, b, ¢, d) for a,b,c,d > 1
in any o € 5,(132). If 0 = 01...0, € S,(132) and 0; = n, then we have three cases, de-
pending on the value of i.

Case 1. 7 < b. It is easy to see that as we sum over all the permutations ¢ in sS4 (132),

our choices for the structure for A;(o) will contribute a factor of C;_; to fol’;; d)( ) since

the elements in A;(c) do not have enough elements to the left to match MMP(a b,c,d) in

o. Similarly, our choices for the structure for B;(o) will contribute a factor of Q"] s D (z)

to Q:fggd (z) since o7 ...o; will automatically be in the second quadrant relative to the

coordinate system with the origin at (s, 0y) for any s > 7. Thus, the permutations in Case
1 will contribute

Zc_foilg;d()

(a,b,c,d
to QW15 ().

Case 2. b <1 < n—d. Itis easy to see that as we sum over all the permutations o

in S (i)(132) our choices for the structure for A;(o) will contribute a factor of Qz“ﬁlg; O)(SC)

fof;;d (z) since the elements in B;(c) will all be in the fourth quadrant and o; = n is
in the first quadrant relative to a coordinate system centered at (r,o,) for » < 7 in this

case. Similarly, our choices for the structure for B;(¢) will contribute a factor of Qn“ o ;;2) (x)

to Qnalggd (z) since o7 ...0; will automatically be in the second quadrant relative to the

coordinate system with the origin at (s, o) for any s > i. Thus, the permutations in Case
2 will contribute

1,b,c,0) (a,0,c,d)
ZQzal 152C Qnaz(l:SQ( )
b,c,d)
to Qnalf%; (37)

Case 3. i > n—d+ 1. It is easy to see that as we sum over all the permutations ¢ in

$$7(132), our choices for the structure for A;(o) will contribute a factor of Q\* 1113)26 A==0) ()

to Qn“f;,gd (z) since o; = n will be in the first quadrant and the elements in B;(c) will all

be in the fourth quadrant relative to a coordinate system centered at (r,o,) for r < i in
this case. Similarly, our choices for the structure for B;(o) will contribute a factor of C,,_;
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to Qnafgg )( ) since o;, where j > i, does not have enough elements to its right to match
MMP(a b,c,d) in 0. Thus, the permutations in Case 3 will contribute

n

a—1,b,c,d—(n—i
Z Qz('—l,132 ( ))(@Cnﬂ‘

i=n—d+1

to Qn“f;,gd (x). Thus, we have the following. Forn > a+b+c+d+1,

b—1
(a,b,c,d) o (a,b—i,c,d) d a—1,b,c, 0 (a,0,c.d)
Qs () = Z Cin1Qy 132" () + Z Qz 1,132 Qi3 (7) +

Z QU i (). (13)

i=n—d+1
Multiplying (13) by ¢" and summing, we obtain the following theorem.
Theorem 16. For all a,b,c,d > 1,

a,b,c,d
Qg32 )(t,x) = Z Cpt? +
b—i+d—2
tZOtz (Q{;Qb hed) (g ) Z Ct’“)
d—1
a—l,b,cO (a,0,c,d ]
t( % zm)( w00 - S0
§=0
‘ b+d—j—2
tZC I ( 1§2Ib’c’d_])(t,x) _ Z Csts) .
s=0

Thus, for example,

1,1,1,1 (0,1,1,0) 1,0,1,1
§32 )(t,x) = 1+t+tQ132 ( J)( 532 )(t,x)—l)—i—

0,1,1,1
Qi (@) - 1).
and, for k > 2,
QU () = 1+ t+1Q Ok e) (B V(a) — 1) +
(k—1,1,1,1
t(Q132 )(t,x) —1).
QU (t,w) = 1+t + 22 + 56° + 14 + (38 + 4x)t° + (99 + 29z + 422) 1 +
(249 + 135z + 41x? + 42%) ¢7 + (609 + 510z + 2502° + 572° + 42*) t° +

(1457 + 1701z + 11772 + 4462° + 772" + 42°) ¢° +
(3425 + 52202 + 47232° 4 25642° + 759z + 1012° + 42°) 10 + - .-
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QU 2) =1+t + 262 4+ 563 + 14¢* + 4265 4 (123 + 92)t0 +

(350 + 70z + 92%) t" + (974 + 350z + 9727 + 92%) ¢t +
(2667 + 1433z + 6202” + 1332° 4 92*) ¢° +
(7218 + 5235z + 30792* 4+ 10772° + 178z + 92°) ¢! + - - - |

and

QD (1 x) =14t + 202 + 513 + 14¢* + 426° + 13215 + (413 + 163)¢7 +
(1277 + 137z + 162%) t* + (3909 + 752z + 185z + 162%) t” +
(11881 + 3383z + 12672 + 249z° + 162%) t'* 4 - - - .

It is easy to explain the coeflicient to the highest power that appears in follgé ’1)(x) for
k > 1. That is, the maximum number of matches of MMP(1,1,1,1) for o € 5,(132) is
when o is of the form = o f where x € {n —k,...,n}, § is a shuffle of 1 with the sequence
(n—k)(n—k+1)...n with  removed, and a = 23...(n — k — 1). Note that we have
k + 1 choices for x and, once we chosen x, we have k + 1 choices for 5. Thus, the highest

power of z that occurs in foé;l)(x) is 2" *=3 which occurs with a coefficient of (k + 1)2

forn >k + 4.
We also have

1—t¢
1—2¢t
2
QY (t,0) = 1+t(ﬁ) , and
1—2¢
1 — 4t +5t2 —¢3
(1—2t)2(1—¢t)°

0,1,1,0
Q§32 )(t, O) =

0,1,1,1
Q§32 )(ta O) =

to compute that

(1,1,1,1)@ 0) = 1 —6t+ 1312 — 1183 + 3t* — 26> +- 18
B A (1—1)(1 — 2t)3

Note that Q%’;’l’l)(t, 0) is the generating function of the permutations that avoid the
patterns from the set {132, 52314, 52341, 42315, 42351 }.
(1,1,1,1)

Finally, we can also determine the second highest coefficient of z in @, j3,""(2).

Theorem 17. For alln > 6,

n—3
QUL (1) s :17+4( ; )
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Proof. The recursion of ij’fg’;’l (x) is

(1,1,1,1) 0,1,1,1 071,1,0 10,1,1)
Qniz (T) = +ZQ1 1132 Q- 1132@)

For n > 3, the highest power of x which occurs in Qno’llg’;’o) (z) is 2" and for n > 4, the
highest power of x that occurs in Qn 1%’;’1)(@ is 2773, Tt follows that for i = 2,...,n — 3,

the highest power of z that occurs in Qfo’i’i;}z (x)QS_’Oiﬁ’;Q)(I) is 76, Tt follows that

1,1,1,1) 1,0,1,1) 1,0,1,1) (0,1,1,0)
ng 152 () |ans = le 1132(x)|x” 5 +Q7(1 2132<x>|x" 5 +20),” 3132( Man—s +

0,1,1,0) 0,1,1,1)
ng 2, 132(Z) | gn—s + sz 1 132(37)|xn*5-
But for n > 6, we have proved that
1,0,1,1) n—3
le 1132( )|x”*5 - 6+2( 9 )7

1,0,1
Qiz 2132<$)|:c”*5 = 2,
200 (@) s = 201 =2,

0,1,1,0 n—23
Qfm—12,13%<x)|x"*5 = 2+( ), and

2
n—3
Qi im(@)lens = 5+ ( ) )
1,1,1,1 n—
Thus, C27(1,132 )(@’x”‘f’ = 17+4( 23)' =
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