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Abstract
Given a permutation σ = σ1 . . . σn in the symmetric group Sn, we say that σi matches
the marked mesh pattern MMP (a, b, c, d) in σ if there are at least a points to the
right of σi in σ which are greater than σi, at least b points to the left of σi in σ which
are greater than σi, at least c points to the left of σi in σ which are smaller than σi,
and at least d points to the right of σi in σ which are smaller than σi.

This paper is continuation of the systematic study of the distribution of quadrant
marked mesh patterns in 132-avoiding permutations started in [9] and [10] where we
studied the distribution of the number of matches of MMP (a, b, c, d) in 132-avoiding
permutations where at most two elements of of a, b, c, d are greater than zero and the
remaining elements are zero. In this paper, we study the distribution of the number
of matches of MMP (a, b, c, d) in 132-avoiding permutations where at least three of
a, b, c, d are greater than zero. We provide explicit recurrence relations to enumerate
our objects which can be used to give closed forms for the generating functions asso-
ciated with such distributions. In many cases, we provide combinatorial explanations
of the coefficients that appear in our generating functions.
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1 Introduction

The notion of mesh patterns was introduced by Brändén and Claesson [2] to provide explicit
expansions for certain permutation statistics as, possibly infinite, linear combinations of
(classical) permutation patterns. This notion was further studied in [1, 3, 5, 6, 9, 12].

Kitaev and Remmel [6] initiated the systematic study of distribution of quadrant marked
mesh patterns on permutations. The study was extended to 132-avoiding permutations by
Kitaev, Remmel and Tiefenbruck in [9, 10], and the present paper continues this line
of research. Kitaev and Remmel also studied the distribution of quadrant marked mesh
patterns in up-down and down-up permutations [7, 8].

Let σ = σ1 . . . σn be a permutation written in one-line notation. Then we will consider
the graph of σ, G(σ), to be the set of points (i, σi) for i = 1, . . . , n. For example, the graph
of the permutation σ = 471569283 is pictured in Figure 1. Then if we draw a coordinate
system centered at a point (i, σi), we will be interested in the points that lie in the four
quadrants I, II, III, and IV of that coordinate system as pictured in Figure 1. For any
a, b, c, d ∈ N = {0, 1, 2, . . .} and any σ = σ1 . . . σn ∈ Sn, the set of all permutations of
length n, we say that σi matches the quadrant marked mesh pattern MMP(a, b, c, d) in σ
if, in G(σ) relative to the coordinate system which has the point (i, σi) as its origin, there
are at least a points in quadrant I, at least b points in quadrant II, at least c points in
quadrant III, and at least d points in quadrant IV. For example, if σ = 471569283, the
point σ4 = 5 matches the marked mesh pattern MMP(2, 1, 2, 1) since, in G(σ) relative to
the coordinate system with the origin at (4, 5), there are 3 points in quadrant I, 1 point in
quadrant II, 2 points in quadrant III, and 2 points in quadrant IV. Note that if a coordinate
in MMP(a, b, c, d) is 0, then there is no condition imposed on the points in the corresponding
quadrant.

In addition, we considered patterns MMP(a, b, c, d) where a, b, c, d ∈ N ∪ {∅}. Here
when a coordinate of MMP(a, b, c, d) is the empty set, then for σi to match MMP(a, b, c, d)
in σ = σ1 . . . σn ∈ Sn, it must be the case that there are no points in G(σ) relative to the
coordinate system with the origin at (i, σi) in the corresponding quadrant. For example, if
σ = 471569283, the point σ3 = 1 matches the marked mesh pattern MMP(4, 2, ∅, ∅) since
in G(σ) relative to the coordinate system with the origin at (3, 1), there are 6 points in
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quadrant I, 2 points in quadrant II, no points in quadrants III and IV. We let mmp(a,b,c,d)(σ)
denote the number of i such that σi matches MMP(a, b, c, d) in σ.
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Figure 1: The graph of σ = 471569283.

Note how the (two-dimensional) notation of Úlfarsson [12] for marked mesh patterns
corresponds to our (one-line) notation for quadrant marked mesh patterns. For example,

MMP(0, 0, k, 0) =
k

, MMP(k, 0, 0, 0) =
k

,

MMP(0, a, b, c) =
a

b c

and MMP(0, 0, ∅, k) =
k

.

Given a sequence w = w1 . . . wn of distinct integers, let red(w) be the permutation found
by replacing the i-th largest integer that appears in σ by i. For example, if σ = 2754, then
red(σ) = 1432. Given a permutation τ = τ1 . . . τj in the symmetric group Sj, we say that
the pattern τ occurs in σ = σ1 . . . σn ∈ Sn provided there exists 1 ≤ i1 < · · · < ij ≤ n
such that red(σi1 . . . σij) = τ . We say that a permutation σ avoids the pattern τ if τ does
not occur in σ. Let Sn(τ) denote the set of permutations in Sn which avoid τ . In the
theory of permutation patterns, τ is called a classical pattern. See [4] for a comprehensive
introduction to patterns in permutations.

It has been a rather popular direction of research in the literature on permutation
patterns to study permutations avoiding a 3-letter pattern subject to extra restrictions
(see [4, Subsection 6.1.5]). In [9], we started the study of the generating functions

Q
(a,b,c,d)
132 (t, x) = 1 +

∑
n≥1

tnQ
(a,b,c,d)
n,132 (x)

where for any a, b, c, d ∈ {∅} ∪ N,

Q
(a,b,c,d)
n,132 (x) =

∑
σ∈Sn(132)

xmmp(a,b,c,d)(σ).
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For any a, b, c, d, we will write Q
(a,b,c,d)
n,132 (x)|xk for the coefficient of xk in Q

(a,b,c,d)
n,132 (x).

There is one obvious symmetry for such generating functions which is induced by the
fact that if σ ∈ Sn(132), then σ−1 ∈ Sn(132). That is, the following lemma was proved in
[9].

Lemma 1. ([9]) For any a, b, c, d ∈ {∅} ∪ N,

Q
(a,b,c,d)
n,132 (x) = Q

(a,d,c,b)
n,132 (x).

In [9], we studied the generating functions Q
(k,0,0,0)
132 (t, x), Q

(0,k,0,0)
132 (t, x) = Q

(0,0,0,k)
132 (t, x),

and Q
(0,0,k,0)
132 (t, x) where k can be either the empty set or a positive integer as well as the

generating functions Q
(k,0,∅,0)
132 (t, x) and Q

(∅,0,k,0)
132 (t, x). In [10], we studied the generating

functions Q
(k,0,`,0)
n,132 (t, x), Q

(k,0,0,`)
n,132 (t, x) = Q

(k,`,0,0)
n,132 (t, x), Q

(0,k,`,0)
n,132 (t, x) = Q

(0,0,`,k)
n,132 (t, x), and

Q
(0,k,0,`)
n,132 (t, x), where k, ` ≥ 1. We also showed that sequences of the form (Q

(a,b,c,d)
n,132 (x)|xr)n≥s

count a variety of combinatorial objects that appear in the On-line Encyclopedia of Integer
Sequences (OEIS) [11]. Thus, our results gave new combinatorial interpretations of certain
classical sequences such as the Fine numbers and the Fibonacci numbers as well as pro-
vided certain sequences that appear in the OEIS with a combinatorial interpretation where
none had existed before. Another particular result of our studies in [9] is enumeration of
permutations avoiding simultaneously the patterns 132 and 1234, while in [10], we made a
link to the Pell numbers.

The main goal of this paper is to continue the study of Q
(a,b,c,d)
132 (t, x) and combinatorial

interpretations of sequences of the form (Q
(a,b,c,d)
n,132 (x)|xr)n≥s in the case where a, b, c, d ∈ N

and at least three of these parameters are non-zero.
Next we list the key results from [9] and [10] which we need in this paper.

Theorem 2. ([9, Theorem 4])

Q
(0,0,0,0)
132 (t, x) = C(xt) =

1−
√

1− 4xt

2xt

and, for k ≥ 1,

Q
(k,0,0,0)
132 (t, x) =

1

1− tQ(k−1,0,0,0)
132 (t, x)

.

Hence

Q
(1,0,0,0)
132 (t, 0) =

1

1− t
and, for k ≥ 2,

Q
(k,0,0,0)
132 (t, 0) =

1

1− tQ(k−1,0,0,0)
132 (t, 0)

.
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Theorem 3. ([9, Theorem 8]) For k ≥ 1,

Q
(0,0,k,0)
132 (t, x) =

1 + (tx− t)(
∑k−1

j=0 Cjt
j)−

√
(1 + (tx− t)(

∑k−1
j=0 Cjt

j))2 − 4tx

2tx

=
2

1 + (tx− t)(
∑k−1

j=0 Cjt
j) +

√
(1 + (tx− t)(

∑k−1
j=0 Cjt

j))2 − 4tx

and

Q
(0,0,k,0)
132 (t, 0) =

1

1− t(C0 + C1t+ · · ·+ Ck−1tk−1)
.

Theorem 4. ([10, Theorem 5]) For all k, ` ≥ 1,

Q
(k,0,`,0)
132 (t, x) =

1

1− tQ(k−1,0,`,0)
132 (t, x)

. (1)

Theorem 5. ([10, Theorem 11]) For all k, ` ≥ 1,

Q
(k,0,0,`)
132 (t, x) =

C`t
` +
∑`−1

j=0Cjt
j(1− tQ(k−1,0,0,0)

132 (t, x) + t(Q
(k−1,0,0,`−j)
132 (t, x)−

∑`−j−1
s=0 Cst

s))

1− tQ(k−1,0,0,0)
132 (t, x)

. (2)

Theorem 6. ([10, Theorem 14]) For all k, ` ≥ 1,

Q
(0,k,`,0)
132 (t, x) =

Ck−1t
k−1 +

∑k−2
j=0 Cjt

j
(

1− tQ(0,0,`,0)
132 (t, x) + t(Q

(0,k−i−1,`,0)
132 (t, x)−

∑k−i−2
s=0 Cst

s)
)

1− tQ(0,0,`,0)
132 (t, x)

. (3)

Theorem 7. ([10, Theorem 17]) For all k, ` ≥ 1,

Q
(0,k,0,`)
132 (t, x) =

Φk,`(t, x)

1− t
(4)

where

Φk,`(t, x) =
k+`−1∑
j=0

Cjt
j −

k+`−2∑
j=0

Cjt
j+1 + t

(
k−2∑
j=0

Cjt
j

(
Q

(0,k,0,`−j−1)
132 (t, x)−

k−j−2∑
s=0

Cst
s

))
+

t

(
Q

(0,k,0,0)
132 (t, x)−

k−1∑
u=0

Cut
u

)(
Q

(0,0,0,`)
132 (t, x)−

`−1∑
v=0

Cvt
v

)
+

t

(
`−1∑
j=1

Cjt
j

(
Q

(0,k,0,`−j)
132 (t, x)−

k+`−j−2∑
w=0

Cwt
w

))
.

As it was pointed out in [9], avoidance of a marked mesh pattern without quadrants
containing the empty set can always be expressed in terms of multi-avoidance of (possibly
many) classical patterns. Thus, among our results we will re-derive several known facts in
permutation patterns theory. However, our main goals are more ambitious aimed at finding
distributions in question.
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2 Q
(k,0,m,`)
n,132 (x) = Q

(k,`,m,0)
n,132 (x) where k, `,m ≥ 1

By Lemma 1, we know that Q
(k,0,m,`)
n,132 (x) = Q

(k,`,m,0)
n,132 (x). Thus, we will only consider

Q
(k,`,m,0)
n,132 (x) in this section.

Throughout this paper, we shall classify the 132-avoiding permutations σ = σ1 . . . σn by
the position of n in σ. That is, let S

(i)
n (132) denote the set of σ ∈ Sn(132) such that σi = n.

Clearly each σ ∈ S(i)
n (132) has the structure pictured in Figure 2. That is, in the graph of

σ, the elements to the left of n, Ai(σ), have the structure of a 132-avoiding permutation,
the elements to the right of n, Bi(σ), have the structure of a 132-avoiding permutation,
and all the elements in Ai(σ) lie above all the elements in Bi(σ). It is well-known that the
number of 132-avoiding permutations in Sn is the Catalan number Cn = 1

n+1

(
2n
n

)
and the

generating function for the Cn’s is given by

C(t) =
∑
n≥0

Cnt
n =

1−
√

1− 4t

2t
=

2

1 +
√

1− 4t
.

A (σ)
i

(σ)B
i

i

n

n1

1

Figure 2: The structure of 132-avoiding permutations.

Suppose that n ≥ `. It is clear that n can never match the pattern MMP(k, `,m, 0)
for k,m ≥ 1 in any σ ∈ Sn(132). For 1 ≤ i ≤ n, it is easy to see that as we sum over all

the permutations σ in S
(i)
n (132), our choices for the structure for Ai(σ) will contribute a

factor of Q
(k−1,`,m,0)
i−1,132 (x) to Q

(k,`,m,0)
n,132 (x). Similarly, our choices for the structure for Bi(σ) will

contribute a factor of Q
(k,`−i,m,0)
n−i,132 (x) to Q

(k,`,m,0)
n,132 (x) if i < ` since σ1 . . . σi will automatically

be in the second quadrant relative to the coordinate system with the origin at (s, σs) for
any s > i. However if i ≥ `, then our choices for the structure for Bi(σ) will contribute a

factor of Q
(k,0,m,0)
n−i,132 (x) to Q

(k,`,m,0)
n,132 (x). It follows that for n ≥ `,

Q
(k,`,m,0)
n,132 (x) =

`−1∑
i=1

Q
(k−1,`,m,0)
i−1,132 (x)Q

(k,`−i,m,0)
n−i,132 (x) +

n∑
i=`

Q
(k−1,`,m,0)
i−1,132 (x)Q

(k,0,m,0)
n−i,132 (x).

Note that for i < `, Q
(k−1,`,m,0)
i−1,132 (x) = Ci−1. Thus, for n ≥ `,

Q
(k,`,m,0)
n,132 (x) =

`−1∑
i=1

Ci−1Q
(k,`−i,m,0)
n−i,132 (x) +

n∑
i=`

Q
(k−1,`,m,0)
i−1,132 (x)Q

(k,0,m,0)
n−i,132 (x). (5)
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Multiplying both sides of (5) by tn and summing for n ≥ `, we see that for k, ` ≥ 1,

Q
(k,`,m,0)
132 (t, x) =

`−1∑
j=0

Cjt
j +

`−1∑
i=1

Ci−1t
i
∑
u≥`−i

Q
(k,`−i,m,0)
u,132 (x)tu +

t
∑
n≥`

n∑
i=1

Q
(k−1,`,m,0)
i−1,132 (x)ti−1Q

(k,0,m,0)
n−i,132 (x)tn−i

=
`−1∑
j=0

Cjt
j +

`−1∑
i=1

Ci−1t
i

(
Q

(k,`−i,m,0)
132 (t, x)−

`−i−1∑
j=0

Cjt
j

)
+

tQ
(k,0,m,0)
132 (t, x)

(
Q

(k−1,`,m,0)
132 (t, x)−

`−2∑
s=0

Cst
s

)
= C`−1t

`−1 + tQ
(k,0,m,0)
132 (t, x)Q

(k−1,`,m,0)
132 (t, x) +

`−2∑
s=0

Cst
s

(
1 + tQ

(k,`−1−s,m,0)
132 (t, x)− tQ(k,0,m,0)

132 (t, x)− t
`−2−s∑
j=0

Cjt
j

)
.

Thus, we have the following theorem.

Theorem 8.

Q
(k,`,m,0)
132 (t, x) = C`−1t

`−1 + tQ
(k,0,m,0)
132 (t, x)Q

(k−1,`,m,0)
132 (t, x)+

`−2∑
s=0

Cst
s

(
1 + tQ

(k,`−1−s,m,0)
132 (t, x)− tQ(k,0,m,0)

132 (t, x)− t
`−2−s∑
j=0

Cjt
j

)
. (6)

Note that since we can compute Q
(k,0,m,0)
132 (t, x) by Theorem 4 and Q

(0,`,m,0)
132 (t, x) by

Theorem 6, we can use (6) to compute Q
(k,`,m,0)
132 (t, x) for any k, `,m ≥ 1.

2.1 Explicit formulas for Q
(k,`,m,0)
n,132 (x)|xr

It follows from Theorem 8 that

Q
(k,1,m,0)
132 (t, x) = 1 + tQ

(k,0,m,0)
132 (t, x)Q

(k−1,1,m,0)
132 (t, x) (7)

and

Q
(k,2,m,0)
132 (t, x) = 1 + tQ

(k,0,m,0)
132 (t, x)(Q

(k−1,2,m,0)
132 (t, x)− 1) + tQ

(k,1,m,0)
132 (t, x).

Note that it follows from Theorems 4 and 6 that

Q
(1,1,1,0)
132 (t, 0) = 1 + tQ

(1,0,1,0)
132 (t, 0)Q

(0,1,1,0)
132 (t, 0)

= 1 + t
1− t
1− 2t

1− t
1− 2t

=
1− 3t+ 2t2 + t3

(1− 2t)2
.
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Thus, the generating function of the sequence (Q
(1,1,1,0)
n,132 (0))n≥1 is

(
1−t
1−2t

)2
which is the gen-

erating function of the sequence A045623 in the OEIS. The n-th term an of this sequence
has many combinatorial interpretations including the number of 1s in all partitions of n+1
and the number of 132-avoiding permutations of Sn+2 which contain exactly one occurrence
of the pattern 213. We note that for a permutation σ to avoid the pattern MMP(1, 1, 1, 0),
it must simultaneously avoid the patterns 3124, 4123, 1324, and 1423. Thus, the number
of permutations σ ∈ Sn(132) which avoid MMP(1, 1, 1, 0) is the number of permutations in
Sn that simultaneously avoid the patterns 132, 3124, and 4123.

Problem 1. Find simple bijections between the set of permutations σ ∈ Sn(132) which
avoid MMP(1, 1, 1, 0) and the other combinatorial interpretations of the sequence A045623
in the OEIS.

Note that it follows from Theorem 4 and our previous results that

Q
(2,1,1,0)
132 (t, 0) = 1 + tQ

(2,0,1,0)
132 (t, 0)Q

(1,1,1,0)
132 (t, 0)

= 1 + t
1− 2t

1− 3t+ t2

(
1− 3t+ 2t2 + t3

(1− 2t)2

)
=

1− 4t+ 4t2 + t4

1− 5t+ 7t2 − 2t3
.

The sequence (Q
(2,1,1,0)
n,132 (0))n≥1 is the sequence A142586 in the OIES which has the generat-

ing function 1−3t+2t2+t3

(1−3t+t2)(1−2t) . That is, 1−4t+4t2+t4

1−5t+7t2−2t3 − 1 = t(1−3t+2t2+t3)
(1−3t+t2)(1−2t) . This sequence has no

listed combinatorial interpretation so that we have found a combinatorial interpretation of
this sequence.

Similarly,

Q
(3,1,1,0)
132 (t, 0) = 1 + tQ

(3,0,1,0)
132 (t, 0)Q

(2,1,1,0)
132 (t, 0)

= 1 + t
1− 3t+ t2

1− 4t+ 3t2
1− 4t+ 4t2 + t4

1− 5t+ 7t2 − 2t3

=
1− 5t+ 7t2 − 2t3 + t5

1− 6t+ 11t2 − 6t3
.

Q
(1,1,2,0)
132 (t, 0) = 1 + tQ

(1,0,2,0)
132 (t, 0)Q

(0,1,2,0)
132 (t, 0)

= 1 + t
1− t− t2

1− 2t− t2
1− t− t2

1− 2t− t2

=
1− 3t+ 3t3 + 3t4 + t5

(1− 2t− t2)2
.

Q
(2,1,2,0)
132 (t, 0) = 1 + tQ

(2,0,2,0)
132 (t, 0)Q

(1,1,2,0)
132 (t, 0)

= 1 + t
1− 2t− t2

1− 3t+ t3
1− 3t+ 3t3 + 3t4 + t5

(1− 2t− t2)2

=
1− 4t+ 2t2 + 4t3 + t4 + 2t5 + t6

(1− 2t− t2)(1− 3t+ t3)
.
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Using (7) and Theorem 4, we have computed the following.

Q
(1,1,1,0)
132 (t, x) = 1 + t+ 2t2 + 5t3 + (12 + 2x)t4 +

(
28 + 12x+ 2x2

)
t5+(

64 + 48x+ 18x2 + 2x3
)
t6 +

(
144 + 160x+ 97x2 + 26x3 + 2x4

)
t7+(

320 + 480x+ 408x2 + 184x3 + 36x4 + 2x5
)
t8+(

704 + 1344x+ 1479x2 + 958x3 + 327x4 + 48x5 + 2x6
)
t9 + · · · .

Q
(1,1,2,0)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + (38 + 4x)t5 +

(
102 + 26x+ 4x2

)
t6+(

271 + 120x+ 34x2 + 4x3
)
t7 +

(
714 + 470x+ 200x2 + 42x3 + 4x4

)
t8+(

1868 + 1672x+ 964x2 + 304x3 + 50x4 + 4x5
)
t9 + · · · .

Q
(1,1,3,0)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + (122 + 10x)t6+(
351 + 68x+ 10x2

)
t7 +

(
1006 + 326x+ 88x2 + 10x3

)
t8+(

2868 + 1364x+ 512x2 + 108x3 + 10x4
)
t9 + · · · .

We can explain the highest and second highest coefficients of x in these series. That is,
we have the following theorem.

Theorem 9.

(i) For all m ≥ 1 and n ≥ 3 + m, the highest power of x that occurs in Q
(1,1,m,0)
n,132 (x) is

xn−2−m which appears with a coefficient of 2Cm.

(ii) For n ≥ 5, Q
(1,1,1,0)
n,132 (x)|xn−4 = 6 + 2

(
n−2
2

)
.

(iii) For m ≥ 2 and n ≥ 4 +m Q
(1,1,m,0)
n,132 (x)|xn−3−m = 2Cm+1 + 8Cm + 4Cm(n− 4).

Proof. It is easy to see that for the maximum number of MMP(1, 1,m, 0)-matches in a σ ∈
Sn(132), the permutation must be of the form (n−1)τ(m+1) . . . (n−2)n or nτ(m+1) . . . (n−
2)(n − 1) where τ ∈ Sm(132). Thus, the highest power of x occurring in Q

(1,1,m,0)
n,132 (x) is

xn−2−m which occurs with a coefficient of 2Cm.
For parts (ii) and (iii), we have the recursion that

Q
(1,1,m,0)
n,132 (x) =

n∑
i=1

Q
(0,1,m,0)
i−1,132 (x)Q

(1,0,m,0)
n−i,132 (x). (8)

We proved in [10] that the highest power of x which occurs in either Q
(0,1,m,0)
n,132 (x) or

Q
(1,0,m,0)
n,132 (x) is xn−1−m and

Q
(0,1,m,0)
n,132 (x)|xn−1−m = Q

(1,0,m,0)
n,132 (x)|xn−1−m = Cm.
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It is then easy to check that the highest coefficient of x in Q
(0,1,m,0)
i−1,132 (x)Q

(1,0,m,0)
n−i,132 (x) is

less than xn−3−m for i = 3, . . . , n− 3.
We also proved in [10] that

Q
(1,0,1,0)
n,132 (x)|xn−3 = Q

(0,1,1,0)
n,132 (x)|xn−3 = 2 +

(
n− 1

2

)
for n ≥ 4 and

Q
(1,0,m,0)
n,132 (x)|xn−m−2 = Q

(0,1,m,0)
n,132 (x)|xn−m−2

= Cm+1 + Cm + 2Cm(n− 2−m) for n ≥ 3 +m and m ≥ 2.

For m = 1, we are left with 4 cases to consider in the recursion (8). We start with the
m = 1 case.

Case 1. i = 1. In this case, Q
(0,1,1,0)
i−1,132 (x)Q

(1,0,1,0)
n−i,132 (x)|xn−4 = Q

(1,0,1,0)
n−1,132(x)|xn−4 and

Q
(1,0,1,0)
n−1,132(x)|xn−4 = 2 +

(
n− 2

2

)
for n ≥ 5.

Case 2. i = 2. In this case, Q
(0,1,1,0)
i−1,132 (x)Q

(1,0,1,0)
n−i,132 (x)|xn−4 = Q

(1,0,1,0)
n−2,132(x)|xn−4 and

Q
(1,0,1,0)
n−2,132(x)|xn−4 = 1 for n ≥ 5.

Case 3. i = n− 1. In this case, Q
(0,1,1,0)
i−1,132 (x)Q

(1,0,1,0)
n−i,132 (x)|xn−4 = Q

(0,1,1,0)
n−2,132(x)|xn−4 and

Q
(0,1,1,0)
n−2,132(x)|xn−4 = 1 for n ≥ 5.

Case 4. i = n. In this case, Q
(0,1,1,0)
i−1,132 (x)Q

(1,0,1,0)
n−i,132 (x)|xn−4 = Q

(0,1,1,0)
n−1,132(x)|xn−4 and

Q
(0,1,1,0)
n−1,132(x)|xn−4 = 2 +

(
n− 2

2

)
for n ≥ 5.

Thus, Q
(0,1,1,0)
n,132 (x)|xn−4 = 6 + 2

(
n−2
2

)
for n ≥ 5.

Next we consider the case when m ≥ 2. Again we have 4 cases.

Case 1. i = 1. In this case, Q
(0,1,m,0)
i−1,132 (x)Q

(1,0,m,0)
n−i,132 (x)|xn−3−m = Q

(1,0,m,0)
n−1,132 (x)|xn−3−m and

Q
(1,0,m,0)
n−1,132 (x)|xn−3−` = Cm+1 + Cm + 2Cm(n− 3−m) for n ≥ 4 +m.

Case 2. i = 2. In this case, Q
(0,1,m,0)
i−1,132 (x)Q

(1,0,m,0)
n−i,132 (x)|xn−3−m = Q

(1,0,m,0)
n−2,132 (x)|xn−3−m and

Q
(1,0,m,0)
n−2,132 (x)|xn−3−m = Cm for n ≥ 4 +m.

Case 3. i = n− 1. In this case, Q
(0,1,m,0)
i−1,132 (x)Q

(1,0,m,0)
n−i,132 (x)|xn−3−m = Q

(0,1,m,0)
n−2,132 (x)|xn−3−m and

Q
(0,1,m,0)
n−2,132 (x)|xn−3−m = Cm for n ≥ 4 +m.
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Case 4. i = n. In this case, Q
(0,1,2,0)
i−1,132 (x)Q

(1,0,m,0)
n−i,132 (x)|xn−3−m = Q

(0,1,m,0)
n−1,132 (x)|xn−3−m and

Q
(0,1,m,0)
n−1,132 (x)|xn−3−m = Cm+1 + Cm + 2Cm(n− 3−m) for n ≥ 4 +m.

Thus, for n ≥ 4 +m,

Q
(1,1,m,0)
n,132 (x)|xn−3−m = 2Cm+1 + 4Cm + 4Cm(n− 3−m)

= 2Cm+1 + 8Cm + 4Cm(n− 4−m).

Thus, when m = 2, we obtain that

Q
(0,1,2,0)
n,132 (x)|xn−5 = 26 + 8(n− 6) for n ≥ 6

and, for m = 3, we obtain that

Q
(0,1,3,0)
n,132 (x)|xn−6 = 68 + 20(n− 7)for n ≥ 7

which agrees with our computed series.

We also have computed that

Q
(2,1,1,0)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + (39 + 3x)t5 +

(
107 + 22x+ 3x2

)
t6+(

290 + 105x+ 31x2 + 3x3
)
t7 +

(
779 + 415x+ 190x2 + 43x3 + 3x4

)
t8+(

2079 + 1477x+ 909x2 + 336x3 + 58x4 + 3x5
)
t9+(

5522 + 4922x+ 3765x2 + 1938x3 + 570x4 + 76x5 + 3x6
)
t10 + · · · ,

Q
(2,1,2,0)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + (126 + 6x)t6 +

(
376 + 47x+ 6x2

)
t7+(

1115 + 250x+ 59x2 + 6x3
)
t8 +

(
3289 + 1110x+ 386x2 + 71x3 + 6x4

)
t9+(

9660 + 4444x+ 2045x2 + 558x3 + 83x4 + 6x5
)
t10 + · · · , and

Q
(2,1,3,0)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + 132t6 + (414 + 15x)t7+(
1293 + 122x+ 15x2

)
t8 +

(
4025 + 670x+ 152x2 + 15x3

)
t9+(

12486 + 3124x+ 989x2 + 182x3 + 15x4
)
t10 + · · · .

Again one can easily explain the highest coefficient in Q
(2,1,m,0)
n,132 (x). That is, to have the

maximum number of MMP(2, 1,m, 0)-matches in a σ ∈ Sn(132), the permutation must be
of the form

(n− 2)τ(m+ 1) . . . (n− 3)(n− 1)n,

(n− 1)τ(m+ 1) . . . (n− 3)(n− 2)n, or

nτ(m+ 1) . . . (n− 3)(n− 2)(n− 1)
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where τ ∈ Sm(132). Thus, the highest power of x occurring in Q
(2,1,m,0)
n,132 (x) is xn−3−m which

occurs with a coefficient of 3Cm.
We have computed that

Q
(1,2,1,0)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + (37 + 5x)t5 +

(
94 + 33x+ 5x2

)
t6+(

232 + 144x+ 48x2 + 5x3
)
t7 +

(
560 + 520x+ 277x2 + 68x3 + 5x4

)
t8+(

1328 + 1680x+ 1248x2 + 508x3 + 93x4 + 5x5
)
t9 + · · · .

Q
(1,2,2,0)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + (122 + 10x)t6+(
348 + 71x+ 10x2

)
t7 +

(
978 + 351x+ 91x2 + 10x3

)
t8+(

2715 + 1463x+ 563x2 + 111x3 + 10x4
)
t9 + · · · , and

Q
(1,2,3,0)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + 132t6 + (404 + 25x)t7+(
1220 + 185x+ 25x2

)
t8 +

(
3655 + 947x+ 235x2 + 25x3

)
t9 + · · · .

Again, one can easily explain the highest coefficient in Q
(1,2,m,0)
n,132 (x). That is, to have

the maximum number of MMP(1, 2,m, 0)-matches in a σ ∈ Sn(132), one must be of the
form

(n− 2)(n− 1)τ(m+ 1) . . . (n− 3)n,

(n− 1)(n− 2)τ(m+ 1) . . . (n− 3)n,

n(n− 2)τ(m+ 1) . . . (n− 3)(n− 1),

n(n− 1)τ(m+ 1) . . . (n− 3)(n− 2), or

(n− 1)nτ(m+ 1) . . . (n− 3)(n− 2)

where τ ∈ Sm(132). Thus, the highest power of x occurring in Q
(1,2,m,0)
n,132 (x) is xn−3−m which

occurs with a coefficient of 5Cm.
Finally, we have computed that

Q
(2,2,1,0)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + (123 + 9x)t6 +

(
351 + 69x+ 9x2

)
t7+(

982 + 343x+ 96x2 + 9x3
)
t8 +

(
2707 + 1405x+ 609x2 + 132x3 + 9x4

)
t9 + · · · ,

Q
(2,2,2,0)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + 132t6 + (411 + 18x)t7+(
1265 + 147x+ 18x2

)
t8 +

(
3852 + 809x+ 183x2 + 18x3

)
t9+(

11626 + 3704x+ 1229x2 + 219x3 + 18x4
)
t10 + · · · , and

Q
(2,2,3,0)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + 132t6 + 429t7 + (1385 + 45x)t8+(
4436 + 381x+ 45x2

)
t9 +

(
14118 + 2162x+ 471x2 + 45x3

)
t10+(

44670 + 10361x+ 3149x2 + 561x3 + 45x4
)
t11 + · · · .

12



Again, one can easily explain the highest coefficient in Q
(2,2,m,0)
n,132 (x). That is, to have

the maximum number of MMP(2, 2,m, 0)-matches in a σ ∈ Sn(132), one must be of the
form

n(n− 1)τ(m+ 1) . . . (n− 4)(n− 3)(n− 2),

(n− 1)nτ(m+ 1) . . . (n− 4)(n− 3)(n− 2),

n(n− 2)τ(m+ 1) . . . (n− 4)(n− 3)(n− 1),

n(n− 3)τ(m+ 1) . . . (n− 4)(n− 2)(n− 1),

(n− 1)(n− 2)τ(m+ 1) . . . (n− 4)(n− 3)n,

(n− 2)(n− 1)τ(m+ 1) . . . (n− 4)(n− 3)n,

(n− 1)(n− 3)τ(m+ 1) . . . (n− 4)(n− 2)n,

(n− 2)(n− 3)τ(m+ 1) . . . (n− 4)(n− 1)n, or

(n− 3)(n− 2)τ(m+ 1) . . . (n− 4)(n− 1)n

where τ ∈ Sm(132). Thus, the highest power of x occurring in Q
(2,2,m,0)
n,132 (x) is xn−4−m which

occurs with a coefficient of 9Cm.

3 Q
(0,k,`,m)
n,132 (x) = Q

(0,m,`,k)
n,132 (x) where k, `,m ≥ 1

By Lemma 1, we only need to consider Q
(0,k,`,m)
n,132 (x). Suppose that k, `,m ≥ 1 and n ≥ k+m.

It is clear that n can never match the pattern MMP(0, k, `,m) for k, `,m ≥ 1 in any
σ ∈ Sn(132). If σ = σ1 . . . σn ∈ Sn(132) and σi = n, then we have three cases, depending
on the value of i.

Case 1. i < k. It is easy to see that as we sum over all the permutations σ in S
(i)
n (132), our

choices for the structure for Ai(σ) will contribute a factor of Ci−1 to Q
(0,k,`,m)
n,132 (x) since none

of the elements σj for j ≤ k can match MMP(0, k, `,m) in σ. Similarly, our choices for the

structure for Bi(σ) will contribute a factor of Q
(0,k−i,`,m)
n−i,132 (x) to Q

(0,k,`,m)
n,132 (x) since σ1 . . . σi

will automatically be in the second quadrant relative to the coordinate system with the
origin at (s, σs) for any s > i. Thus, the permutations in Case 1 will contribute

k−1∑
i=1

Ci−1Q
(0,k−i,`,m)
n−i,132 (x)

to Q
(0,k,`,m)
n,132 (x).

Case 2. k ≤ i ≤ n − m. It is easy to see that as we sum over all the permutations
σ in S

(i)
n (132), our choices for the structure for Ai(σ) will contribute a factor of Q

(0,k,`,0)
i−1,132 (x)

to Q
(0,k,`,m)
n,132 (x) since the elements in Bi(σ) will all be in the fourth quadrant relative to a

coordinate system centered at (r, σr) for r ≤ i in this case. Similarly, our choices for the
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structure for Bi(σ) will contribute a factor of Q
(0,0,`,m)
n−i,132 (x) to Q

(0,k,`,m)
n,132 (x) since σ1 . . . σi will

automatically be in the second quadrant relative to the coordinate system with the origin
at (s, σs) for any s > i. Thus, the permutations in Case 2 will contribute

n−m∑
i=k

Q
(0,k,`,0)
i−1,132 (x)Q

(0,0,`,m)
n−i,132 (x)

to Q
(0,k,`,m)
n,132 (x).

Case 3. i ≥ n −m + 1. It is easy to see that as we sum over all the permutations σ in
S
(i)
n (132), our choices for the structure for Ai(σ) will contribute a factor of Q

(0,k,`,m−(n−i))
i−1,132 (x)

to Q
(0,k,`,m)
n,132 (x) since the elements in Bi(σ) will all be in the fourth quadrant relative to a

coordinate system centered at (r, σr) for r ≤ i in this case. Similarly, our choices for the

structure for Bi(σ) will contribute a factor of Cn−i to Q
(0,k,`,m)
n,132 (x) since the elements in

Bi(σ) do not have enough elements to the right to match MMP(0, k, `,m) in σ. Thus, the
permutations in Case 3 will contribute

n∑
i=n−m+1

Q
(0,k,`,m−(n−i))
i−1,132 (x)Cn−i

to Q
(0,k,`,m)
n,132 (x). Hence, for n ≥ k +m,

Q
(0,k,`,m)
n,132 (x) =

k−1∑
i=1

Ci−1Q
(0,k−i,`,m)
n−i,132 (x) +

n−m∑
i=k

Q
(0,k,`,0)
i−1,132 (x)Q

(0,0,`,m)
n−i,132 (x) +

n∑
i=n−m+1

Q
(0,k,`,m−(n−i))
i−1,132 (x)Cn−i. (9)

Multiplying (9) by tn and summing, it is easy to compute that

Q
(0,k,`,m)
132 (t, x) =

k+m−1∑
p=0

Cpt
p +

k−2∑
i=0

Cit
i

(
tQ

(0,k−1−i,`,m)
132 (t, x)− t

k−i+m−2∑
r=0

Crt
r

)
+

t

(
Q

(0,k,`,0)
132 (t, x)−

k−2∑
a=0

Cat
a

)(
Q

(0,0,`,m)
132 (t, x)−

m−1∑
b=0

Cbt
b

)
+

m−1∑
j=0

Cjt
j

(
tQ

(0,k,`,m−j)
132 (t, x)− t

k+m−j−2∑
s=0

Cst
s

)
.

Note that the j = 0 term in the last sum is tQ
(0,k,`,m)
132 (t, x)− t

∑k+m−2
s=0 Cst

s. Thus, taking

the term tQ
(0,k,`,m)
132 (t, x) over to the other side and combining the sum t

∑k+m−2
s=0 Cst

s with
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the sum
∑k+m−1

p=0 Cpt
p to obtain Ck+m−1t

k+m−1 + (1 − t)
∑k+m−2

p=0 Cpt
p and then dividing

both sides by 1− t will yield the following theorem.

Theorem 10.

Q
(0,k,`,m)
132 (t, x) =

k+m−2∑
p=0

Cpt
p +

Ck+m−1t
k+m−1

1− t
+

t

1− t

k−2∑
i=0

Cit
i

(
Q

(0,k−1−i,`,m)
132 (t, x)−

k−i+m−2∑
r=0

Crt
r

)
+

t

1− t

(
Q

(0,k,`,0)
132 (t, x)−

k−2∑
a=0

Cat
a

)(
Q

(0,0,`,m)
132 (t, x)−

m−1∑
b=0

Cbt
b

)
+

t

1− t

m−1∑
j=1

Cjt
j

(
Q

(0,k,`,m−j)
132 (t, x)−

k+m−j−2∑
s=0

Cst
s

)
.

Note that since we can compute Q
(0,k,`,0)
132 (t, x) = Q

(0,0,`,k)
132 (t, x) by Theorem 6, we can

compute Q
(0,k,`,m)
132 (t, x) for all k, `,m ≥ 1.

3.1 Explicit formulas for Q
(0,k,`,m)
n,132 (x)|xr

It follows from Theorem 10 that

Q
(0,1,`,1)
132 (t, x) = 1 +

t

1− t
+

t

1− t
Q

(0,1,`,0)
132 (t, x)(Q

(0,0,`,1)
132 (t, x)− 1)

=
1

1− t
+

t

1− t
Q

(0,1,`,0)
132 (t, x)(Q

(0,0,`,1)
132 (t, x)− 1),

Q
(0,1,`,2)
132 (t, x) = 1 + t+

2t2

1− t
+

t

1− t
Q

(0,1,`,0)
132 (t, x)(Q

(0,0,`,2)
132 (t, x)− (1 + t)) +

t2

1− t
(Q

(0,1,`,1)
132 (t, x)− 1),

and

Q
(0,2,`,2)
132 (t, x) = 1 + t+ 2t2 +

5t3

1− t
+

t

1− t
(Q

(0,1,`,2)
132 (t, x)− (1 + t+ 2t2)) +

t

1− t
(Q

(0,2,`,0)
132 (t, x)− 1)(Q

(0,0,`,2)
132 (t, x)− (1 + t)) +

t2

1− t
(Q

(0,2,`,1)
132 (t, x)− (1 + t)).

We used these formulas to compute the following.
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Q
(0,1,1,1)
132 (t, x) = 1 + t+ 2t2 + 5t3 + (13 + x)t4 +

(
33 + 8x+ x2

)
t5+(

81 + 39x+ 11x2 + x3
)
t6 +

(
193 + 150x+ 70x2 + 15x3 + x4

)
t7+(

449 + 501x+ 337x2 + 122x3 + 20x4 + x5
)
t8+(

1025 + 1524x+ 1363x2 + 719x3 + 204x4 + 26x5 + x6
)
t9+(

2305 + 4339x+ 4891x2 + 3450x3 + 1450x4 + 327x5 + 33x6 + x7
)
t10 + · · · .

Q
(0,1,2,1)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + 2(20 + x)t5 +

(
113 + 17x+ 2x2

)
t6+(

314 + 92x+ 21x2 + 2x3
)
t7 +

(
859 + 404x+ 140x2 + 25x3 + 2x4

)
t8+(

2319 + 1567x+ 745x2 + 200x3 + 29x4 + 2x5
)
t9+(

6192 + 5597x+ 3438x2 + 1262x3 + 272x4 + 33x5 + 2x6
)
t10 + · · · .

Q
(0,1,3,1)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + (127 + 5x)t6 +

(
380 + 44x+ 5x2

)
t7+(

1125 + 246x+ 54x2 + 5x3
)
t8 +

(
3299 + 1135x+ 359x2 + 64x3 + 5x4

)
t9+(

9592 + 4691x+ 1942x2 + 492x3 + 74x4 + 5x5
)
t10 + · · · .

Our next theorem will explain the coefficient of the highest and second highest powers
of x that appear in Q

(0,1,`,1)
n,132 (x) in these series.

Theorem 11.

(i) For n ≥ 3 + `, the highest power of x that occurs in Q
(0,1,`,1)
n,132 (x) is xn−2−` which

appears with a coefficient of C`.

(ii) For n ≥ 5, Q
(0,1,1,1)
n,132 (x)|xn−4 = 5 +

(
n−2
2

)
.

(iii) For all ` ≥ 2 and n ≥ 4 + `, Q
(0,1,2,1)
n,132 (x)|xn−3−` = C`+1 + 6C` + 2C`(n− 4− `).

Proof. It is easy to see that the maximum number of matches of MMP(0, 1, `, 1) that are
possible in a 132-avoiding permutation is a permutation of the form n α (n− 1) β where α
is a 132-avoiding permutation on the elements n− `− 1, . . . , n− 2 and β is the decreasing
permutation on the elements 1, . . . , n− `− 2. Thus, the highest power in Q

(0,1,`,1)
n is xn−`−2

which has a coefficient of C`.
For parts (ii) and (iii), we note that it follows from (9) that

Q
(0,1,`,1)
n,132 (x) = Q

(0,1,`,1)
n−1,132(x) +

n−1∑
i=1

Q
(0,1,`,0)
i−1,132 (x)Q

(0,0,`,1)
n−i,132(x).

We proved in [10] that the highest power of x that appears in Q
(0,1,`,0)
n,132 (x) = Q

(0,0,`,1)
n,132 (x) is

xn−`−1 which appears with a coefficient of C` for n ≥ ` + 2. This implies that the highest
power of x that appears in Q

(0,1,`,0)
i−1,132 (x)Q

(0,0,`,1)
n−i,132(x) is less than xn−`−3 for i = 3, . . . , n− 2.
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Hence we have four cases to consider when we are computing Q
(0,1,1,1)
n,132 (x)|xn−4 .

Case 1. i = 1. In this case, Q
(0,1,1,0)
i−1,132 (x)Q

(0,0,1,1)
n−i,132 (x)|xn−4 = Q

(0,0,1,1)
n−1,132(x)|xn−4 and we proved

in [10] that

Q
(0,0,1,1)
n−1,132(x)|xn−4 = Q

(0,1,1,0)
n−1,132(x)|xn−4 = 2 +

(
n− 2

2

)
for n ≥ 5.

Case 2. i = 2. In this case, Q
(0,1,1,0)
i−1,132 (x)Q

(0,0,1,1)
n−i,132 (x)|xn−4 = Q

(0,0,1,1)
n−2,132(x)|xn−4 and we proved

in [10] that

Q
(0,0,1,1)
n−2,132(x)|xn−4 = Q

(0,1,1,0)
n−2,132(x)|xn−4 = 1 for n ≥ 5.

Case 3. i = n − 1. In this case, Q
(0,1,1,0)
i−1,132 (x)Q

(0,0,1,1)
n−i,132 (x)|xn−4 = Q

(0,1,1,0)
n−2,132(x)|xn−4 and we

proved in [10] that

Q
(0,1,1,0)
n−2,132(x)|xn−4 = 1 for n ≥ 5.

Case 4. Q
(0,1,1,1)
n−1,132(x)|xn−4 . By part (i), we know that Q

(0,1,1,1)
n−1,132(x)|xn−4 = 1 for n ≥ 5.

Thus, Q
(0,1,1,1)
n,132 (x)|xn−4 = 5 +

(
n−2
2

)
for n ≥ 5.

Again there are four cases to consider when computing Q
(0,1,`,1)
n−1,132(x)|xn−3−` for ` ≥ 2.

Case 1. i = 1. In this case, Q
(0,1,`,0)
i−1,132 (x)Q

(0,0,`,1)
n−i,132(x)|xn−3−` = Q

(0,0,`,1)
n−1,132(x)|xn−3−` and we

proved in [10] that

Q
(0,0,`,1)
n−1,132(x)|xn−3−` = Q

(0,1,`,0)
n−1,132(x)|xn−n−3−`

= C`+1 + C` + 2C`(n− 3− `)
= C`+1 + 3C` + 2C`(n− 4− `) for n ≥ 4 + `.

Case 2. i = 2. In this case, Q
(0,1,`,0)
i−1,132 (x)Q

(0,0,`,1)
n−i,132(x)|xn−3−` = Q

(0,0,`,1)
n−2,132(x)|xn−3−` and we

proved in [10] that

Q
(0,0,`,1)
n−2,132(x)|xn−3−` = Q

(0,1,`,0)
n−2,132(x)|xn−3−` = C` for n ≥ 4 + `.

Case 3. i = n − 1. In this case, Q
(0,1,`,0)
i−1,132 (x)Q

(0,0,`,1)
n−i,132(x)|xn−3−` = Q

(0,1,`,0)
n−2,132(x)|xn−3−` and we

proved in [10] that

Q
(0,1,`,0)
n−2,132(x)|xn−3−` = C` for n ≥ 4 + `.

Case 4. Q
(0,1,`,1)
n−1,132(x)|xn−3−` . By part (i), we know that

Q
(0,1,`,1)
n−1,132(x)|xn−3−` = C` for n ≥ 4 + `.

Thus,
Q

(0,1,`,1)
n,132 (x)|xn−3−` = C`+1 + 6C` + 2C`(n− 4− `) for n ≥ 4 + `.
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For example, when ` = 2, we have that

Q
(0,1,2,1)
n,132 (x)|xn−5 = 17 + 4(n− 6) for n ≥ 6

and, for ` = 3, we have that

Q
(0,1,3,1)
n,132 (x)|xn−5 = 44 + 10(n− 7) for n ≥ 7

which agrees with the series we computed.

The sequence (Q
(0,1,1,1)
n,132 (0))n≥1 starts out 1, 2, 5, 13, 33, 81, 193, 449, . . .. This is the se-

quence A005183 in OEIS. Using the fact that Q
(0,1,1,0)
132 (t, 0) = Q

(0,0,1,1)
132 (t, 0) = 1−t

1−2t , one can
show that

Q
(0,1,1,1)
132 (t, x) =

1− 4t+ 5t2 − t3

(1− 2t)2(1− t)
from which it is possible to show that Q

(0,1,1,1)
n,132 (0) = (n− 1)2n−2 + 1 for n ≥ 1.

The sequence (Q
(0,1,1,1)
n,132 (x)|x)n≥4 starts out 1, 8, 39, 150, 501, 1524 . . .. This seems to be

the sequence A055281 in the OEIS. The n-th term of this sequence (n2−n+ 4)2n+1−7−n
and is the number of directed column-convex polyominoes of area n + 5 having along the
lower contour exactly 2 reentrant corners.

Problem 2. Verify that the sequence (Q
(0,1,1,1)
n,132 (x)|x)n≥4 is counted by

(n2 − 9n+ 24)2n−3 − 3− n

and if so, find a bijective correspondence with the polyominoes described in A055281 in
the OEIS.

We have computed that

Q
(0,1,1,2)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + 2(20 + x)t5 +

(
111 + 19x+ 2x2

)
t6+(

296 + 106x+ 25x2 + 2x3
)
t7 +

(
761 + 456x+ 178x2 + 33x3 + 2x4

)
t8+(

1898 + 1677x+ 947x2 + 295x3 + 43x4 + 2x5
)
t9+(

4619 + 5553x+ 4191x2 + 1901x3 + 475x4 + 55x5 + 2x6
)
t10 + · · · .

Q
(0,1,2,2)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + 4(32 + x)t6+(
385 + 40x+ 4x2

)
t7 +

(
1135 + 243x+ 48x2 + 4x3

)
t8+(

3281 + 1170x+ 351x2 + 56x3 + 4x4
)
t9+(

9324 + 4905x+ 2016x2 + 483x3 + 64x4 + 4x5
)
t10 + · · · .

Q
(0,1,3,2)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + 132t6 + (419 + 10x)t7+(
1317 + 103x+ 10x2

)
t8 +

(
4085 + 644x+ 123x2 + 10x3

)
t9+(

12514 + 3229x+ 900x2 + 143x3 + 10x4
)
t10+(

37913 + 14282x+ 5222x2 + 1196x3 + 163x4 + 10x5
)
t11 + · · · .

Again we can explain the coefficients of the highest and second highest coefficients in
Q

(0,1,`,2)
n,132 (x) for large enough n.
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Theorem 12.

(i) For n ≥ ` + 4, the highest power of x that appears in Q
(0,1,`,2)
n,132 (x) is xn−3−` which

occurs with a coefficient of 2C`.

(ii) For n ≥ 7, Q
(0,1,1,2)
n,132 (x)|xn−5 = 13 +

(
n− 2

2

)
.

(iii) For all ` ≥ 2 and n ≥ 5 + `, Q
(0,1,`,2)
n,132 (x)|xn−4−` = 2C`+1 + 15C` + 4C`(n− 5− `).

Proof. For (i), it is easy to see that the maximum number of matches of MMP(0, 1, `, 1)
that are possible in a 132-avoiding permutation is a permutation of the form n α (n− 1) β
where α is a 132-avoiding permutation on the elements n − ` − 1, . . . , n − 2 and β =
(n− `− 2)(n− `− 3) . . . 321 or β = (n− `− 2)(n− `− 3) . . . 312. Thus, the highest power

in Q
(0,1,`,2)
n,132 (x) is xn−`−3 which has a coefficient of 2C`.

For (ii) and (iii), we note that the recursion for Q
(0,1,`,2)
n,132 (x) is

Q
(0,1,`,2)
n,132 (x) = Q

(0,1,`,2)
n−1,132(x) +Q

(0,1,`,1)
n−2,132(x) +

n−2∑
i=1

Q
(0,1,`,0)
i−1,132 (x)Q

(0,0,`,2)
n−i,132(x).

Since the highest power of x that occurs in Q
(0,1,`,0)
n,132 (x) is xn−1−` and the highest power

of x that occurs in Q
(0,0,`,2)
n,132 (x) is n−2−`, it follows that the highest power of x that occurs

in Q
(0,1,`,0)
i−1,132 (x)Q

(0,0,`,2)
n−i,132(x) is less than xn−4−` for i = 4, . . . , n− 3.

Thus, we have to consider five cases when computing Q
(0,1,`,2)
n,132 (x)|xn−4−` .

Case 1. Q
(0,1,`,2)
n−1,132(x)|xn−4−` . By part (i),

Q
(0,1,`,2)
n−1,132(x)|xn−4−` = 2C` for n ≥ `+ 5.

Case 2. Q
(0,1,`,1)
n−2,132(x)|xn−4−` . We have shown earlier that

Q
(0,1,`,1)
n−1,132(x)|xn−4−` = C` for n ≥ `+ 5.

Case 3. i = n−2. In this case, Q
(0,1,`,0)
i−1,132 (x)Q

(0,0,`,2)
n−i,132(x) equals 2Q

(0,1,`,0)
n−3,132(x). We have shown

in [10] that Q
(0,1,`,0)
n−3,132(x)|xn−4−` = C` for n ≥ ` + 5 so that we get a contribution of 2C` in

this case.

Case 4. i = 2. In this case, Q
(0,1,`,0)
i−1,132 (x)Q

(0,0,`,2)
n−i,132(x) equals Q

(0,0,`,2)
n−2,132(x). We have shown in

[10] that

Q
(0,0,`,2)
n−3,132(x)|xn−4−` = 2C` for n ≥ `+ 5.
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Case 5. i = 1. In this case, Q
(0,1,`,0)
i−1,132 (x)Q

(0,0,`,2)
n−i,132(x) equals Q

(0,0,`,2)
n−1,132(x). We have shown in

[10] that for n ≥ `+ 5,

Q
(0,0,`,2)
n−3,132(x)|xn−4−` =

{
6 + 2

(
n−2
2

)
if ` = 1,

2C`+1 + 8C` + 4C`(n− 5− `) if ` ≥ 2.

Thus, for ` = 1, we get

Q
(0,1,1,2)
n−i,132 (x)|xn−5 = 13 + 2

(
n− 2

2

)
for n ≥ 6

and, for ` ≥ 2,

Q
(0,1,`,2)
n−i,132(x)|xn−4−` = 2C`+1 + 15C` + 4C`(n− 5− `) for n ≥ 5 + `.

For example, when ` = 2, we get

Q
(0,1,2,2)
n−i,132 (x)|xn−6 = 40 + 8(n− 7) for n ≥ 7

and, for ` = 3, we get

Q
(0,1,2,2)
n−i,132 (x)|xn−6 = 103 + 20(n− 8) for n ≥ 8

which agrees with the series that we computed.

Q
(0,2,1,2)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + 4t6(32 + x) +

(
380 + 45x+ 4x2

)
t7+(

1083 + 286x+ 57x2 + 4x3
)
t8 +

(
2964 + 1368x+ 453x2 + 73x3 + 4x4

)
t9+(

7831 + 5501x+ 2650x2 + 717x3 + 93x4 + 4x5
)
t10+(

20092 + 19675x+ 12749x2 + 5035x3 + 1114x4 + 117x5 + 4x6
)
t11 + · · · .

Q
(0,2,2,2)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + 132t6 + (421 + 8x)t7+(
1328 + 94x+ 4x2

)
t8 +

(
4103 + 641x+ 110x2 + 8x3

)
t9+(

12401 + 3376x+ 885x2 + 126x3 + 8x4
)
t10+(

36740 + 15235x+ 5484x2 + 1177x3 + 142x4 + 8x5
)
t11+(

106993 + 62012x+ 28872x2 + 8452x3 + 1517x4 + 158x5 + 8x6
)
t12 + · · · .

Q
(0,2,3,2)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + 132t6 + 429t7+

(1410 + 20x)t8 +
(
4601 + 241x+ 20x2

)
t9 +

(
14809 + 1686x+ 281x2 + 20x3

)
t10+(

46990 + 9187x+ 2268x2 + 321x3 + 20x4
)
t11+(

147163 + 43394x+ 14144x2 + 2930x3 + 361x4 + 20x5
)
t12 + · · · .

It is easy to explain the coefficient of the highest power in Q
(0,2,`,2)
n (x). That is, the max-

imum number of matches of MMP(0, 2, `, 2) that are possible in a 132-avoiding permutation
is a permutation of the form n(n− 1) α (n− 2) β or (n− 1)n α (n− 2) β where α is a 132-
avoiding permutation on the elements n−`−2, . . . , n−3 and β = (n−`−3)(n−`−4) . . . 321

or β = (n − ` − 3)(n − ` − 4) . . . 312. Thus, the highest power in Q
(0,1,`,2)
n is xn−`−5 which

has a coefficient of 4C`.
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4 Q
(`,k,0,m)
n,132 (x) = Q

(`,m,0,k)
n,132 (x) where k, `,m ≥ 1

By Lemma 1, we need only consider Q
(`,k,0,m)
n,132 (x). Suppose that k, `,m ≥ 1 and n ≥ k+m.

It is clear that n can never match MMP(`, k, 0,m) for k, `,m ≥ 1 in any σ ∈ Sn(132). If
σ = σ1 . . . σn ∈ Sn(132) and σi = n, then we have three cases, depending on the value of i.

Case 1. i < k. It is easy to see that as we sum over all the permutations σ in S
(i)
n (132),

our choices for the structure for Ai(σ) will contribute a factor of Ci−1 to Q
(`,k,0,m)
n,132 (x) since

the elements in Ai(σ) do not have enough elements to the left to match MMP(`, k, 0,m) in

σ. Similarly, our choices for the structure for Bi(σ) will contribute a factor of Q
(`,k−i,0,m)
n−i,132 (x)

to Q
(`,k,0,m)
n,132 (x) since σ1 . . . σi will automatically be in the second quadrant relative to the

coordinate system with the origin at (s, σs) for any s > i. Thus, the permutations in Case 1
will contribute

k−1∑
i=1

Ci−1Q
(`,k−i,0,m)
n−i,132 (x)

to Q
(`,k,0,m)
n,132 (x).

Case 2. k ≤ i < n −m. It is easy to see that as we sum over all the permutations σ in
S
(i)
n (132), our choices for the structure for Ai(σ) will contribute a factor of Q

(`−1,k,0,0)
i−1,132 (x) to

Q
(`,k,0,m)
n,132 (x) since the elements in Bi(σ) will all be in the fourth quadrant and σi = n is in

the first quadrant relative to a coordinate system centered at (r, σr) for r ≤ i in this case.

Similarly, our choices for the structure for Bi(σ) will contribute a factor of Q
(`,0,0,m)
n−i,132 (x)

to Q
(`,k,0,m)
n,132 (x) since σ1 . . . σi will automatically be in the second quadrant relative to the

coordinate system with the origin at (s, σs) for any s > i. Thus, the permutations in Case 2
will contribute

n−m∑
i=k

Q
(`−1,k,0,0)
i−1,132 (x)Q

(`,0,0,m)
n−i,132 (x)

to Q
(`,k,0,m)
n,132 (x).

Case 3. i ≥ n − m + 1. It is easy to see that as we sum over all the permuta-
tions σ in S

(i)
n (132), our choices for the structure for Ai(σ) will contribute a factor of

Q
(`−1,k,0,m−(n−i))
i−1,132 (x) to Q

(`,k,0,m)
n,132 (x) since σi = n will be in the first quadrant and the ele-

ments in Bi(σ) will all be in the fourth quadrant relative to a coordinate system centered at
(r, σr) for r ≤ i in this case. Similarly, our choices for the structure for Bi(σ) will contribute

a factor of Cn−i to Q
(`,0,0,m)
n,132 (x) since σj where j > i does not have enough elements to its

right to match MMP(`, k, 0,m) in σ. Thus, the permutations in Case 3 will contribute

n∑
i=n−m+1

Q
(`−1,k,0,m−(n−i))
i−1,132 (x)Cn−i
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to Q
(`,k,0,m)
n,132 (x). Thus, we have the following. For n ≥ k +m,

Q
(`,k,0,m)
n,132 (x) =

k−1∑
i=1

Ci−1Q
(`,k−i,0,m)
n−i,132 (x) +

n−m∑
i=k

Q
(`−1,k,0,0)
i−1,132 (x)Q

(`,0,0,m)
n−i,132 (x) +

n∑
i=n−m+1

Q
(`−1,k,0,m−(n−i))
i−1,132 (x)Cn−i. (10)

Multiplying (10) by tn and summing over n will yield the following theorem.

Theorem 13. For all `, k,m ≥ 1,

Q
(`,k,0,m)
132 (t, x) =

k+m−1∑
p=0

Cpt
p +

t
k−2∑
i=0

Cit
i

(
Q

(`,k−1−i,0,m)
132 (t, x)−

k−i+m−2∑
r=0

Crt
r

)
+

t

(
Q

(`−1,k,0,0)
132 (t, x)−

k−2∑
a=0

Cat
a

)(
Q

(`,0,0,m)
132 (t, x)−

m−1∑
b=0

Cbt
b

)
+

t
m−1∑
j=0

Cjt
j

(
Q

(`−1,k,0,m−j)
132 (t, x)−

k+m−j−2∑
s=0

Cst
s

)
. (11)

Note that we can compute Q
(`,k,0,0)
132 (t, x) = Q

(`,0,0,k)
132 (t, x) by Theorem 6 so that (11)

allows us to compute Q
(`,k,0,m)
132 (t, x) for any k, `,m ≥ 0.

4.1 Explicit formulas for Q
(`,k,0,m)
n,132 (x)|xr

It follows from Theorem 13 that

Q
(`,1,0,1)
132 (t, x) = 1+t+tQ

(`−1,1,0,0)
132 (t, x)

(
Q

(`,0,0,1)
132 (t, x)− 1

)
+t
(
Q

(`−1,1,0,1)
132 (t, x)− 1

)
, (12)

Q
(`,1,0,2)
132 (t, x) = 1 + t+ 2t2 + tQ

(`−1,1,0,0)
132 (t, x)

(
Q

(`,0,0,2)
132 (t, x)− (1 + t)

)
+

t
(
Q

(`−1,1,0,2)
132 (t, x)− (1 + t) + t

(
Q

(`−1,1,0,1)
132 (t, x)− 1

))
,

and

Q
(`,2,0,2)
132 (t, x) = 1 + t+ 2t2 + 5t3 + t

(
Q

(`,1,0,2)
132 (t, x)− (1 + t+ 2t2)

)
+

t
(
Q

(`−1,2,0,0)
132 (t, x)− 1

)(
Q

(`,0,0,2)
132 (t, x)− (1 + t)

)
+

t
(
Q

(`−1,2,0,2)
132 (t, x)− (1 + t+ 2t2) + t

(
Q

(`−1,2,0,1)
132 (t, x)− (1 + t)

))
.
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One can use these formulas to compute the following.

Q
(1,1,0,1)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 2(5 + 2x)t4 +

(
17 + 17x+ 8x2

)
t5+(

26 + 44x+ 42x2 + 20x3
)
t6 +

(
37 + 90x+ 129x2 + 117x3 + 56x4

)
t7+(

50 + 160x+ 305x2 + 397x3 + 350x4 + 168x5
)
t8+(

65 + 259x+ 615x2 + 1029x3 + 1268x4 + 1098x5 + 528x6
)
t9+(

82 + 392x+ 1113x2 + 2259x3 + 3503x4 + 4167x5 + 3564x6 + 1716x7
)
t10 + · · · .

It is easy to explain the highest coefficient of x in Q
(1,`,0,1)
n,132 (x).

Theorem 14. For n ≥ 3 + `, the highest power of x that occurs in Q
(1,`,0,1)
n,132 (x) is xn−2−`

which occurs with a coefficient of 4C`Cn−`−2.

Proof. It is easy to see that the maximum number of MMP(`, 1, 0, 1) matches occurs in
σ ∈ Sn(132) when σ is of the form n τ α (n − 1), n τ (n − 1) α, (n − 1) τ α n, or
(n − 1) τ n α where α is a 132-avoiding permutation on the elements 1, . . . , ` and τ is a
132-avoiding permutations of the elements ` + 1, . . . , n − 2. Thus, the highest power of x
in Q

(`,1,0,1)
n,132 (x) for n ≥ `+ 3 is xn−2−` which occurs with a coefficient of 4C`Cn−`−2.

We can also explain the second highest coefficient in Q
(1,1,0,1)
n,132 (x).

Theorem 15. For n ≥ 5,

Q
(1,1,0,1)
n,132 (x)|xn−4 = 8Cn−3 + Cn−4.

Proof. In this case, the recursion for Q
(1,1,0,1)
n,132 (x) is

Q
(1,1,0,1)
n,132 (x) = Q

(0,1,0,1)
n−1,132(x) +

n−1∑
i=1

Q
(0,1,0,0)
i−1,132 (x)Q

(1,0,0,1)
n−i,132 (x).

It was proved in [9] that for n ≥ 1, the highest power of x that occurs in Q
(0,1,0,0)
n,132 (x) is xn−1

which occurs with a coefficient of Cn−1. It was proved in [10] that for n ≥ 3, the highest

power of x that occurs in Q
(1,0,0,1)
n,132 (x) is xn−2 which occurs with a coefficient of 2Cn−2. It

follows that

Q
(1,1,0,1)
n,132 (x)|xn−4 = Q

(0,1,0,1)
n−1,132(x)|xn−4 +Q

(1,0,0,1)
n−1,132(x)|xn−4 +Q

(0,1,0,0)
n−2,132(x)|xn−4 +

n−2∑
i=2

Q
(0,1,0,0)
i−1,132 (x)|xi−2Q

(1,0,0,1)
n−i,132 (x)|xn−i−2 .

It was shown in [9] and [10] that

Q
(0,1,0,1)
n−1,132(x)|xn−4 = 2Cn−3 + Cn−4 for n ≥ 5,

Q
(1,0,0,1)
n−1,132(x)|xn−4 = 3Cn−3 for n ≥ 5, and

Q
(0,1,0,0)
n−2,132(x)|xn−4 = Cn−3 for n ≥ 5.
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Thus, for n ≥ 5,

Q
(1,1,0,1)
n,132 (x)|xn−4 = 2Cn−3 + Cn−4 + 3Cn−3 + Cn−3 +

n−2∑
i=2

Ci−22Cn−i−2

= 6Cn−3 + Cn−4 + 2
n−2∑
i=2

Ci−2Cn−i−2

= 6Cn−3 + Cn−4 + 2Cn−3 = 8Cn−3 + Cn−4.

The sequence (Q
(1,1,0,1)
n,132 (0))n≥1 starts out 1, 2, 5, 10, 17, 26, 37, 50, 82, . . . which is the se-

quence A002522 in the OEIS. The n-th element of the sequence has the formula (n−1)2+1.

This can be verified by computing the generating function Q
(1,1,0,1)
132 (t, 0). That is, we proved

in [9] and [10] that

Q
(0,1,0,0)
132 (t, 0) =

1

1− t
,

Q
(1,0,0,1)
132 (t, 0) =

1− 2t+ 2t2

(1− t)3
, and

Q
(0,1,0,1)
132 (t, 0) =

1

1− t
+

t2

(1− t)2
.

Plugging these formulas into (12), one can compute that

Q
(1,1,0,1)
132 (t, 0) =

1− 3t+ 5t2 − 2t3 + t4

(1− t)3
.

Problem 3. Find a direct combinatorial proof of the fact that Q
(1,1,0,1)
n,132 (0) = (n− 1)2 + 1

for n ≥ 1.

Q
(2,1,0,1)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + (33 + 9x)t5 +

(
71 + 43x+ 18x2

)
t6+(

146 + 137x+ 101x2 + 45x3
)
t7+(

294 + 368x+ 367x2 + 275x3 + 126x4
)
t8+(

587 + 906x+ 1100x2 + 1079x3 + 812x4 + 378x5
)
t9+(

1169 + 2125x+ 2973x2 + 3463x3 + 3352x4 + 2526x5 + 1188x6
)
t10 + · · ·

Q
(3,1,0,1)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + (116 + 16x)t6+(
308 + 89x+ 32x2

)
t7 +

(
807 + 341x+ 202x2 + 80x3

)
t8+(

2108 + 1140x+ 849x2 + 541x3 + 224x4
)
t9+(

5507 + 3583x+ 3046x2 + 2406x3 + 1582x4 + 672x5
)
t10+(

14397 + 10897x+ 10141x2 + 9039x3 + 7310x4 + 4890x5 + 2112x6
)
t11 + · · · .
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It is not difficult to show that for n ≥ k + 3, the highest power or x that occurs in
Q

(k,1,0,1)
n,132 (x) is xn−k−2 which appears with a coefficient of (k + 1)2Cn−k−2. That is, the

maximum number of occurrences of MMP (k, 1, 0, 1) for a σ ∈ Sn(132) occurs when σ is of
the form xτβ where x ∈ {n−k, . . . , n}, β is a shuffle of 1 with the increasing sequence which
results from (n − k)(n − k + 1) . . . n by removing x, and τ is a 132-avoiding permutation
on 2, . . . , n− k − 1. Thus we have k + 1 choices for x and, once x is chosen, we have k + 1
choices for β, and Cn−k−2 choices for τ .

Q
(1,1,0,2)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + (32 + 10x)t5+(
62 + 50x+ 20x2

)
t6 +

(
107 + 149x+ 123x2 + 50x3

)
t7+(

170 + 345x+ 433x2 + 342x3 + 140x4
)
t8+(

254 + 685x+ 1154x2 + 1327x3 + 1022x4 + 420x5
)
t9+(

362 + 1225x+ 2589x2 + 3868x3 + 4228x4 + 3204x5 + 1320x6
)
t10 + · · · .

Q
(2,1,0,2)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + (105 + 27x)t6+(
235 + 140x+ 54x2

)
t7 +

(
494 + 470x+ 331x2 + 135x3

)
t8+(

1004 + 1301x+ 1275x2 + 904x3 + 378x4
)
t9+(

2007 + 3248x+ 3960x2 + 3773x3 + 2674x4 + 1134x5
)
t10 + · · · .

Q
(3,1,0,2)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + 132t6 + (373 + 56x)t7+(
998 + 320x+ 112x2

)
t8 +

(
2615 + 1233x+ 734x2 + 280x3

)
t9+(

6813 + 4092x+ 3131x2 + 1976x3 + 784x4
)
t10+(

17749 + 12699x+ 11223x2 + 8967x3 + 5796x4 + 2352x5
)
t11 + · · · .

Q
(1,2,0,2)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + (107 + 25x)t6+(
233 + 146x+ 50x2

)
t7 +

(
450 + 498x+ 357x2 + 125x3

)
t8+(

794 + 1299x+ 1429x2 + 990x3 + 350x4
)
t9+(

1307 + 2869x+ 4263x2 + 4353x3 + 2954x4 + 1050x5
)
t10 + · · · .

Q
(2,2,0,2)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + 132t6 + (348 + 81x)t7+(
811 + 457x+ 162x2

)
t8 +

(
1747 + 1625x+ 1085x2 + 405x3

)
t9+(

3587 + 4663x+ 4443x2 + 2969x3 + 1134x4
)
t10+(

7167 + 11864x+ 14360x2 + 13201x3 + 8792x4 + 3402x5
)
t11 + · · · .

Q
(3,2,0,2)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + 132t6 + 429t7+

(1234 + 196x)t8 + 2
(
1657 + 578x+ 196x2

)
t9+(

8643 + 4497x+ 2676x2 + 980x3
)
t10+(

22345 + 14839x+ 11622x2 + 7236x3 + 2744x4
)
t11 + · · · .
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Problem 4. In all the cases above, it seems that for n ≥ `+ k+m+ 1, the highest power
of x in Q

(`,k,0,m)
n,132 (x) is xn−k−` which appears with a coefficient of a`,k,mCn−`−k−m for some

constant a`,k,m. Prove that this is the case and find a formula for a`,k,m.

5 Q
(a,b,c,d)
n,132 (x) = Q

(a,d,c,b)
n,132 (x) where a, b, c, d ≥ 1

By Lemma 1, we only need to consider the case of Q
(a,b,c,d)
n,132 (x). Suppose that a, b, c, d ≥ 1

and n ≥ b+d. It is clear that n can never match the pattern MMP(a, b, c, d) for a, b, c, d ≥ 1
in any σ ∈ Sn(132). If σ = σ1 . . . σn ∈ Sn(132) and σi = n, then we have three cases, de-
pending on the value of i.

Case 1. i < b. It is easy to see that as we sum over all the permutations σ in S
(i)
n (132),

our choices for the structure for Ai(σ) will contribute a factor of Ci−1 to Q
(a,b,c,d)
n,132 (x) since

the elements in Ai(σ) do not have enough elements to the left to match MMP(a, b, c, d) in

σ. Similarly, our choices for the structure for Bi(σ) will contribute a factor of Q
(a,b−i,c,d)
n−i,132 (x)

to Q
(a,b,c,d)
n,132 (x) since σ1 . . . σi will automatically be in the second quadrant relative to the

coordinate system with the origin at (s, σs) for any s > i. Thus, the permutations in Case
1 will contribute

b−1∑
i=1

Ci−1Q
(a,b−i,c,d)
n−i,132 (x)

to Q
(a,b,c,d)
n,132 (x).

Case 2. b ≤ i < n − d. It is easy to see that as we sum over all the permutations σ
in S

(i)
n (132), our choices for the structure for Ai(σ) will contribute a factor of Q

(a−1,b,c,0)
i−1,132 (x)

to Q
(a,b,c,d)
n,132 (x) since the elements in Bi(σ) will all be in the fourth quadrant and σi = n is

in the first quadrant relative to a coordinate system centered at (r, σr) for r ≤ i in this

case. Similarly, our choices for the structure for Bi(σ) will contribute a factor of Q
(a,0,c,d)
n−i,132(x)

to Q
(a,b,c,d)
n,132 (x) since σ1 . . . σi will automatically be in the second quadrant relative to the

coordinate system with the origin at (s, σs) for any s > i. Thus, the permutations in Case
2 will contribute

n−d∑
i=b

Q
(a−1,b,c,0)
i−1,132 (x)Q

(a,0,c,d)
n−i,132(x)

to Q
(a,b,c,d)
n,132 (x).

Case 3. i ≥ n − d + 1. It is easy to see that as we sum over all the permutations σ in
S
(i)
n (132), our choices for the structure forAi(σ) will contribute a factor ofQ

(a−1,b,c,d−(n−i))
i−1,132 (x)

to Q
(a,b,c,d)
n,132 (x) since σi = n will be in the first quadrant and the elements in Bi(σ) will all

be in the fourth quadrant relative to a coordinate system centered at (r, σr) for r ≤ i in
this case. Similarly, our choices for the structure for Bi(σ) will contribute a factor of Cn−i
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to Q
(a,b,c,d)
n,132 (x) since σj, where j > i, does not have enough elements to its right to match

MMP(a, b, c, d) in σ. Thus, the permutations in Case 3 will contribute

n∑
i=n−d+1

Q
(a−1,b,c,d−(n−i))
i−1,132 (x)Cn−i

to Q
(a,b,c,d)
n,132 (x). Thus, we have the following. For n ≥ a+ b+ c+ d+ 1,

Q
(a,b,c,d)
n,132 (x) =

b−1∑
i=1

Ci−1Q
(a,b−i,c,d)
n−i,132 (x) +

n−d∑
i=b

Q
(a−1,b,c,0)
i−1,132 (x)Q

(a,0,c.d)
n−i,132(x) +

n∑
i=n−d+1

Q
(a−1,b,c,d−(n−i))
i−1,132 (x)Cn−i. (13)

Multiplying (13) by tn and summing, we obtain the following theorem.

Theorem 16. For all a, b, c, d ≥ 1,

Q
(a,b,c,d)
132 (t, x) =

b+d−1∑
p=0

Cpt
p +

t
b−2∑
i=0

Cit
i

(
Q

(a,b−1−i,c,d)
132 (t, x)−

b−i+d−2∑
r=0

Crt
r

)
+

t

(
Q

(a−1,b,c,0)
132 (t, x)−

b−2∑
i=0

Cit
i

)(
Q

(a,0,c,d)
132 (t, x)−

d−1∑
j=0

Cjt
j

)
+

t
d−1∑
j=0

Cjt
j

(
Q

(a−1,b,c,d−j)
132 (t, x)−

b+d−j−2∑
s=0

Cst
s

)
.

Thus, for example,

Q
(1,1,1,1)
132 (t, x) = 1 + t+ tQ

(0,1,1,0)
132 (t, x)

(
Q

(1,0,1,1)
132 (t, x)− 1

)
+

t(Q
(0,1,1,1)
132 (t, x)− 1).

and, for k ≥ 2,

Q
(k,1,1,1)
132 (t, x) = 1 + t+ tQ

(k−1,1,1,0)
132 (t, x)

(
Q

(k,0,1,1)
132 (t, x)− 1

)
+

t(Q
(k−1,1,1,1)
132 (t, x)− 1).

Q
(1,1,1,1)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + (38 + 4x)t5 +

(
99 + 29x+ 4x2

)
t6 +(

249 + 135x+ 41x2 + 4x3
)
t7 +

(
609 + 510x+ 250x2 + 57x3 + 4x4

)
t8 +(

1457 + 1701x+ 1177x2 + 446x3 + 77x4 + 4x5
)
t9 +(

3425 + 5220x+ 4723x2 + 2564x3 + 759x4 + 101x5 + 4x6
)
t10 + · · · ,
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Q
(2,1,1,1)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + (123 + 9x)t6 +(

350 + 70x+ 9x2
)
t7 +

(
974 + 350x+ 97x2 + 9x3

)
t8 +(

2667 + 1433x+ 620x2 + 133x3 + 9x4
)
t9 +(

7218 + 5235x+ 3079x2 + 1077x3 + 178x4 + 9x5
)
t10 + · · · ,

and

Q
(3,1,1,1)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + 132t6 + (413 + 16x)t7 +(

1277 + 137x+ 16x2
)
t8 +

(
3909 + 752x+ 185x2 + 16x3

)
t9 +(

11881 + 3383x+ 1267x2 + 249x3 + 16x4
)
t10 + · · · .

It is easy to explain the coefficient to the highest power that appears in Q
(k,1,1,1)
n,132 (x) for

k ≥ 1. That is, the maximum number of matches of MMP(1, 1, 1, 1) for σ ∈ Sn(132) is
when σ is of the form x α β where x ∈ {n− k, . . . , n}, β is a shuffle of 1 with the sequence
(n − k)(n − k + 1) . . . n with x removed, and α = 23 . . . (n − k − 1). Note that we have
k + 1 choices for x and, once we chosen x, we have k + 1 choices for β. Thus, the highest
power of x that occurs in Q

(k,1,1,1)
n,132 (x) is xn−k−3 which occurs with a coefficient of (k + 1)2

for n ≥ k + 4.
We also have

Q
(0,1,1,0)
132 (t, 0) =

1− t
1− 2t

,

Q
(1,0,1,1)
132 (t, 0) = 1 + t

(
1− t
1− 2t

)2

, and

Q
(0,1,1,1)
132 (t, 0) =

1− 4t+ 5t2 − t3

(1− 2t)2(1− t)
,

to compute that

Q
(1,1,1,1)
132 (t, 0) =

1− 6t+ 13t2 − 11t3 + 3t4 − 2t5 + t6

(1− t)(1− 2t)3
.

Note that Q
(1,1,1,1)
132 (t, 0) is the generating function of the permutations that avoid the

patterns from the set {132, 52314, 52341, 42315, 42351}.
Finally, we can also determine the second highest coefficient of x in Q

(1,1,1,1)
n,132 (x).

Theorem 17. For all n ≥ 6,

Q
(1,1,1,1)
n,132 (x)|xn−5 = 17 + 4

(
n− 3

3

)
.
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Proof. The recursion of Q
(1,1,1,1)
n,132 (x) is

Q
(1,1,1,1)
n,132 (x) = Q

(0,1,1,1)
n−1,132(x) +

n−1∑
i=1

Q
(0,1,1,0)
i−1,132 (x)Q

(1,0,1,1)
n−i,132 (x).

For n ≥ 3, the highest power of x which occurs in Q
(0,1,1,0)
n,132 (x) is xn−2 and for n ≥ 4, the

highest power of x that occurs in Q
(1,0,1,1)
n,132 (x) is xn−3. It follows that for i = 2, . . . , n − 3,

the highest power of x that occurs in Q
(0,1,1,0)
i−1,132 (x)Q

(1,0,1,1)
n−i,132 (x) is xn−6. It follows that

Q
(1,1,1,1)
n,132 (x)|xn−5 = Q

(1,0,1,1)
n−1,132(x)|xn−5 +Q

(1,0,1,1)
n−2,132(x)|xn−5 + 2Q

(0,1,1,0)
n−3,132(x)|xn−5 +

Q
(0,1,1,0)
n−2,132(x)|xn−5 +Q

(0,1,1,1)
n−1,132(x)|xn−5 .

But for n ≥ 6, we have proved that

Q
(1,0,1,1)
n−1,132(x)|xn−5 = 6 + 2

(
n− 3

2

)
,

Q
(1,0,1,1)
n−2,132(x)|xn−5 = 2,

2Q
(0,1,1,0)
n−3,132(x)|xn−5 = 2C1 = 2,

Q
(0,1,1,0)
n−2,132(x)|xn−5 = 2 +

(
n− 3

2

)
, and

Q
(0,1,1,1)
n−1,132(x)|xn−5 = 5 +

(
n− 3

2

)
.

Thus, Q
(1,1,1,1)
n,132 (x)|xn−5 = 17 + 4

(
n−3
2

)
.
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