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Abstract

We present several multi-variable generating functions for a new pattern matching
condition on the wreath product Ci S, of the cyclic group C; and the symmet-
ric group S,. Our new pattern matching condition requires that the underlying
permutations match in the usual sense of pattern matching for S,, and that the
corresponding sequence of signs match in the sense of words, rather than the exact
equality of signs which has been previously studied. We produce the generating
functions for the number of matches that occur in elements of Ci ! S, for any
pattern of length 2 by applying appropriate homomorphisms from the ring of sym-
metric functions over an infinite number of variables to simple symmetric function
identities. We also provide multi-variable generating functions for the distribution
of nonoverlapping matches and for the number of elements of Cy ! S,, which have
exactly 2 matches which do not overlap for several patterns of length 2.
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1 Introduction

The goal of this paper is to study pattern matching conditions on the wreath product
Cy 1S, of the cyclic group C} and the symmetric group S5,. Cy 1S, is the group of k"n!
signed permutations where we allow k signs of the form 1 = w°, w, w?, ..., w*! for some
primitive k-th root of unity w. We can think of the elements C 1 .S, as pairs v = (o, €)
where 0 = 0y...0, € S, and € = €;...¢, € {l,w,...,w* 1} For ease of notation, if
€= (W w2, ... ,w") where w; € {0,...,k — 1} for i = 1,...,n, then we simply write
v = (0,w) where w = wywsy ... wy,.

Given a sequence o = o7 - - - 0,, of distinct integers, let red(o) be the permutation found
by replacing the i'" largest integer that appears in o by i. For example, if o = 2 7 5 4, then
red(c) =14 3 2. Given a permutation 7 in the symmetric group S}, define a permutation
o =010, €S, to have a 7-match at place i provided red(o;---0;1j_1) = 7. Let
7-mch(o) be the number of 7-matches in the permutation o. Similarly, we say that 7
occurs in o if there exist 1 <4, < --- <4; < n such that red(oy, - - - 0;;) = 7. We say that
o avoids T if there are no occurrences of 7 in o.

We can define similar notions for words over a finite alphabet [k] = {0,1,...,k — 1}.
Given a word w = w;---w, € [k]", let red(w) be the word found by replacing the
ith largest integer that appears in w by i — 1. For example, if w = 2 7 2 4 7, then
red(w) =020 1 2. Given a word u € [k]’ such that red(u) = u, define a word w € [k]™ to
have a u-match at place i provided red(w; - - - w;y;—1) = u. Let u-mch(w) be the number
of u-matches in the word w. Similarly, we say that u occurs in a word w if there exist
1 <i; <--- <i; < nsuch that red(w;, - --w;;) = u. We say that w avoids u if there are
no occurrences of u in w.

There are a number of papers on pattern matching and pattern avoidance in Cj ¢ .S,
[7, 13, 14, 15]. For example, the following pattern matching condition was studied in
13, 14, 15].

Definition 1. 1. We say that an element (7,u) € CylS; occurs in an element (o, w) €
Cr 1Sy if there are 1 < iy < iy < --- < i; < n such that red(o;, ...0;;) = 7 and
wy, =u, forp=1,...,7.

2. We say that an element (o,w) € Cx 1S, avoids (1,u) € Cy 1 S; if there are no
occurrences of (t,u) in (o,w).

3. If (o,w) € Cp 1S, and (1,u) € C,1S;, then we say that there is a (7,u)-match
in (o,w) starting at position ¢ if red(c;0i41...0,45-1) = 7 and w;y,—1 = u, for
p=1,...,7.

That is, an occurrence or match of (7,u) € Cy 1S, in an element (o,w) € Cy 1S, is
just an ordinary occurrence or match of 7 in o where the corresponding signs agree
exactly. For example, Mansour [14] proved via recursion that for any (7,u) € Cj 1 Sa,
the number of (7, u)-avoiding elements in Cy 1S, is Y7 j!(k — 1) (?)2 This generalized
a result of Simion [22] who proved the same result for the hyperoctrahedral group Cs
Sp. Similarly, Mansour and West [15] determined the number of permutations in Cj
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S, that avoid all possible 2 and 3 element set of patterns of elements of Cy.S5. For
example, let K} the number of (0,¢) € Cy1 S, that avoid all the patterns in the set
{(1 2,0 0),(1 2,01),(21,10)}, K2, the number of (g,¢) € Cy1 S, that avoid all the
patterns in the set {(12,01),(12,10),(21,0 1)}, and K2, the number of (c,¢) € C51 S,
that avoid all the patterns in the set {(1 2,0 0),(1 2,0 1),(2 1,0 0)}. They proved that

1
Kn = F2n+17

n -1
K? = n'Z(n) , and
=0 \J

"1

where F,, is n-th Fibonacci number.

In this paper, we shall drop the requirement of the exact matching of signs and replace
it by the condition that the two sequences of signs match in the sense of words described
above. That is, we shall consider the following pattern matching conditions:

Definition 2. Suppose that (1,u) € Cx1.S; and red(u) = u.

1. We say that (1,u) bi-occurs in (o,w) € Cy 1S, if there are 1 < iy < iy < -+ <
i; < n such that red(oy, ... 04;) = 7 and red(w;, ... w;;) = u.

2. We say that an element (o,w) € Cjy S, bi-avoids (7,u) if there are no bi-
occurrences of (T,u) in (o, w).

3. We say that there is a (7,u)-bi-match in (o,w) € C¢ S, starting at position i
Zf red(aiaiﬂ Ce Ui—l—j—l) =7 and red(wiwiﬂ . wi+j—1) = U.

For example, suppose that (7,u) = (1 2,0 0) and (o, w) = (1 32 4,1 2 2 2). Then there
are no occurrences or matches of (7, u) in (o, w) according to Definition 1. However, there
is a (7,u)-bi-match in (o, w) starting at position 3; additionally, 34 and 24 in ¢ are bi-
occurrences of (7,u) in (o,w). Let (7,u)-mch((c,w)) be the number of (7, u)-bi-matches
in (o,w) € Cp 1 S,. Let (1,u)-nlap((o,w)) be the maximum number of non-overlapping
(7, u)-bi-matches in (o,w) where two (7,u)-bi-matches are said to overlap if there are
positions in (o, w) that are involved in both (7, u)-bi-matches.

One can easily extend these notions to sets of elements of Cj ¢ .S;. That is, suppose
that T C Cj 1 S; is such that every (7,u) € T has the property that red(u) = u. Then
(0, w) has a T-bi-match at place ¢ provided (red(o; ... oi4j-1),red(w; ... w;y;—1)) € Y. Let
T-mch((o,w)) and Y-nlap((o,w)) be the number of Y-bi-matches and non-overlapping
T-bi-matches in (o, w), respectively.

In this paper, we shall mainly study the distribution of bi-matches for patterns of
length 2, i.e. where (7,u) € Cy 1 S,. This is closely related to the analogue of rises and
descents in Cj ¢ S,, where we compare pairs using the product order. That is, instead of
thinking of an element of Cy .S, as a pair (07 ...0,,w; ... w,), we can think of it as a
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sequence of pairs (o1, wq) (02, ws) ... (0,, w,). We then define a partial order on such pairs
by the usual product order. That is, (i1,71) < (ia,J2) if and only if i; < iy and j; < js.
Then we define the following statistics for elements (o, w) € Ck 1 S,,.

) = {i:0;> 001 & wp > w1}, des((o,w)) = |Des((o,w))],
) = {i:0i<0i1 & w; <wiqa}ris((o,w)) = |Ris((o,w))|,
) = {i:00> 001 & w; = wip }, wdes((o,w)) = |WDes((o,w))|,

) = {i:0; <o & wp = w1}, wris((o,w)) = [WRis((o,w))],

) = {i:0:> 0001 & w; > wip }ysdes((o,w))

) = {i:0i <o & w; < wigq}ysris((o,w)) = |SRis((o,w))].

We shall refer to Des((o,w)) as the descent set of (o,w), WDes((o,w)) as the weak
descent set of (o, w), and SDes((o,w)) as the strict descent set of (o,w). Similarly, we

shall refer to Ris((o,w)) as the rise set of (o,w), WRis((o,w)) as the weak rise set of
(0,w), and SRis((o,w)) as the strict rise set of (o, w). It is easy to see that

i € WDes((o,w)) if and only if there is a (2 1,0 0)-bi-match starting at position i,
i € SDes((o,w)) if and only if there is a (2 1,1 0)-bi-match starting at position 7, and

i € Des((o,w)) if and only if there is a T-bi-match starting at position ¢ where T =
[(21,00),(21,10)}.

Similarly,
i € WRis((o,w)) if and only if there is a (1 2,0 0)-bi-match starting at position i,

i € SRis((o,w)) if and only if there is a (1 2,0 1)-bi-match starting at position i, and
i € Ris((o,w)) if and only if there is a Y-bi-match starting at position ¢ where T =
{(12,00),(12,0 1)}.

Ifo=0y...0, €S, then we define the reverse of o, ¢, by 6" = 0,,...0;. Similarly,
if w=w...w, € [k]", then we define w" = w,, ... w;. It is easy to see that
ris((o,w)) = des((c",w")),
wris((o,w)) = wdes((o",w")), and
sris((o,w)) = sdes((c",w")).
Thus we need to find the distributions for only one of the corresponding pairs. We shall
prove the following generating functions.

" ris((o,w l—ux
ZE Z () (=D (n+h=1y (1)

n>0 " (0,w)ECKISn L=z, n




" . 1—x
v wris((o,w)) _ ) 2
Z n! Z X 1—a+ k(e(a:—l)t _ 1) ( )

n>0 (o,w)eCKUSH

" sris((o,w l—z
LY e - T )

«

Other distributions results for (7, u)-bi-matches follow from these results. For example,
ifo=01...0, €5, then we define the complement of o, ¢¢, by

cf=n+1—01)...(n+1—0y,).
If w=w...w, € [k]", then we define the complement of w, w®, by
we=(k—1—w)...(k—1—w,).

We can then consider maps ¢, : Cx 1S, — Ci 1S, where ¢,,((o,w)) = (6% w’) for
a,b € {r,c}. Such maps will easily allow us to establish that the distribution of (7, u)-bi-
matches is the same for various classes of (7,u)’s. For example, one can use such maps
to show that the distributions of (1 2,0 1)-bi-matches, (2 1,0 1)-bi-matches, (1 2,1 0)-bi-
matches, and (2 1,1 0)-bi-matches are all the same.

Another interesting case is when we let T = {(1 2,0 1),(1 2,1 0)}. In this case we
have a Y-bi-match in (o, w) starting at 7 if and only if 0; < 0,1 and w; # w;;1. In that
case, we shall show that

" Y-mch((o,w (k—1)(1 —x)
2 n! >, wrmHe) = (k—1)(1 — ) + k(e®E—DE=Dt — 1) (4)

n>0  (ow)eCKISn

In fact, all of the generating functions (1)—(4) are special cases of more refined gener-
ating functions for Cj ¢S, where we keep track of more statistics. For T C C} 1.5}, we
shall consider generating functions of the form

t" inv(o),.coinv(o w -mch((o,w
D (z,p,q,r,t) = ZW Z q™(@) peomv(@) p[[w]| g, X-meh((o,w) (5)

n :
n>0 PA (5 w)eCriSn

where ||w|| = [|wy ... wy|| = w1 + -+ + w,, and inv(o) (resp. coinv(o)) is the number of
inversions (resp. coinversions) of o defined for ¢ = oy ... 0, as the number of pairs i < j
such that o; > o; (resp. 0; < 0;). Let

= {(12,00),(12,01)},
— {1200,
Ts = {(12,01)}, and
= {(12,01),(12,10)}

Thus Y,-matches correspond to rises, Yy -matches correspond to weak rises, and Y-
matches correspond to strict rises. We shall find Dga(x,p,q,r, t) for a € {r,w,s} and
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find ng (x,p,q,1,t). For example, define the p, g-analogues of n, n!, ("), and ( " )

k al,...,am
by
pn - qn n— n n— n—

[Mlpg = g P Y g T

g = [lpgln = Upg - 2lpalllpgs

n [n]p !

= : , and

|:k:| D,q [k}qu![n - k]p’q'
[ n _ [n]p,q'
ai, y P,q [al]l%q' o [am]p,q ’

respectively. We define the g-analogues of n, n!, (Z), and (a1 " am) by [1]1,4: [1]1,4; ml o

and [al,.iam] = respectively. Then we will prove that

t" . . )
Dl;rr ([E, D, q,T, t) _ Z ' Z qmv(cr)pcomv(cf)ﬂ|w||xr1s((a,w)) _

n>0 [n]p’q' (o,w)eCKLSH

1—
@)“” (6)
x—1)t)" Tn+k—
1—1’+an1’” [gl(]pvq!)) [+fi 1}7«

which reduces to (1) when we set p=g=r = 1.

We shall prove our formulas for the generating functions Dga(:c,p,q,r, t) for a €
{r,w,s} and ng (x,p,q,1,t) by applying a ring homomorphism, defined on the ring A
of symmetric functions over infinitely many variables x1,xs,..., to a simple symmetric
function identity. There has been a long line of research, [2], (3], [1], [10], [11], [17], [19],
[21], [25], [16], which shows that a large number of generating functions for permutation
statistics can be obtained by applying homomorphisms defined on the ring of symmetric
functions A over infinitely many variables 1, xs, ... to simple symmetric function identi-
ties. For example, the n-th elementary symmetric function, e,,, and the n-th homogeneous
symmetric function, h,, are defined by the generating functions

E(t) =) et"=]J(1+zit) (7)

n>0 i
and |
Hit)=> ht"=]] : (8)
n>0 7
We let P(t) = > -opat" where p, = > x} is the n-th power symmetric function.
A partition of n is a sequence p = (p1,..., ) such that 0 < p; < -+ < py and

p1 4 -+ pp = n. We write g b n if p is partition of n and we let ¢(u) denote the
number of parts of p. If u - n, we set h, = Hf(:“l) By, € = Hf(:“l) e, and p, = Hf(:“l) Pus -
Let A, denote the space of homogeneous symmetric functions of degree n over infinitely

many variables xq,xq,... so that A = @®,>0A,. It is well know that {ey : A F n},
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{hy : A F n}, and {py : A b n} are all bases of A,. It follows that {eg,e,...} is
an algebraically independent set of generators for A and hence we can define a ring
homomorphism £ : A — R where R is a ring by simply specifying £(e,,) for all n > 0.
Now it is well-known that

H(t) = 1/E(-t) (9)
and
> st (1) e, t"

E(-1)

A surprisingly large number of results on generating functions for various permutation
statistics in the literature and large number of new generating functions can be derived by
applying homomorphisms on A to simple identities such as (9) and (10). We shall show
that all our generating functions arise by applying appropriate ring homomorphisms to
identity (9). For example, we shall show that (6) arises by applying the ring homomor-
phism ¢ to identity (9) where £(ep) = 1 and

P(t) = (10)

n

pnnwx—nnm@qn+k—q

[np,q!

(en) =

n

for all n > 0.

We can use our formulas for the generating functions Dga (x,p,q,r,t) fora € {r,w,s}
and ng (x,p,q,1,t), to derive a number of other generating functions. For example, for
any T C Cy1.S; such that red(u) = u for all (1,u) € T, let

" ; ;
AT (p,q,7,t) = Z — Z qlnv(U)pCOmV(U)T‘|wHX(’I‘_mCh((O-7 w)) = 0) (11)

n>0 [n]p’q. (o,w)ECKUSH

where for any statement B, we let x(B) equal 1 if B is true and equal 0 if B is false. Thus
AX(p,q,r,t) is the generating function counting elements of C ! S,, with no Y-matches.
We shall prove that if

t" ; -
T _ 2 : § inv(c), coinv(o),.||w|| . T-nlap((o,w))
Nk <x7p7Q>r7t) - [n] I q p r T ’ (12>
n>0 VP (6w)eCriSn

then .
Ak (p7 qv 7", t)
1—z(([k].t — DAL (p, g, t) + 1)

This result is an analogue of a result by Kitaev [9] for permutations. Since our generating
functions will allow us to derive expressions for Aga (p,q,r,t) for a € {r,w,s}, we will au-
tomatically be able to find the generating functions for the distribution of non-overlapping
T,-matches for a € {r,w,s}. There are two additional generating functions that we can
obtain in each of our examples. For example, it is easy to see that since T,matches
correspond to rises, then the coefficient of x in Ngr(x,p, q,r,t) — Dg’ (x,p,q,r,t), written

Ny (x,p,q,7,t) = (13)

(N];rr(xap7 q,T, t) - Dgr(‘rapaQ7rvt>>|Iu
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is the generating function for (o,w) € Cx 1 S, such that (o, w) has exactly 2 rises which
overlap, i.e. there is exactly one pattern match of

Y={(012,000),(012001),(012,011),(012,012)}
and no other rises. Moreover,
Dgr(x7p7Q7T7t)‘x2 - [Nk’rr<x7p7Q7r7t) - Dl’grr(xul% q,7, t)|:r]

is the generating function for (o, w) € Ck 1S, such that (o,w) has exactly 2 rises which
do not overlap. Our results will allow us to find explicit formulas for these two additional
types of generating functions for rises, weak rises, and strict rises.

The outline of this paper is as follows. In section 2, we shall provide the necessary
background in symmetric functions that we shall need to derive our generating functions.
In section 3, we shall give our proofs of the generating functions Dga (x,p,q,r,t) for
a € {r,w,s} and D,;rd (x,p,q,1,t). Finally, in sections 4 and 5, we shall find explicit
expressions for

(Nga(xvpaQ7T7t) - Dga(xapaqyrvt))|ar
and
Dga<x7p7Q7rvt)|12 - [N];ra<x7PJQJT7t) - Dga($7p7q7T7 t>|x]

for a € {r,w,s}. In section 6, we shall give tables of the number of various types of
permutations (o,w) € Cy .S, that can be computed from our generating functions for
small values of £ and n. We shall see that various sequences associated with our sets
of permutations appear in OEIS [23] and hence our sequences count other combinatorial
objects. Moreover, we shall see that for fixed n, some of the sequences are generated
by certain natural polynomials in k. For example, we let Ag}k denote the number of
(0, w) € Cx1S, for which T-mch((o,w)) = 0. We shall show that if T = {(1 2,0 0)}, then
Ay =30 (1) 418, k7 for all k > 2, where S, is the Stirling number of the second
kind. Similarly, if T = {(12,01),(12,10)}, then Ag’k is an Eulerian polynomial. That is,
forall k > 2, AY =3 o k9=F! for where des(o) is the number of descents of 0. The
connections to the Stirling numbers of the second kind and to the Eulerian polynomials
were observed by Einar Steingrimsson and we prove this in this paper. Finally, in section
7, we shall state a few problems for further research.

2 Symmetric Functions

In this section we give the necessary background on symmetric functions needed for our
proofs of the generating functions.

Let A denote the ring of symmetric functions over infinitely many variables xq, xs, . ..
with coefficients in the field of complex numbers C. The n'® elementary symmetric func-

tion e, in the variables x1, o, ... is given by
E(t) =) ent" =[] +xit)
n>0 i



and the n'" homogeneous symmetric function h,, in the variables z;, zo, ... is given by

H(t) =Y ht"=]] - _1xit.

n>0 %

Thus
H(t)=1/E(-1). (14)

Let A = (A1,...,A¢) be an integer partition, that is, X is a finite sequence of weakly
increasing positive integers. Let ¢(A\) = [ denote the number of parts of A. If the sum
of these integers is n, we say that A\ is a partition of n and write A - n. For any
partition A = (A1,..., ), let ex = ey, ---ey,. The well-known fundamental theorem of
symmetric functions says that {e, : A is a partition} is a basis for A or that {eg,e,...}
is an algebraically independent set of generators for A. Similarly, if we define h) =
hy, -+ hy,, then {hy : Xis a partition} is also a basis for A. Since {eg,e,...} is an
algebraically independent set of generators for A, we can specify a ring homomorphism 6
on A by simply defining 6(e,,) for all n > 0.

Since the elementary symmetric functions e, and the homogeneous symmetric func-
tions hy are both bases for A, it makes sense to talk about the coefficient of the homoge-
neous symmetric functions when written in terms of the elementary symmetric function
basis. These coefficients has been shown to equal the sizes of a certain sets of combina-
torial objects up to a sign. A brick tabloid of shape (n) and type A = (A,...,\x) is a
filling of a row of n squares of cells with bricks of lengths Ay, ..., Az such that bricks do
not overlap. One brick tabloid of shape (12) and type (1,1,2,3,5) is displayed below.

Figure 1: A brick tabloid of shape (12) and type (1,1,2,3,5).

Let By, denote the set of all A\-brick tabloids of shape (n) and let By, = Byl
Through simple recursions stemming from (14), Egecioglu and Remmel proved in [6] that

hn =Y (=1)""MBy ey, (15)
AFn

We end this section with two lemmas that will be needed in later sections. Both of
the lemmas follow from simple codings of a basic result of Carlitz [4] that

n .
. § : inv(r)
{k} - q 9
9 rer(1kon—Fk)

where R(1¥0"~*) is the number of rearrangements of k 1’s and n — k 0’s. We start with
a lemma from [20]. Fix a brick tabloid T" = (b1, ..., b)) € Bun. Let IF(T) denote the
set of all fillings of the cells of T" = (b1, ..., by)) with the numbers 1,...,n so that the
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numbers increase within each brick reading from left to right. We then think of each such
filling as a permutation of S,, by reading the numbers from left to right in each row. For

example, Figure 2 pictures an element of 1F(3,6,3) whose corresponding permutation is
4612157810112309.

4 6 | 12| 1 5 7 8 | 10| 11| 2 3 9

Figure 2: An element of 1F(3,6,3).

Then the following lemma which is proved in [20] gives a combinatorial interpretation
£(p) b;

to pz":1 (2) [bh..?be(m}p,q'

Lemma 3. If T = (by,...,byyy) is a brick tabloid in B, ,, then
coinv(o)

pi(:uﬁ (bﬁ) |:b n ) :| _ qinv(a)p )
L Pl p g o€IF(T)
n+k—1
k—1
sum of the sizes of the partitions that are contained in an n x (k — 1) rectangle. Thus we
have the following lemma.

Another well-known combinatorial interpretation for [ }q is that it is equal to the

Lemma 4.

al+"'+an: n+k_1
> R

0<a1<<an<k—1

3 Generating Functions

The main goal of this section is to prove generating functions that specialize to the
generating functions (1)—(4) given in the introduction.
We start by proving a generating function which specializes to (1).

Theorem 5. Let T, = {(12,00),(1 2,0 1)}. For all k > 2,

tn inv(o) coinv(o wl| ris((o,w
Dgr(x7p7q7r7t) - Z Z q ()p ()TH HI‘ ((o,w))

|
n>0 [n]p’q' (o,w)€CRUSH

11—z

2

=2+ p—( )((x_l)t)n [nJrk_lL

[n]p,q! n
Proof. Define a ring homomorphism I": A — Q(p, ¢, r, ) by setting I'(ey) = 1 and

I'(en) = (-1)"71(:(: — 1)”*1@
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for n > 1. Then we claim that

[n]p,qlr(hn) _ Z qinv(a)pcoinv(a)rl\w\\xris((o—,w)) (18)
(o,w)eCKUSR

for all n > 1. That is,

n]pg! T(hn) =
[Plpa! D=1 B (e,) =
ukn
() [bﬂ;}k—l} N
n- ] j— j r J
D e D D | [ e R A
pkn (b150,bp(1)) EBum J=1 J1p,q:
(p)

> (%) { n } b;—1 {bj + k- 1}
p=r=t s (z —1)% - (19)

a4 j=1

Next we want to give a combinatorial interpretation to (19). By Lemma 3, for each
J

o (1
e( ) (b
brick tabloid T' = (b1, ..., b)), we can interpret p i=i <2)[ " } as the sum of

b1yeeey bé(#) p,q
the weights of all fillings of T" with a permutation o € S, such that ¢ is increasing in

each brick and we weight o with ¢™(?)p©™(@) By Lemma 4, we can interpret the term
IT J(:"l) [b ﬂ;’: 1} as the sum of the weights of fillings w = w; ... w, where the elements of
w are between 0 and k — 1 and are weakly increasing in each brick and where we weight
w by r*1t e Finally, we interpret Hf(:“l)(x —1)%~! as all ways of picking a label of the
cells of each brick except the final cell with either an x or a —1. For completeness, we
label the final cell of each brick with 1. We shall call all such objects created in this way
filled labelled brick tabloids and let F,, denote the set of all filled labelled brick tabloids
that arise in this way. Thus a C' € F,, consists of a brick tabloid T, a permutation o € S,,,
a sequence w € {0,...,k — 1}" and a labelling L of the cells of T" with elements from
{z,1, —1} such that

IIIV g

1. o is strictly increasing in each brick,
2. w is weakly increasing in each brick,
3. the final cell of each brick is labelled with 1, and

4. each cell which is not a final cell of a brick is labelled with x or —1.

We then define the weight w(C) of C to be ¢™ (@) peonv(@)yllvll times the product of all the
x labels in L and the sign sgn(C) of C' to be the product of all the —1 labels in L. For
example, if n = 12, k = 4, and T = (4, 3,3,2), then Figure 3 pictures such a composite
object C' € Fiy where w(C) = ¢*'p3?r17z% and sgn(C) = —1.
Thus
[n]p.q' T (M) = Z sgn(C)w(C). (20)
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Figure 3: A composite object C' € Fis.

Next we define a weight-preserving sign-reversing involution I : F,, — F,. To define
I(C), we scan the cells of C' = (T, o, w, L) from left to right looking for the leftmost cell ¢
such that either (i) ¢ is labelled with —1 or (ii) ¢ is at the end of a brick b; and the brick
b;+1 immediately following b; has the property that o is strictly increasing in all the cells
corresponding to b; and b4, and w is weakly increasing in all the cells corresponding to
b; and b;1;. In case (i), I[(C) = (T",0',w’, L") where T" is the result of replacing the brick
b in T' containing ¢ by two bricks b* and b** where b* contains the cell ¢ plus all the cells
in b to the left of ¢ and b** contains all the cells of b to the right of ¢, 0 = ¢/, w = W/,
and L’ is the labelling that results from L by changing the label of cell ¢ from —1 to 1.
In case (ii), I(C) = (1",0',7", L") where T" is the result of replacing the bricks b; and b;4
in T' by a single brick b, 0 = ¢/, w = w’, and L' is the labelling that results from L by
changing the label of cell ¢ from 1 to —1. If neither case (i) or case (ii) applies, then we
let 1(C) = C. For example, if C' is the element of Fis pictured in Figure 3, then I(C) is
pictured in Figure 4.

Figure 4: I(C) for C' in Figure 3.

It is easy to see that [ is a weight-preserving sign-reversing involution and hence [
shows that
[]pg! T (hn) = Z sgn(Clw(C). (21)
CEF,1(C)=C
Thus we must examine the fixed points C' = (T, 0,w, L) of I. First there can be no
—1 labels in L so that sgn(C') = 1. Moreover, if b; and b, are two consecutive bricks in
T and t is the last cell of b;, then it can not be the case that o, < o441 and w; < Wiy
since otherwise we could combine b; and b;,;. For any such fixed point, we associate an
element (o, w) € Cy ! S,. For example, a fixed point of I is pictured in Figure 5 where

c = 23469101118125 7 and
= 011311302333.

It follows that if cell ¢ is at the end of a brick, then t ¢ Ris((o,€)). However if v is a cell
which is not at the end of a brick, then our definitions force o, < 0,41 and w, < w,y;
so that v € Ris((o,¢€)). Since each such cell v must be labelled with an x, it follows that

12



sgn(CYw(C) = gmv@)peoinv(@)pllwligris(ee) - Vice versa, if (o,w) € Cy 1S, then we can
create a fixed point C' = (T, 0,w, L) by having the bricks in T end at cells of the form
t where t € Ris((o,¢€)), and labelling each cell ¢t € Ris((o,¢€)) with = and labelling the
remaining cells with 1. Thus we have shown that

[n]pﬂlr(hn) - Z qinv(a)pCOinV(U)r|\waris((a,w))
(U,TU)ECkzsn

as desired.

Figure 5: A fixed point of I.

Applying T to the identity H(t) = (E(—t))"!, we get

Z F(hn)tn _ Z % Z qinv(o)pcoinv(a)ﬂ|w||$ris((o,w))

n>0 n>0 VP (5 u)eCiSy
B 1
L2 (=1)"Ten)
B 1
ngn (1)1 (z=1)"—1 <TZL) n+k—1
Lot B (= D I ]
B 11—
. p(3) e tynn ok
_$+an1w[ k—1 ]T
which proves (16). [

In essentially the same way, we can prove a result which specializes to (2).

Theorem 6. Let Ty, = {(1 2,0 0)}. Then for all k > 2,

" . . ,
Tw _ E E inv(o), coinv(o),.||w|| ,.wris((c,w))
Dk (x7p7QJr7t) - [TL] ' q P r X
n>0 P2 (5 w)eCriSn

- l-e . (22)

1—x+ 2@1 m[;ﬁ]rn

[n]p,q!

Proof. Define a ring homomorphism T, : A — Q(p, ¢, 7, x) by setting I',,(eq) = 1 and
Tu(en) = (1)} (z — 1)L p(5) (23)
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for n > 1. Then we claim that

[n]p,qlrw (hn> _ Z qinv(a)pcoinv(a),ﬂ |w||xwris((a,w)) (24)
(va)eckzsn

for all n > 1. That is,

[n]p,q!f‘w(hn) =
[1]p.4! Z(_l)nie(“)Bu,(n)Fw(eu) =
ukn
[ ] 'Z( 1)"78(“) Z Zl(ﬁl)( 1)1)‘71( 1)bv—1 [k] bj (bj)
Np,q- - —1)V Hx — J —'r'p2 =
pen (b1,0-b0()) EBun 7=1 [by]p,q-

()

Z Z ng? . {bl, . .7.1, be(u)] 1_[(917 = D)» 7kl (25)

P,q j=1

Next we want to give a combinatorial interpretation to (25). By Lemma 3 for each

' ' . S ()1 n

brick tabloid 7" = (by,. .., by,)), we can interpret pi=t \2 [bl be( )} as the sum of the
""" "7 pg

weights of all fillings of T" with a permutation ¢ € S,, such that ¢ is increasing in each

brick and we weight o by ¢™(@)p©™(?)  For each j, we have a factor

[k] by = ’]"O'bj + Tl'bj + o+ T(k_l)'bj.

We shall interpret the term 7% as indicating that we will fill the top of each cell of a

brick b; with s. Thus we can interpret Hf(z”l) [k],»; as filling of the brick with a sequence
wy ... w, € [k]" such that w is constant in each brick and where we weight w by /"I,
Finally, we interpret Hf(:“l)(x — 1)%~1 as all ways of picking a label of the cells of each
brick except the final cell with either an x or a —1. For completeness, we label the final
cell of each brick with 1. We shall call all such objects created in this way filled labelled
brick tabloids and let G, denote the set of all filled labelled brick tabloids that arise in
this way. Thus a C' € G,, consists of a brick tabloid T', a permutation ¢ € S,,, a sequence
w €40,...,k—1}", and a labelling L of the cells of T" with elements from {z, 1, —1} such
that

1. o is strictly increasing in each brick,

2. w is constant in each brick,

3. the final cell of each brick is labelled with 1, and

4. each cell which is not a final cell of a brick is labelled with x or —1.

We then define the weight w(C) of C to be ¢™v(@) peoinv(@)plivll times the product of all the
x labels in L and the sign sgn(C) of C to be the product of all the —1 labels in L. For

14



example, if n = 12, k = 4, and T = (4, 3,3,2), then Figure 6 pictures such a composite
object C' € Gyo where w(C) = ¢*p*r925 and sgn(C) = —1.
Thus
[np'Tw(hn) = Z sgn(C)w(C). (26)

CeGn

Figure 6: A composite object C' € Gis.

Next we define a weight-preserving sign-reversing involution I, : G, — G,,. To define
I,,(C), we scan the cells of C' = (T, 0,w, L) from left to right looking for the leftmost cell
t such that either (i) ¢ is labelled with —1 or (ii) ¢ is at the end a brick b; and the brick
b;j+1 immediately following b; has the property that o is strictly increasing in all the cells
corresponding to b; and bj;; and w is constant in all the cells corresponding to b; and
bjt1. In case (i), I,,(C) = (T",0',w', L") where T" is the result of replacing the brick b in
T containing ¢ by two bricks b* and b** where b* contains the cell ¢ plus all the cells in b
to the left of ¢ and b** contains all the cells of b to the right of t, 0 = ¢/, w = w’, and L’ is
the labelling that results from L by changing the label of cell ¢ from —1 to 1. In case (ii),
I,(C) = (T",0',r', L") where T" is the result of replacing the bricks b; and b;; in T" by a
single brick b, 0 = o', w = w’, and L’ is the labelling that results from L by changing the
label of cell ¢ from 1 to —1. If neither case (i) or case (ii) applies, then we let I,,(C) = C.
For example, if C' is the element of G5 pictured in Figure 6, then I,(C) is pictured in
Figure 7.

Figure 7: I,(C) for C in Figure 6.

It is easy to see that [, is a weight-preserving sign-reversing involution and hence I,
shows that
lpgTw(hn) = > sgn(Chw(C). (27)

CEGn, 1 (C)=C

Thus we must examine the fixed points C' = (T, 0, w, L) of I,,. First there can be no
—1 labels in L so that sgn(C') = 1. Moreover, if b; and b, are two consecutive bricks in
T and t is that last cell of b;, then it can not be the case that oy < 0441 and w; = Wy
since otherwise we could combine b; and b;4;. For any such fixed point, we associate an

15



element (o, w) € Cy 1 S,. For example, a fixed point of I, is pictured in Figure 8 where

c = 234691011181257 and
w = 333311122233

It follows that if cell ¢ is at the end of a brick, then ¢ & W Ris((o,€)). However if v is a
cell which is not at the end of a brick, then our definitions force o, < 0,41 and w, = wy41
so that v € WRis((o,€)). Since each such cell v must be labelled with an z, it follows
that sgn(C)w(C) = ¢ peoinv@)plivlipwris(e) - Vice versa, if (o,w) € Cj 1S, then we
can create a fixed point C' = (T, 0, w, L) by having the bricks in 7" end at cells of the form
t where t ¢ WRis((o,€)), and labelling each cell ¢ € W Ris((o,€)) with « and labelling
the remaining cells with 1. Thus we have shown that

[n]p,qlrw (hn) _ Z qinv(a)pcoinv(a)ﬂ |w||$wris((a,w))
(o,w)ECKUSR

as desired.

Figure 8: A fixed point of 1.

Applying T, to the identity H(t) = (E(—t))™!, we get

Z Fw(hn)tn _ Z [t_n' Z qinv(a')pcoinv(o)r\\wawris((o’,w))

n .
n>0 n>0 ]p,q (o,w)eCKIS,

1

1+ anl (=t)"Tw(en)
1

S

[m]p,q!

1—=zx

1—x+ ng Mmrm

[m]p,q!

which proves (22). O

Next we prove a result which specializes to (3).
Theorem 7. Let Ys={(12,01)}. Forall k> 2,

t" inv(o), coinv(o wl| ,.sris((o,w
Dgs(ac,p,q,r,t) _ Z[ ' Z q ()p (@) pllwll psris((o,w))

n>0 ]p,q' (o,w)ECKISR

l—2+Y,., MONEING M

[nlp,q!
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Proof. Define a ring homomorphism I'y : A — Q(p, ¢, 7, ) by setting I's(eg) = 1 and

[s(en) = (_Dn_l(fv - 1)n_1

p(%) (29)
for n > 1. Then we claim that

gl Ts(ha) = Y g™ peim@plvll gsrisiow) (30)
(O',UI)ECkZSn

for all n > 1. That is,

[]p.q'Ts(hn) =
Mgl Y (=1 B, ()Ts(e,) =
ukn
W) T PG )
n—¢ b;—1 _1\b;—1 Ji-r J)
[n]p,q!Z(_D g Z H(—l) (x—1) —[bj]pq! pls) =
pkn (bl 7777 b[(u))GBu,n j=1 ’

D pzﬁi“f(’?)[bb " } ﬁ(g;_mbjlr(?)[[ﬂ. (31)

N
pkn by, bl(,u))EB,u,n » Olw) p,q j=1

Next we want to give a combinatorial interpretation to (31). By Lemma 3 for each
£(p)

brick tabloid 7" = (b1, ..., by,)), we can interpret pi=1 (%) [ " } as the sum of the

weights of all fillings of T" with a permutation ¢ € S,, such that ¢ is increasing in each
brick and we weight o by ¢™(@)p©™(?) By Lemma 4,

Z gt = k '
n q

0<j1 <-+-<jin<k—n

If we replace each j, in the sum above by i3 = js + s — 1, then we see that

5 qwm+%hzqeﬂﬂ; (32)

. : n
0<i1 < <in<k—1

It follows from (32) that we can interpret the term Hf(:“f r(3) [b’j | as the sum of the
weights of fillings w = w; ... w, where the elements of w are between 0 and k — 1 and
are strictly increasing in each brick and where we weight w by r*** % Finally, we
interpret Hf(:“l) (x—1)%~1 as all ways of picking a label z or —1 for each of the cells of each
brick except the final cell. For completeness, we label the final cell of each brick with 1.
We shall call all such objects created in this way filled labelled brick tabloids and let H,,
denote the set of all filled labelled brick tabloids that arise in this way. Thus a C' € 'H,,
consists of a brick tabloid T', a permutation o € S,,, a sequence w € {0,...,k — 1}", and

a labelling L of the cells of T with elements from {z, 1, —1} such that
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1. o is strictly increasing in each brick,

2. w is strictly increasing in each brick,

3. the final cell of each brick is labelled with 1, and

4. each cell which is not a final cell of a brick is labelled with x or —1.

We then define the weight w(C) of C to be ¢™ (@) peonv(@)pllvll times the product of all the
x labels in L and the sign sgn(C') of C' to be the product of all the —1 labels in L. For
example, if n = 12, k = 5, and T = (4, 3,3,2), then Figure 9 pictures such a composite
object C' € Hyy where w(C) = ¢**p*?r?°2° and sgn(C) = —1.
Thus
Wl Taha) = 37 sgn(Chu(C). (33)

CeHn

Figure 9: A composite object C' € Hys.

Next we define a weight-preserving sign-reversing involution I : ‘H,, — H,. To define
I,(C), we scan the cells of C' = (T, 0,w, L) from left to right looking for the leftmost cell
t such that either (i) ¢ is labelled with —1 or (ii) ¢ is at the end a brick b; and the brick
b;j+1 immediately following b; has the property that o is strictly increasing in all the cells
corresponding to b; and b, and w is strictly in all the cells corresponding to b; and bj4 .
In case (i), I,(C) = (T",0’,w', L) where T" is the result of replacing the brick b in T
containing ¢ by two bricks b* and b** where b* contains the cell ¢ plus all the cells in b to
the left of ¢ and b** contains all the cells of b to the right of t, 0 = ¢/, w = w’, and L' is
the labelling that results from L by changing the label of cell ¢ from —1 to 1. In case (ii),
I,(C) = (T",0',7", L") where T" is the result of replacing the bricks b; and b;4; in T by a
single brick b, 0 = ¢, w = w’, and L’ is the labelling that results from L by changing the
label of cell ¢ from 1 to —1. If neither case (i) or case (ii) applies, then we let I(C) = C.
For example, if C' is the element of Hyy pictured in Figure 9, then I,(C) is pictured in
Figure 10.

Figure 10: I,(C) for C' in Figure 9.
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It is easy to see that I is a weight-preserving sign-reversing involution and hence I
shows that

Mo Tuh) = > sgn(@)u(C). (34)

CEeHn,I5(C)=C

Thus we must examine the fixed points C' = (T, 0, w, L) of I. First there can be no

—1 labels in L so that sgn(C) = 1. Moreover, if b; and b;;; are two consecutive bricks in

T and t is that last cell of b;, then it can not be the case that oy < 0441 and wy < wyqy

since otherwise we could combine b; and b;,,. For any such fixed point, we associate an

element (o, w) € Cy 1 S,. For example, a fixed point of I is pictured in Figure 11 where

c = 234691011181257 and
w = 0123014013 34.

It follows that if cell ¢ is at the end of a brick, then ¢ & SRis((o,€)). However if v is a cell
which is not at the end of a brick, then our definitions force o, < 0,41 and w, < w,;1 S0
that v € SRis((o,€)). Since each such cell v must be labelled with an z, it follows that
sgn(Cw(C) = g peomv@)pllwliystis(:0) - Vice versa, if (o,w) € Cyx 1 S,, then we can
create a fixed point C' = (T, 0,w, L) by having the bricks in 7" end at cells of the form ¢
where t ¢ SRis((o,€)), and labelling each cell ¢ € SRis((o,¢)) with z and labelling the
remaining cells with 1. Thus we have shown that

[n]p,qlrs (hn) _ Z qinv(o)pcoinv(a)r| |wl| xsris((a,w))
(o,w)ECKLS

as desired.

Figure 11: A fixed point of I.

Applying T, to the identity H(t) = (E(—t))™!, we get

er(hn)tn _ Z t”' Z " (@) peoinv (@)l ysris((o,))

n>0 n>0 [n]m' (0,w)eCKSn
B 1
143 s (=) "Ts(en)
B 1
—1ym—1(g—1)ym—1 (751) m
1+ Zle(_l)mtm( ) Em]p;! s 7"(2) [:Jr
B 11—
. (%) (e 1ymim GBI
T+ Yt a2 [,
which proves (28). O
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We end this section by proving a generating function which specializes to (4).

Theorem 8. Let Tg ={(12,01),(12,10)} Forallk > 2,

" - :
ng (l’, D, q,r, t) _ Z [ ' Z qmv(a)pcomv(a)xT-mch((a,w))

n .
n>0 ]p,q (o,w)eCKISn

_ (k- 1D~ “"()n) . (35)
(k—1)(1—2)+k Zn21 h ((k[;]i)’g_l)t)n

Proof. Define a ring homomorphism I'yy : A — Q(p, ¢, 7, z) by setting I'yy(eg) = 1 and
_ n—1 "
Rk — D" )

Ty(en) = (=1)"H(z = 1" (36)
[1]p,q!
for n > 1. Then we claim that
[n]p,q!FU(hn> _ Z qinv(o)pcoinv(o)xT—mch((cr,w)) (37>
(o,w)eCKUSR
for all n > 1. That is,
[ Tu(hn) =
(g D (1" By T (ey) =
pukEn
n—0(y) sl b1 k(k —1)%! )
Np,g! Z(—l) g Z H —1)” TP 2 =
pkn (b15-sbe() ) EBpn J=1 Jjlp.q-

_ n £(p)
Z Z ij(:Mf (%) [bl, N )1 H(l‘ — 1)13171/{(/{ — 1)17]‘71. (38)

Next we want to give a combinatorial interpretation to (38). By Lemma 3 for each

. . : e o
brick tabloid T = (b1, ..., b)), we can interpret pi=t\2 [bl be( J as the sum of
""" 1) pq

the weights of all fillings of T" with a permutation o € S,, such that ¢ is increasing in
each brick and we weight o by ¢™(@)pnv(?)  For any n, there are k(k — 1)"~! words
w = wiws ... w, € [k|™ such that for 1 < i < n, w; # w;1. That is, we have k choices
for the first letter wy, but then, for any given ¢, we have only k — 1 choices for w;, since
w;y1 cannot equal w;. Thus we can interpret Hf(:“f k(k —1)%~1! as the number of words
wy ... w, so that within any brick, there are never two consecutive letters of w which are
equal Finally, we interpret HZ(“ ( —1)%~1 as all ways of picking a label of the cells of
each brick except the final Cell with either an x or a —1. For completeness, we label the
final cell of each brick with 1. We shall call all such objects created in this way filled
labelled brick tabloids and let IC,, denote the set of all filled labelled brick tabloids that
arise in this way. Thus a C' € K, consists of a brick tabloid 7', a permutation o € 5,,,
a sequence w € {0,...,k — 1}", and a labelling L of the cells of T" with elements from
{z,1,—1} such that
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1. o is strictly increasing in each brick,

2. w 1is such that there are never two consecutive letters that lie in the same brick
which are equal,

3. the final cell of each brick is labelled with 1, and
4. each cell which is not a final cell of a brick is labelled with x or —1.

We then define the weight w(C') of C' to be ¢™(?)p°™(@) times the product of all the =
labels in L and the sign sgn(C) of C' to be the product of all the —1 labels in L. For
example, if n =12, k =5, and T = (4, 3, 3,2), then Figure 12 pictures such a composite
object C' € K5 where w(C) = ¢*'p*?2° and sgn(C) = —1.

Thus
[]pg Tu(hn) = ) sgn(C)w(C). (39)
Ccekn

Figure 12: A composite object C € K1s.

Next we define a weight-preserving sign-reversing involution Iy : K,, — ;. To define
Iy (C), we scan the cells of C' = (T, o, w, L) from left to right looking for the leftmost cell
t such that either (i) ¢ is labelled with —1 or (ii) ¢ is at the end a brick b; and the brick
b;j+1 immediately following b; has the property that o is strictly increasing in all the cells
corresponding to b; and b,y and there are never two consecutive elements of w that are
equal in all the cells corresponding to b; and b;y. In case (i), Iy(C) = (17,0',w', L)
where T" is the result of replacing the brick b in T" containing ¢t by two bricks b* and b**
where b* contains the cell ¢ plus all the cells in b to the left of ¢ and b** contains all the
cells of b to the right of t, 0 = ¢/, w = w’, and L’ is the labelling that results from L by
changing the label of cell ¢ from —1 to 1. In case (ii), Iy(C) = (T",0',7', L") where T" is
the result of replacing the bricks b; and b;1; in T" by a single brick b, 0 = o', w = «/,
and L' is the labelling that results from L by changing the label of cell ¢ from 1 to —1.
If neither case (i) or case (ii) applies, then we let I;;(C') = C. For example, if C' is the
element of K15 pictured in Figure 12, then I (C) is pictured in Figure 13.

Figure 13: I;;(C) for C in Figure 12.
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It is easy to see that I is a weight-preserving sign-reversing involution and hence I
shows that

o Tu(h) = S0 sgn(@)w(C). (40)

CEKn, Iy (C)=C

Thus we must examine the fixed points C' = (T, 0, w, L) of I;;. First there can be no

—1 labels in L so that sgn(C) = 1. Moreover, if b; and b;4; are two consecutive bricks in

T and t is the last cell of b;, then it can not be the case that o, < 0,11 and wy # wyy

since otherwise we could combine b; and b;1;. For any such fixed point, we associate an

element (o,w) € Cy 1 S,,. For example, a fixed point of [ is pictured in Figure 14 where

c = 234691011181257 and
w = 013110332330.

It follows that if cell ¢ is at the end of a brick, then there is no T-match in (o, w) starting
at position t. However if v is a cell which is not at the end of a brick, then our definitions
force o, < 0,41 and w, # w4 so that there is T-match in (o, w) starting at position
v. Since each such cell v must be labelled with an z, it follows that sgn(C)w(C) =
gm(@)peeinv(e) pT-meh((e:€)) - Vice versa, if (o, w) € Cy 1 Sy, then we can create a fixed point
C = (T,0,w, L) by having the bricks in T" end at cells of the form ¢ where there is no -
match in (o, w) starting at position ¢, and labelling each cell ¢ where there is an T-match
in (o, w) starting at position ¢ with x and labelling the remaining cells with 1. Thus we
have shown that

[n]p,q!FU(hn) — Z qinV(O')pCOinV(O')I,T—mch((o-,w))
(va)eckzsn

as desired.

Figure 14: A fixed point of Ij;.

Applying T'y to the identity H(t) = (E(—t))™!, we get

Z FU(hn)tn _ Z [t_n' Z qinv(a)pcoinv(a)xT-mch((a,w))

n .
n>0 n>0 ]p,q (o,w)eCKIS,

1
1+ anl(_t)nFU(en)

1

14+ Zm21<_1)mtm (_1)m71($_1)m711)(2> k(k _ 1)m71

[m]p,q!

(k—1)(1—x)

(7;’) — xr— m
(k B 1)(1 B :L“) + k2m21 p 2/ ((k 1)(' 1t)

[m]p,q!
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which proves (35). O

4 Distribution of non-overlapping T-bi-matches

In this section we provide arguments similar to those in [9, Sect. 4] to determine the
generating function for Y-nlap((o,w)), the maximum number of non-overlapping Y-bi-
matches. That is, suppose that T C Cj1.S;. Recall that

¢ inv(o inv(o),.||w -n oW
N (z,p,q,7,1) :ZW Y @yl Yonap(ew) (41)
n>0 P (5w)eCKS,
and

m . .
Af(p,q,r,t) = Z ' Z ¢™ @) peenv@pllvlly (Yomeh((o, w)) = 0). (42)

n>0 [n]p’q' (0,w)ECKISn

Let (CrSn)v-men(end) denote the set of all (o, w) such that (o, w) has exactly one T-match
which occurs at the end of (o,w), i.e. the unique Y-match in (o, w) starts at position
n —j+ 1. We then let

¢ inv(o),.coinv(o w
B (p.qrt) = —— 3 V() peoin(e) (13)

n !
nZl[ ]p,q (0,w)E(CRISn) Y-meh(end)

Lemma 9. For all k > 2, we have B (p,q,r,t) = ([k],t — 1) AL (p,q,7,t) + 1.

Proof. Suppose that (o,w) € C 1 S,_1, let 07 be the result of replacing j,...,n —1in o
by 74+ 1,...,n respectively and then adding j at the end. For example, if 0 =1 3 4 2,
then 02 =145 3 2. Clearly,

k-1 n ' _
Z Z qmv((a],wz))pcomv((a],wz))r||w2|\ _

i=0 j=1
(1 +r4. 4 Tk—l)(pn—l + qpn—2 4. +pqn—2 + qn—l)qinv((a,w))pcoinv((o,w))7,,||w|| _
inv((o,w)) Coinv((a,w)),r,HwH'

(k] [nlpqq D

Now if (o,w) € Cx 1 S,—-1 and YT-mch((o,w)) = 0, then for any 0 < i < k — 1 and
1 < j <n-—1, the pair (07, wi) either has no T-match or has exactly one T-match which
occurs at the end. It follows that

Ko [lp Ak (07 8)] e = Ap(pogyr )] o+ Bi(pog,mt)] o o (44)

[n—1]p,q! [nlp,q! (nlp,q!

If we multiply both sides of (44) by qu, and sum for n > 1, we get that

[k}TtAg(pa%ra t) = AkT<p?Q7T’ t) — 1+ Bg<p’q’r’ t)

or that
Bg(p, q,r,t) =1+ ([k].t — 1)Ag(p, q,r,t).
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Theorem 10. For all T C Ci1S; and k > 2,

T Ag (p7 q,T, t)
NP ) = (o~ DAL 1) )
Proof. Suppose that YT-nlap((o,w)) =i > 0. One can read any such (o, w) from left to
right making a cut right after a Y-bi-occurrence counted by Y-nlap((o, w)). As the result,
one obtains ¢ signed words which have exactly one T-match and that Y-match occurs at
the end of the word that is followed by a possibly empty word that has no T-matches. In
terms of generating functions, this says that

Ny (2,p,q,7,t) =
Ag(]% q,T, t) + ng(p7q7T7 t>Ag(p7 q,T, t) + (37313(]77 q,T, t))2Ag(p7 q,T, t) +e=

Al (p.q,rt)
I ng(p7Q7T7t).

The result then follows from Lemma 9. O

Using our results in Section 3, we immediately have the following corollaries setting
x = 0 in our formulas for DY (x, p,q,7,t).

Corollary 11. Let T, = {(1 2,0 0),(1 2,0 1)}. Then for all k > 2,

1
Al (p, g, t) = 0 : (46)
1 + ZnZl £ [n}i,_;) [n+7k7,71i|r
Corollary 12. Let Ty, = {(1 2,0 0)}. Then for all k > 2,
1
Al (p,q, 7 t) = 0 . (47)
D D LI
Corollary 13. Let Y5 = {(1 2,0 1)}. Then for all k > 2,
1
Ags (p.q,rt) = (s (48)
p

JCom (Y
1-+_§:n21-_%ﬂ%;?_7(2>[k}r

Thus it follows that we can obtain the generating functions for Nga(w,p, q,r,t) for
a € {r,s,w} immediately from Theorem 10.
Similarly, it follows from Theorem 8 that we have the following corollary.

Corollary 14. Let Tq ={(1 2,0 1),(1 2,1 0)}. Then for all k > 2,
k—1

Ala(p,q,1,t) = (49)

2

k—1+EY >1ZM

[n]p,q!

Thus we can obtain N,}d (x,p,q,1,t) from Theorem 10.
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5 More generating functions

For a € {r,w,s,d}, let onenlap¥=(Cj1S,) denote the set of permutations (o, w) € Cy 1S,
such that Ya-nlap(o,w) = 1, onemch™=(Cy 1.S,,) denote the set of permutations (o, w) €
Cy. 1S, such that Y,-mch(o, w) = 1, and twomch*=(Cy1S,,) denote the set of permutations
(o, w) € C, 1S, such that T,-mch(o,w) = 2. It is easy to see that

onemch™(Cy 1 S,) C onenlap™(Cy 1 S,).

Now define
L{,Iz = onenlap ™ (Cy, 1 S,) — onemch™ (Cy 1 S,,). (50)

Thus Z/Igz consists of those permutations (o, w) such that there is an s with 1 < s <n—1
such that (o, w) has a T,-match starting at positions s and s + 1 and these are the only
T,-matches in (o, w). For example, Z/{z,‘; consists of those permutations (o, w) € Cy 1 .S,
such that Ris(o,w) = {s,s+ 1} for some s. Similarly L{g, v consists of those permutations
(o,w) € Cy 1 S, such that WRis(o,w) = {s,s + 1} for some s and L{zz consists of those
permutations (o, w) € Cy 1S, such that SRis(o,w) = {s,s+ 1} for some s. It is also the
case that
L{gz C twomch ™ (Cy 1.S,,).

Now define
Viz = twomch™*(Cy 1 S,,) — Z/{gz. (51)

Then V;g ® consists of those permutations (o, w) € Cj .S, such that (o, w) has exactly two
T ,-matches and those Y,-matches do not overlap. Thus, Vg .. consists of those permu-
tations (o, w) € Cy 1 S, such that WRis(o,w) = {i,j} where i +2 < j. Similarly, V;;;g
consists of those permutations (o, w) € Cy1S, such that Ris(o, w) = {i, j} where i+2 < j
and V;{Z consists of those permutations (o,w) € Cj 1S, such that SRis(o,w) = {i,j}
where 1 + 2 < 7.

We define

" inv(o inv(o w
Ri*(p.g.rit) = Y Yo @l

5q* T
= (cf,w)eun,z

3

Vv

o
=,
bS]

and

" inv(o oinv(o
Setpgrt) = Y > ¢ Ipom @il

= (ow)evye
Then from our definitions
Ri*(p,q,r,t) = [N[*(z,p,q,7,t) = D*(2,p,q,7,1)]]a
and

Sl;ra(qu»Ta t) = Dk’ra('xap)Q7Ta t)|z2 - RkTa(p7QaT7 t)
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We shall show that we can easily find the generating functions Rga(p,q,r, t) and
Sga(p, q,r,t) fora € {r,w, s} and the generating function R,fd (p,q,1,t) and Sgd (p,q,1,1).
That is, consider the case when a = r. Then

Al (p,q,7,t)

NI (z,p,q,rt) = 52
SR S Wt - DA (g 0) o
so that
NI (2,p, 47, t) | = Agm (0, ¢,y t) (1 + ([K]ot — 1) AL (p, g, 7, 1). (53)
In our case,
1
Ag(p g, t) =
' P (t)
where ) _
—\" + k-
Prr(t) =1+ {" ] . (54)
k ; [n]l%q! n r
o (Kt~ 1) + PIo(o)
kl.t —1)+ P x(t
N (@,p, g, 7, t)]e = = o 55
T (@,p 0,7, 1) T (55)
On the other hand, it follows from our results in section 3 that
D (x,p,q,r,t) = L
k I SR - n n _ .
1- anl(x - 1)n71m[ +: l}r
Thus .
noy 0 In+Ek—-1
DE (a0l = 3 (Lo - 0| [
m>1 n>1 [n]p7Q' n r
However,
" -1
Z(:}c—l)n_l ! , [n—l—k ] =
1 [lp,q! n r
Fi= (t) + aGyr () + 22 HY* (1) + O(a?),
where . L
n + _
R = -0t (56)
’ ;21 []p,q! n r
e " In+k—-1
GI0) = L0 - v [T (57)
n>2 p,q r
and 1\ t k—1
— n _.I_ —
HI (1) = 3 " .
o= o (58)
n>3 ’ T



Thus since

(F (1) + 2G(8) + O(2) " |o = mGT* () (F ()",

we have
DI (ap.q.r b = G0 m(FT ()"
o an
(L= FT ()
However i L
|- FY(t) =1+ Z(—l)"[n]pq! {"J“n N ] = PXr(b).
Thus ) or 0
(T
Dl (x,p,q,7,t)|. = (P,fr(t))? (59)
It follows that (K- 1) + Pr(e) - G (0
Rk r<p7 q,T, t) = (PkTrk(t))Q b . (60)
Similarly,
DF (e aer 0l = S mHEOE O + (7 )G P 0)
= 0 mE o)+ GEOP Y () ey
A0 (G (1))?
L-Fr®)?2  1-Fr@)?
O HT() | (Gr)?
(B (1)) (B (1)
PR+ (EF 02 o
(P ())?
Thus
S0 t) =
Di*(2,p,4,7,t)]e2 — Ry (p g, ) =
HE(OPF (1) + GI (1) = (1t = VP () = (B (0)° + GE(OPF () _
(PEO)
(G ()7 + P ((HT(0) + GI (1) = (Kt = ) — () )
(PFO)

The exact same sequence of steps work in the other cases so that we have the following
theorems.
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Theorem 15. For all k > 2,

" inv(o inv(o w
RE(pgrt) = Y oo Y gm@pem@yll

n>0 [n]p,q- (a’ w)euTr
(Kt =1+ B () = Ger (1) o
- (P (1))?
and
t" . )
Sl;rr (p’ q,r, t) = [n] ' Z qan(U)pcomv(a)erH
n>0 b,q: T
= (o,w)eV, §
_ (Ggr(t)y + P];rr(t)(H];rr(t) + Ggr (t) _ ([/{Z]rt _ 1) _ Pk:rr(t)) (64>
(P (t))3
where
O n+k—1
e ]
’ nzzl [n]p.q! n r
—t)" [n+k—1
Xt = S (n - 1) | . ana
’ Z Moal Lm0 ],
-\ (=t)"[n+k—-1
HT‘" (t) _ (n ) |: :|
’ nzzg 2 []p.q! n r
Theorem 16. For all k > 2,
tm . .
RO (pogrt) = Y o Y gmepeom@y il
n>0 [n]p,q. (o)l
_ (Kt =)+ B () — G (t) )
(P (1))?
and
tm . .
S];fW<p’q,r, t) = Z [ ] ' Z qulV(O')pCOInv(o)THwH
n0 Mpa’ (ow)eVIy

(G @) + PO () + G (1) — (K]t — 1) — P (t))<66)
(P (1)
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where

n>1 [n]qu
T () — NG
Gk (t) - Z(?’L 1) |[k]7‘"a G/ﬂd
n>2 [1]p.q
HTW <t) - (n ) [k]rn-
) RZZ; 2 []p,q!
Theorem 17. For all k > 2,
t" . )
Rlwart) = Y oo 3 @yl
n>o HUpar aid®s
_ (Kt =)+ B -G () o
(PL*(t))
and
t" . )
S’;rs <p7 q,7, t) = Z [n] ' Z qmv(o)pcomv(a)erH
n>0 P,q- (U,w)ev;lri
_ (G2 + AROESO G0 = (Rt =) = BE) (g
(PS*(t))?
where

n>1 Ny
—t)" [k
Gty =) (n— 1)( [ 1 , and
: nZZQ [npq! 1],
— 1\ (=t)" [k
wn- 5
g ; 2 [n]qu! n T
Theorem 18. For all k > 2,
tr . .
Ri*(p.g.1t) = ) A Y e
nz0 b (U,w)GZ/{;%
(kt — 1) 4+ PYa(t) — Gla(t)
= b k (69)
(Pra(t))?
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and

S’;fd(p7q71,t) — Z " Z (@) peoinv(o)

= ! (cwyev)d
(G + B (H A (8) + G (1) — (bt = 1) = PIA(1) (70)
(Pe(1)?

where

Gye(t) =) (n—1)

o [n]p,q!
O v

6 Numbers involved; bijective questions

The generating functions from the previous sections allows us to easily compute the initial
sequences of values for these generating functions using any computer algebra system such
as Mathematica or Maple. For example, let

t’n
so that AY is equal to the number of (o,€) € Cy 2 S,, such that Y-mch((c,€)) = 0.

6.1 Y.={(1200),(1201)}

For T, = {(1 2,0 0),(1 2,0 1)}, AE{;}€ equals the number of (g,¢) € Ci 1S, such that
ris((o, €)) = 0. Table 1 gives initial values of Agfk.

Table 1: A% for k,n < 5.

n=0ln=1|n=2|n=3|n=4|n=
k=2 1 2 5 16 65 326
k= 1 3 12 64 441 | 3771
k=4 1 4 22 164 | 1589 | 19136
k=5 1 5 35 335 | 4180 | 64876

Several of these sequences appear in [23].
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In fact, we can easily calculate Ag% as a polynomial in k. For example, we have

k
1
Sk(3k = 1)

1
Ar = 6k(19k2 — 15k + 2)

1
Ak = 5 R211E* = 270K + 89k — 6)

1
Al = mk(3651k4 — 6490k + 3585k? — 650k + 24)

We point out that Ag; forms the familiar sequence of pentagonal numbers (A000326 in
[23]). Other prev1ously documented sequences appearlng in Table 1 include the structured
octagonal anti-prism numbers (A100184 in [23]) for A3,k, as well as Ang (A000522 in [23]),
for which there are many known combinatorial interpretations, including the total number
of arrangements of all subsets of [n].

We conjecture that for n > 1 and k& > 2, Agjc is always of the form #kPn(k) where
P, (k) is a polynomial of degree n — 1 whose leading coefficient is positive and such that
signs of the remaining coefficients alternate. Now we can prove that A;’k is always of the
form kP, (k) where P,(k) is a polynomial of degree n — 1 and the term of degree 1 in k
is (—1)"Y(n — 1)!. That is, for any k > 2, if weset p=¢=r =1and z =0 in (18), we
see that

n!T(h,) = Agfk (72)
where
n+k—1
[(e,) = ( 7:! ) = ((]21;2” (73)

Here we let (q) To=1and (¢) T,=9q(¢+1)...(¢+n—1) for n > 1. But then
nll(h,) = nl) (=1)""“T(e,)

pukn
n 2 ¢(u)
= yn=tw k) 1. . 74
n,Z (“hww(m) 1161 (74

It is easy to see that the right hand side of (74) is a polynomial of degree n and the lowest
degree term comes from the term (—1)""'k(k+1)...(k+n—1) corresponding to p = (n)
which is of the form (—1)""!(n — 1)k + O(k?).

6.2 T.—{(1201)}

For Ts = {(12,0 1)}, Agfk equals the number of (0, €) € Cx 1S, such that sris((o, €)) = 0.

Table 2 gives initial values of A;Efk.
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Table 2: A3 for k,n < 5.

n=0ln=1|n=2|n=3|n=4| n=5
k=2 1 2 7 36 246 2100
k=3 1 3 15 109 | 1050 | 12630
k=4 1 4 26 244 | 3031 | 47000
k=5 1 5 40 460 | 6995 | 132751

In fact, we can easily calculate Ag,?; as a polynomial in k. For example, we have
Ts
Ao,k =
Ts
Al,k = k
1
Ay = 5k(?,k; +1)

1
Ay = 6k:(19k2 + 15k + 2)

1
ALy = ﬂk@llk?’ + 270k + 89k + 6)
Ay = mk(3651k4 + 6490k> + 3585k2 + 650k + 24)

We point out that A2 % forms the familiar sequence of the second pentagonal numbers
(A005449 in [23]). None of the other rows or columns in Table 2 matched any previously
known sequences in [23].

We conjecture that for n > 1 and k£ > 2, Agfk is always of the form #kRn(k;) where
R, (k) is a polynomial of degree n — 1 with positive coefficients. In fact, we see that the
coefficients of P, and R, are the same up to a sign for all n. This we can prove. That
is, for any k > 2, if weset p=g=r =1and z =0 in (30), we see that

nily(hy) = A3, (75)
where .
To(en) = (ni') _ <(’2!)l;. (76)

Here we let (q) o=1 and (¢) |,=¢q(¢—1)...(¢ —n+1) for n > 1. But then

n'Ty(h,) = n'z )T (e,

2 £(u)
) T169 L (77)
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Since for any n > 1, (k) |,= (=1)"(k) T,, it is easy to see that the right hand side of
(77) is obtained from the right hand side of (74) by replacing k& by —k and multiplying
by (—1)". Thus the conjecture that R, (k) has positive coefficients is equivalent to our
conjecture that the signs of the coefficients of P,(k) alternate.

7 Tw={(12,00)}

For Ty, ={(12,00)}, AE}V,; equals the number of (o, €) € Cj1S,, such that wris((c,€)) = 0.
Table 3 gives initial values of Agﬁv,;

Table 3: Ag’}g for k,n < 5.

6 26 150 1082

0ln=
2
3 15 111 | 1095 | 13503
4
5

n

28 292 | 4060 | 70564
45 605 | 10845 | 243005

=== =] ]

ElESIESI S
Il
Y | W

In fact, we can easily calculate A}f;; as a polynomial in k. For example, we have

N
=6
g

Il
x>~ =

Ay = k(2k-1)

Ay = k(6k® — 6k +1)
Ay = k(24K® — 36k + 14k — 1)

Ay = k(120k* — 240k° + 150k* — 30k + 1)

We point out that A;;’C" forms the familiar sequence of hexagonal numbers (A000384 in
23]). Additionally, AT »5 matches the sequence counting the number of necklaces on set
of labeled beads (A000629 in [23]). In fact, in this case we can give a completely combi-
natorial interpretation of AT{“,;. Let OS etpn(n) denote the set of ordered set partitions of
{1,...,n}. For any set partition 7 € OSetpn(n), let £(7) denote the number of parts of
7. Then we claim that

Ave= Y (mrf R (78)
mT€O0Setpn(n)
so that the coefficient of k7 in Ag’”g is equal to (—1)"7741S,, ; where S, ; is the Stirling
number of the second kind which is the number of set partitions of {1,...,n} into j parts.
That is, for any k > 2, if we set p=¢=r =1 and z = 0 in (24), we see that
nily(h,) = Ay (79)
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where

_ k
Ly(e,) = E (80)
But then
nlly(h,) = n!) (=1)""WT,(e,)
pukEn
() I
— —_1\—w) -
LD DS A D DR | F
pkn (bl ----- b[(u))EBM,n i=1 "
— _{)n—tw) n L) 81
N Y 2
uFn (b1,-.1b0() ) EBpm #
Since (b1 nba )) counts the number of ordered set partitions m = (my,. .., ™)) such that
7777 I

|7;| = b;, it is easy to see that the right hand side of (81) equals the right hand side of
(78).

7.1 Ta={(12,01),(1210)}

Table 4 gives initial values of Ag%

Table 4: A)4 for k,n < 5.

n=0|ln=1|n=2\n=3|n=4|\n=>5
k=2 1 2 6 26 150 | 1082
k=3 1 3 12 66 480 | 4368
k=4 1 4 20 132 | 1140 | 12324
k=5 1 5 30 230 | 2280 | 28280

In fact, we can easily calculate Ag‘,’c as a polynomial in k. For example, we have

A =1
Alg =k
Ayl = K +k

Al = KAk +k
A = B+ 11K+ 11K + &
Asd = K+ 26k" + 66k° + 26k + k

34



In this case, we shall show that Ag‘z is just the Eulerian polynomial
AZ% _ Z xdes(a)-‘rl‘ (82)
oESH
That is, for any k > 2, if we set p=¢=r =1 and z = 0 in (37), we see that
Ty (hy) = Ayd (83)

where Lk -t
Tu(e,) = k= "7 (84)

n!
But then

nlly(hy) = nly (=1)" Ty (e,)

ukn
£(p) .
S (-1 | = )bt
— n () rlp—1)7
- : b;!
ukn (b15-+,be( 1)) EBpun =1 i

1)
- Z Z (bl, : .7.1, bg(u)) H KL= )P (85)

ukEn (b1 ..... bg(u))EB#,n

Next we want to give a combinatorial interpretation to (85). For any brick tabloid T =

(b1,...,byw) € Bun, we can interpret (b1 nba )) as the set of all fillings of T with a
..... ;

permutation o € S, such that o is increasing in each brick. We then interpret Hf(z“l) k(1—
k)bi~1 as all ways of picking a label of the cells of each brick except the final cell with
either an 1 or a —k and letting the label of the last cell of each brick be k. We let D,,
denote the set of all filled labelled brick tabloids that arise in this way. Thus a C' € D,
consists of a brick tabloid 7', a permutation o € S,, and a labelling L of the cells of T’
with elements from {k, —k, 1} such that

1. o is strictly increasing in each brick,
2. the final cell of each brick is labelled with k, and
3. each cell which is not a final cell of a brick is labelled with 1 or —k.

We then define the weight w(C') of C' to be the product of all the k labels in L and the
sign sgn(C) of C to be the product of all the —1 labels in L. For example, if n = 12,
k=4, and T = (4,3,3,2), then Figure 15 pictures such a composite object C' € Dy,
where w(C) = k7 and sgn(C) = —1.
Thus
Ty (he) = > sgn(C)w(C). (86)

CeDy
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Figure 15: A composite object C' € Dy,.

Next we define a weight-preserving sign-reversing involution J : D,, — D,,. To define
J(C), we scan the cells of C = (T, 0, L) from left to right looking for the leftmost cell
t such that either (i) ¢ is labelled with —k or (ii) ¢ is at the end of a brick b; and the
brick b;;; immediately following b; has the property that o is strictly increasing in all the
cells corresponding to b; and b;1;. In case (i), J(C) = (T",0’, L") where T" is the result
of replacing the brick b in T containing ¢ by two bricks b* and b** where b* contains the
cell ¢ plus all the cells in b to the left of ¢ and b** contains all the cells of b to the right of
t, 0 =o', and L’ is the labelling that results from L by changing the label of cell ¢ from
—k to k. In case (ii), J(C) = (1",0', L") where T" is the result of replacing the bricks b;
and bj4q in T by a single brick b, 0 = ¢/, and L' is the labelling that results from L by
changing the label of cell ¢ from k to —k. If neither case (i) or case (ii) applies, then we
let J(C) = C. For example, if C' is the element of D5 pictured in Figure 15, then J(C)
is pictured in Figure 16.

Figure 16: J(C') for C in Figure 15.

It is easy to see that J is a weight-preserving sign-reversing involution and hence J
shows that
nly(ha) = Y sgn(C)w(C). (87)
CeD,,J(C)=C
Thus we must examine the fixed points C' = (T, 0, L) of J. First there can be no —k
labels in L so that sgn(C) = 1. Moreover, if b; and b, are two consecutive bricks in 7" and
t is the last cell of b;, then it can not be the case that o, < 044 since otherwise we could
combine b; and b;;;. For any such fixed point, we associate an element (o, w) € Cj 1.S,.
For example, a fixed point of [ is pictured in Figure 17 where

c0=234116910181257.

It follows that if cell ¢ is at the end of a brick which is not the last brick, then o; > 04.
However if v is a cell which is not at the end of a brick, then our definitions force o, < 7, 1.
Since each such cell v must be labelled with an 1, it follows that sgn(C)w(C) = kdes(@)+1
where the +1 comes from the fact that the last cell of the last brick is also labeled with k.
Vice versa, if o € S,,, then we can create a fixed point C = (T, 0, L) by having the bricks
in T end at cells of the form ¢ where o, > 0,1 and labeling each such cell with k, labeling
the last cell with k£, and labelling the remaining cells with 1. Thus we have shown that

n'fU(hn> _ Z k,des(a)—i—l

O’GSn
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as desired.

Figure 17: A fixed point of J.

7.2 Uppa= \u;fm and V, ;a = |v,?:;

We have computed similar tables for U,y . = ]u)f 2l and V0 = ]Vg 2| using our formulas

for the generating functions R}a (p,q,7,t) and S,;fa (p,q,r,t). Table 5 gives initial values
of U, kr, which counts the number of (o,¢€) € C 1S, such that Ris((o,€)) = {s,s+ 1} for
some 1 <s<n-—2.

Table 5: Uy jr for n <7, K <5.

n=3|n=4|n=5| n=~6 n="17
4 54 538 5064 48900
10 210 | 3363 | 52056 | 838542
20 570 | 12568 | 270328 | 6083712
35 1260 | 35328 | 973840 | 28127160

I
ot | wof b
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In fact, we can easily calculate U, ;. as a polynomial in k. For example, we have

1
Usir = ghlk+1)(k+2)
1
Use = h(k+1)(k+2)(5k — 1)

1
Uspr = mk(k +1)(k + 2)(903k? — 479k + 36)

1
Ushr = 4—5k(k: + 1) (k + 2)(2032k* — 1896k* + 419k — 15)

Urhr = Flgok(k + 1) (k 4 2)(482031k* — 662450k + 268653k — 32554k + 600)
Thus we conjecture that for n > 3 and k > 2, U, s, is always of the form k(k + 1)(k +
2)U,,.1(k) where U, »(k) is a polynomial of degree n—3 whose leading coefficient is positive
and such that signs of the remaining coefficients alternate.

Furthermore, we point out that U. g & forms the familiar sequence of tetrahedral numbers
(A000292 in [23]). None of the other rows or columns in Table 5 matched any previously
known sequence in [23].

Table 6 gives initial values of U, s, which counts the number of (o, €) € Cy 1 S, such
that SRis((o,€)) = {s,s+ 1} for some 1 < s <n — 2.
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Table 6: U, s forn <7, k <5.

n=3|n=4\n=5| n==6 n="7
k=2 0 0 0 0 0
k= 1 24 480 9760 212310
k= 4 126 | 3280 | 86440 | 2431800
k=5 10 390 | 12503 | 404688 | 13962690

In fact, we can easily calculate U, j s as a polynomial in k. For example, we have

1

Usks = ék(k’ — 1)(k —2)

Usps = }lk(k —1)(k—2)5k+1)

Usirs = %k(k —1)(k — 2)(903k? + 479k + 36)

Usrs = %k(l@ —1)(k — 2)(2032k> + 1896k* + 419k + 15)

Urrs = @k(k — 1)(k — 2)(482031k* + 662450k> + 268653k* + 32554k + 600)

Thus we conjecture that for n > 3 and k > 2, U, s is always of the form %k(k +
1)(k + 2)U, 3(k) where U, s(k) is a polynomial of degree n — 3 with positive coefficients.
Moreover, we conjecture that the coefficients of U, s(k) and U, (k) are the same up to a
sign for n > 3. None of the rows or columns in Table 6 matched any previously known
non-trivial sequence in [23].

Table 7 gives initial values of U, s w, which counts the number of (o, €) € Cj 1 S, such
that WRis((o,¢)) = {s,s+ 1} for some 1 < s <n — 2.

Table 7: Uy pw for n <7, k <5.

n=3|n=4|n=5| n==6 n="17

k=2 2 28 326 3896 50186
=3 3 66 1269 | 25512 | 556683
k=4 4 120 | 3212 | 90480 | 2773140
k=5 5 190 | 1303 | 235880 | 9303725
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In fact, we can easily calculate U, j w as a polynomial in k. For example, we have

Uspw = k
Uskw = k(8k—2)

Usiw = k(60k%— 40k + 3)

Usiw = 4k(120k* — 135k + 34k — 1)

Urpw = Kk(4200k* — 6720k* + 3108k — 392k + 5)

Thus we conjecture that for n > 3 and k > 2, U,, . w is always of the form kU, (k) where
Una2(k) is a polynomial of degree n — 3 whose leading coefficient is positive and is such
that remaining coefficients alternate in sign.

Furthermore, we point out that U g,zv forms the sequence of alternating hexagonal
numbers (A014635 in [23]). None of the other rows or columns in Table 7 matched any
previously known sequence in [23].

Table 8 gives initial values of U, x4, which counts the number of (o,€) € Cj 1 S, such
that for some 1 < s <n — 2, is a start of Tgq-match if and only if i € {s,s+ 1}.

Table 8: U, jq for n <7, k <5.

n=3|n=4\n=5| n=6 n=="17
2 28 326 3896 50186
12 240 | 3744 | 58080 958560
36 936 | 18252 | 345168 | 6860916
80 2560 | 58840 | 1329920 | 30723200

el S S
I

Il
SN

In fact, we can easily calculate U, j 4 as a polynomial in k. For example, we have

Uspa = k(k—1)>

Upra = 2k(k—1)*(3k+1)

Uspa = Kk(k—1)%(23k* + 34k + 3)

Usra = 6k(k—1)*(18k% 4+ 7T0k* + 31k + 1)

Urka = k(k—1)*(201k" 4+ 1660k + 1962k* + 372k + 5)

Thus we conjecture that for n > 3 and k > 2, U, x4 is always of the form k(k —1)2U,, a(k)
where U, q4(k) is a polynomial of degree n — 3 with positive coefficients. None of the rows
or columns in Table 8 matched any non-trivial sequence in [23].

We shall only give polynomial expressions for Vi, . = \fo 2| for a € {r,w,s,d} and
n =4,5,6,7. Note that by definition V,, ;o =0 for n = 1,2, 3.

For Vi r, we have the following initial polynomials.
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1
Vike = —k(k+1)(35k%+ 31k — 6)

24
1
Vokr = EOk(k +1)(2253k% 4 1277k?* — 1022k + 72)
1
Vorr = ﬁk(k + 1)(12781k* + 2336k> — 8911k> + 2146k — 72)
1
Vikr = mk:(k 4 1)(3828237k° — 943444k* — 3213331%*

+1679386k> — 207048k + 3600)

Thus we conjecture that for n > 4 and k > 2, V,, ., is always of the form k(k + 1)V}, (k)
where V,, (k) is a polynomial of degree n — 2. Note that this is first example where
we did not obtain polynomials whose coefficients are either positive or whose coefficients
alternate in sign.

However, we still seem to have a type of reciprocity between V,, ;. and V,, 5. That is,
we have the following initial polynomials.

1
Viks = ﬂk(lc —1)(35k* — 31k — 6)

1
Viks = 1—20k(k —1)(2253k* — 1277k* — 1022k — 72)
1
Vers = Ek(k — 1)(12781k* — 2336k® — 8911k* — 2146k — 72)
1
Viks = Mk(k — 1)(3828237k° + 943444k* — 3213331k

—1679386k* — 207048k — 3600)

Thus we conjecture that for n >4 and k > 2, V,, x5 is always of the form k(k — 1)V, s(k)
where V,, s(k) is a polynomial of degree n—2. Moreover we conjecture that the the absolute
value of the coefficients in V,, s(k) and V,, (k) are the same.

For Vi »w, we have the following initial polynomials.

View = k(6k—1)

Vskw = Kk(90k* — 50k + 3)

Verw = 2k(5050k — 5040k + 118k — 3)

Virw = 2k(6300k* — 9240k® + 3864k> — 434k + 5)

Thus we conjecture that for n > 4 and k > 2, V,, ;. w is always of the form £V, (k) where

Vaw(k) is a polynomial of degree n — 3 whose leading coefficients is positive and where
the signs of the remaining coefficients alternate.
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For Vi n.a, we have the following initial polynomials.

Vird = k(k—1)>25k+1)

Visra = k(k—1)*(43k* + 44k + 3)

Vora = k(k—1)(230k° + 626k> + 218k + 6)

Vora = k(k—1)*(990k* + 5588k* + 5184k” + 838k + 10)

Thus we conjecture that for n > 4 and k > 2, V}, 1.4 is always of the form k(k —1)%V,, q(k)
where V,, 4(k) is a polynomial of degree n — 3 whose coefficients are positive.

Note that U, ;w and V,, ;w both make sense even in the case where £k = 1. That is,
Un.1w equals the number of o € S,, such that Ris(o) = {s,s+ 1} for some 1 <s<n—2
and V1 w equals the number of o € S,, such that Ris(o) = {7, j} where i +2 < j. Table
9 gives these values for small n.

Table 9: Uy, 1w and V,, 1w for n < 7.

n=3|n=4\n=5|n=6|n="7
Uniw 1 6 23 72 201
Voiw 5 43 230 990

One would have expected that generating functions for U, 1w and V,, 1w would have
appeared before, but the sequence for U, ;. appears in OEIS [23] but not with our
interpretation and the sequence for V,, ;v does not even appear in OEIS [23] before our
work.

8 Further research

An obvious direction of research is considering matching conditions on Cj ¢ .S,, of length
3 or more and deriving avoidance/distribution formulas similar to those derived in this
paper. Another obvious direction of research is to look at distributions of bi-occurrences
of patterns in Cj1.S,,. One can also consider k-tuples of words from a fixed finite alphabet
with the obvious extension of our matching and occurrence conditions. All of these topics
will be studied in subsequent papers.
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