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Abstract. We present bijections between four classes of combinatorial ob-
jects. Two of them, the class of unlabeled (2+ 2)-free posets and a certain
class of involutions (or chord diagrams), already appeared in the literature, but
were apparently not known to be equinumerous. We present a direct bijection
between them. The third class is a family of permutations defined in terms
of a new type of pattern. An attractive property of these patterns is that,
like classical patterns, they are closed under the action of the symmetry group
of the square. The fourth class is formed by certain integer sequences, called
ascent sequences, which have a simple recursive structure and are shown to en-
code (2+ 2)-free posets and permutations. Our bijections preserve numerous
statistics.

We determine the generating function of these classes of objects, thus recov-
ering a non-D-finite series obtained by Zagier for the class of chord diagrams.
Finally, we characterize the ascent sequences that correspond to permutations
avoiding the barred pattern 31̄524̄ and use this to enumerate those permuta-
tions, thereby settling a conjecture of Pudwell.

1. Introduction

This paper presents correspondences between three main structures, seemingly un-
related: unlabeled (2+ 2)-free posets on n elements, certain fixed point free invo-
lutions (or chord diagrams) on 2n elements introduced by Stoimenow in connection
with Vassiliev invariants of knots [20], and a new class of permutations on n letters.
An auxiliary class of objects, consisting of certain sequences of nonnegative integers
that we call ascent sequences, plays a central role in some of these correspondences.
Indeed, we show that both our permutations and (2+ 2)-free posets can be encoded
as ascent sequences.

A poset is said to be (2+ 2)-free if it does not contain an induced subposet that
is isomorphic to 2+ 2, the union of two disjoint 2-element chains. Fishburn [11]
showed that a poset is (2+ 2)-free precisely when it is isomorphic to an interval
order. Amongst other results concerning (2+ 2)-free posets [9, 10, 17, 8], the
following characterisation plays an important role in this paper: a poset is (2+ 2)-
free if and only if the collection of strict principal down-sets can be linearly ordered
by inclusion [4]. Precise definitions will be given in Sections 3 and 7.

Date: November 25th, 2009.
MBM was supported by the French “Agence Nationale de la Recherche”, project SADA ANR-

05-BLAN-0372.
AC and SK were supported by grant no. 060005012 from the Icelandic Research Fund.



2 M. BOUSQUET-MÉLOU, A. CLAESSON, M. DUKES, AND S. KITAEV

(2+ 2)-free posets ascent sequences

Ω

Section 3

Stoimenow’s involutions pattern avoiding permutations

Λ
Section 2

Pn

I2n Rn

An

Section 7

Ψ

Figure 1. The bijections of the paper.

The class of permutations we consider will be defined in Section 2, together with
ascent sequences. Essentially, it is a class of permutations that avoid a particular
pattern of length three. This type of pattern is new in the sense that it does
not admit an expression in terms of the vincular1 patterns introduced by Babson
and Steingrímsson [3]. An attractive property of these new patterns is that, like
classical patterns, they are closed under the action of the symmetry group of the
square. Vincular patterns do not enjoy this property. We show how to construct
(and deconstruct) these permutations element by element, and how this gives a
bijection Λ with ascent sequences.

In Section 3 we perform a similar task for (2+ 2)-free posets. We present a recursive
construction of these posets, more sophisticated than that of permutations, which
gives a bijection Ψ with ascent sequences.

In Section 4 we present a simple algorithm that given an ascent sequence x computes
what we call the modified ascent sequence, denoted x̂. Some of the properties of
the permutation and the poset corresponding to x are more easily read from x̂
than from x. We also explain how to go directly between a given poset and the
corresponding permutation as opposed to via the ascent sequence. As an additional
application of our machinery we show that the fixed points under x 7→ x̂ are in one-
to-one correspondence with permutations avoiding the barred pattern 31̄524̄. We
use this characterization to count these permutations, thus proving a conjecture of
Pudwell [16].

In Section 5 we prove that the bijections Λ and Ψ respect numerous natural statis-
tics.

In Section 6 we determine the generating function of ascent sequences, and thus, of
(2+ 2)-free posets and pattern avoiding permutations. Several authors have tried
to count these posets before [12, 8, 13], but did not obtain a closed expression for
the generating function, which turns out to be a rather complicated, non-D-finite
series. That our approach succeeds probably relies on the simple structure of ascent
sequences.

The generating function we obtain for (2+ 2)-free posets has, however, already ap-
peared in the literature: it was shown by Zagier [23] to count certain involutions (or

1Babson and Steingrímsson call these patterns “generalized” rather than “vincular”, but we
wish to promote a change of terminology here, since vincular is more descriptive. The adjective
vincular is derived from the Latin noun vinculum (“bond” in English).
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chord diagrams) introduced by Stoimenow to give upper bounds on the dimension
of the space of Vassiliev’s knot invariants of a given degree [20]. In Section 7 we
present an alternative proof of Zagier’s result by giving a direct bijection Ω between
(2+ 2)-free posets and Stoimenow’s involutions.

Finally, in Section 8 we state some natural questions.

Let us conclude with a few words on the genesis of this paper: we started with an
investigation of permutations avoiding our new type of pattern. Patterns of length 2
being trivial, we moved to length 3, and discovered that the numbers counting one of
our permutation classes formed the rather mysterious sequence A022493 of the on-
line Encyclopedia of Integer Sequences [15]. From this arose the curiosity to clarify
the connections between this class of permutations and (2+ 2)-free posets, but also
between these posets and Stoimenow’s involutions, as this had apparently not been
done before. We hope that the study of these new pattern-avoiding permutations
will lead to other connections with interesting objects.

2. Ascent sequences and pattern avoiding permutations

Let (x1, . . . , xi) be an integer sequence. The number of ascents of this sequence is

asc(x1, . . . , xi) = |{ 1 ≤ j < i : xj < xj+1 }|.
Let us call a sequence x = (x1, . . . , xn) ∈ Nn an ascent sequence of length n if it
satisfies x1 = 0 and xi ∈ [0, 1 + asc(x1, . . . , xi−1)] for all 2 ≤ i ≤ n. For instance,
(0, 1, 0, 2, 3, 1, 0, 0, 2) is an ascent sequence. The length (number of entries) of a
sequence x is denoted |x|.
Let Sn be the symmetric group on n elements. Let V = {v1, v2, . . . , vn} with v1 <
v2 < · · · < vn be any finite subset of N. The standardisation of a permutation π on
V is the permutation std(π) on [n] := {1, 2, . . . , n} obtained from π by replacing
the letter vi with the letter i. As an example, std(19452) = 15342. Let Rn be the
following set of permutations:

Rn = { π1 . . . πn ∈ Sn : if std(πiπjπk) = 231 then j 6= i+ 1 or πi 6= πk + 1 }.
Equivalently, if πiπi+1 forms an ascent, then πi − 1 is not found to the right of this
ascent. This class of permutations could be more descriptively written as Rn =

Sn

( )
, the set of permutations avoiding the pattern in the diagram. Dark lines

indicate adjacent entries (horizontally or vertically), whereas lighter lines indicate
an elastic distance between the entries. Conversely, π contains this pattern if there
exists i < k such that πk + 1 = πi < πi+1. As illustrated below, the permutation
31524 avoids the pattern while the permutation 32541 contains it.

1 2 3 4 5

1

2

3

4

5

1 2 3 4 5

1

2

3

4

5

Clearly, this example can be generalized to any pattern consisting of a permutation
plus some dark (vertical and horizontal) lines. Vertical lines represent a constraint
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of adjacency of the positions, while horizontal lines represent a constraint of adja-
cency of the values. When there is no dark line, we recover the standard notion
of containment of a permutation. When only vertical lines are allowed, that is,
constraints on the positions, we recover the vincular (or generalized) patterns of
Babson and Steingrímsson [3]. For symmetry reasons, it seems natural to allow
constraints on values as well, and this is precisely what our bivincular patterns,
defined formally below, achieve.

Let us now give a formal definition of bivincular patterns. This is not needed for
the rest of this paper, and the reader may, without loss of continuity, skip the next
three paragraphs. We define a bivincular permutation (or bivincular pattern) to be
a triple p = (σ,X, Y ), where σ is a permutation on [k] and X and Y are subsets
of [0, k]. An occurrence of p in a permutation π = π1 . . . πn on [n] is subsequence
o = πi1 . . . πik such that std(o) = σ and

∀x ∈ X, ix+1 = ix + 1 and ∀y ∈ Y, jy+1 = jy + 1,

where {πi1 , . . . , πik} = {j1, . . . , jk} and j1 < j2 < · · · < jk; by convention, i0 = j0 =
0 and ik+1 = jk+1 = n+1. With this definition we have Rn = Sn

(
(231, {1}, {1})

)
.

Note also that the number of bivincular permutations of length n is 4n+1n!.

The classical patterns are those of the form p = (σ, ∅, ∅). Vincular patterns are
of the form p = (σ,X, ∅). Let p = (σ,Xp, Yp) and q = (τ,Xq, Yq) be any two
patterns. If σ and τ have the same length, we define their composition, or product,
by p◦q = (σ◦τ, Xp∆Yq, Yp∆Xq ), where A∆B = (A−B)∪(B−A) is the symmetric
difference. This operation is not associative, but it admits a right identity, (id, ∅, ∅),
and every element p = (σ,X, Y ) has an inverse p−1 = (σ−1, Y,X); this turns the
set of bivincular permutations of length n into a quasigroup with right identity.
Also, reverse is defined by pr = (σr , n + 1 − X,Y ) and complement is defined by
pc = (σc, X, n+ 1 − Y ), in which k −A denotes the set {k − a : a ∈ A}. Thus the
set of bivincular patterns has the full symmetry of a square.

One simple instance of bivincular pattern avoidance that has already appeared in
the literature is the set of irreducible permutations [1], that is, permutations such
that πi+1 6= πi − 1 for all i. With our terminology, these are the permutations
avoiding (21, {1}, {1}). Similarly, the strongly irreducible permutations of [2] are
the (21, {1}, {1})- and (12, {1}, {1})-avoiding permutations.

Let us now return to the set R := ∪nRn of permutations avoiding (231, {1}, {1}).
Let π be a permutation of Rn, with n > 0. Let τ be obtained by deleting the entry
n from π. Then τ ∈ Rn−1. Indeed, if τiτi+1τj is an occurrence of the forbidden
pattern in τ (but not in π), then this implies that πi+1 = n. But then πiπi+1πj+1

would form an occurrence of the forbidden pattern in π.

This property allows us to construct the permutations of Rn inductively, starting
from the empty permutation and adding a new maximal value at each step. (This is
the generating tree approach, systematized by West [21].) Given τ = τ1 . . . τn−1 ∈
Rn−1, the sites where n can be inserted in τ so as to produce an element of Rn

are called active. It is easily seen that the site before τ1 and the site after τn−1 are
always active. The site between the entries τi and τi+1 is active if and only if τi = 1
or τi − 1 is to the left of τi. Label the active sites, from left to right, with labels 0,
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1, 2 and so on. Observe that the site immediately to the left of the maximal entry
of τ is always active.

Our bijection Λ between permutations of Rn and ascent sequences of length n
is defined recursively on n as follows. For n = 1, we set Λ(1) = (0). Now let
n ≥ 2, and suppose that π ∈ Rn is obtained by inserting n in the active site
labeled i of a permutation τ ∈ Rn−1. Then the sequence associated with π is
Λ(π) := (x1, . . . , xn−1, i), where (x1, . . . , xn−1) = Λ(τ).

Example 1. The permutation π = 61832547 corresponds to the sequence x =
(0, 1, 1, 2, 2, 0, 3, 1), since it is obtained by the following insertions (the subscripts
indicate the labels of the active sites):

011
x2=17−−−→ 01122
x3=17−−−→ 0113 22
x4=27−−−→ 0113 2243
x5=27−−−→ 0113 225 43
x6=07−−−→ 06 113 225 43
x7=37−−−→ 06 113 225 4374
x8=17−−−→ 6 1 8 3 2 5 4 7.

Theorem 1. The map Λ is a bijection from Rn to the set of ascent sequences of

length n.

Proof. Since the sequence Λ(π) encodes the construction of π, the map Λ is injective.
We want to prove that the image of Rn is the set An of ascent sequences of length
n. Let s(π) denote the number of active sites of the permutation π. Our recursive
description of the map Λ tells us that x = (x1, . . . , xn) ∈ Λ(Rn) if and only if

x′ = (x1, . . . , xn−1) ∈ Λ(Rn−1) and 0 ≤ xn ≤ s
(
Λ−1(x′)

)
− 1 (1)

(recall that the leftmost active site is labeled 0, so that the rightmost one is s(π)−1).

We will prove by induction on n that for all π ∈ Rn, with associated sequence
Λ(π) = x = (x1, . . . , xn), one has

s(π) = 2 + asc(x) and b(π) = xn, (2)

where b(π) is the label of the site located just before the maximal entry of π.
Clearly, this will convert the above description (1) of Λ(Rn) into the definition of
ascent sequences, thus concluding the proof.

So let us focus on the properties (2). They obviously hold for n = 1. Now assume
they hold for some n − 1, with n ≥ 2, and let π ∈ Rn be obtained by inserting n
in the active site labeled i of τ ∈ Rn−1. Then Λ(π) = x = (x1, . . . , xn−1, i) where
Λ(τ) = x′ = (x1, . . . , xn−1). Every entry of π smaller than n is followed in π by
an active site if and only if it was followed in τ by an active site. The leftmost
site also remains active. Consequently, the label of the active site preceding n in
π is i = xn, which proves the second property. Thus, in order to determine s(π),
the only question is whether the site following n is active in π. There are two
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cases to consider. Recall that, by the induction hypothesis, s(τ) = 2 + asc(x′) and
b(τ) = xn−1.

Case 1: If 0 ≤ i ≤ b(τ) = xn−1 then asc(x) = asc(x′) and the entry n in π is to
the left of n− 1. So the number of active sites remains unchanged: s(π) = s(τ) =
2 + asc(x′) = 2 + asc(x).

Case 2: If i > b(τ) = xn−1 then asc(x) = 1 + asc(x′) and the entry n in π is to
the right of n − 1. The site that follows n is thus active, and s(π) = 1 + s(τ) =
3 + asc(x′) = 2 + asc(x). This concludes the proof. �

3. Ascent sequences and unlabeled (2+ 2)-free posets

Let Pn be the set of unlabeled (2+ 2)-free posets on n elements. In this section
we shall give a bijection between Pn and the set An of ascent sequences of length
n. As in the previous section, this bijection encodes a recursive way of construct-
ing (2+ 2)-free posets by adding one new (maximal) element. There is of course
a corresponding removal operation, but it is less elementary than in the case of
permutations. Before giving these operations we need to define some terminology.

Let D(x) be the set of predecessors of x (the strict down-set of x). Formally,

D(x) = { y : y < x }.

It is well-known—see for example Bogart [4]—that a poset is (2+ 2)-free if and only
if its sets of predecessors, {D(x) : x ∈ P}, can be linearly ordered by inclusion. For
completeness we prove this result here.

Lemma 2. A poset P is (2+ 2)-free if and only if the set of strict downsets of P
can be linearly ordered by inclusion.

Proof. If the set of strict downsets of P cannot be linearly ordered by inclusion,
then there are two incomparable elements x, y ∈ P such that both D(x)\D(y) and
D(y) \D(x) are non-empty. Let x′ ∈ D(x) \D(y) and y′ ∈ D(y) \D(x). Then the
induced subposet on the elements {x, x′, y, y′} is isomorphic to (2+ 2). Conversely,
if P contains an induced subposet {x > x′, y > y′} isomorphic to (2+ 2), then D(x)
and D(y) are such that both D(x) \D(y) and D(y) \D(x) are non-empty. �

Let

D(P ) = {D0, D1, . . . , Dk}

with ∅ = D0 ⊂ D1 ⊂ · · · ⊂ Dk. In this context we define Di(P ) = Di and we
write ℓ(P ) = k. We say the element x is at level i in P if D(x) = Di and we write
ℓ(x) = i . The set of all elements at level i we denote Li(P ) = { x ∈ P : ℓ(x) = i } =
{ x ∈ P : D(x) = Di }. For instance, L0(P ) is the set of minimal elements. All the
elements of Lk(P ) are maximal, but there may be maximal elements of P at level
less than k. If Li(P ) contains a maximal element, we say that the level i contains a
maximal element. Let ℓ⋆(P ) be the minimum level containing a maximal element.
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Example 2. Consider the following (2+ 2)-free poset P , which we have labeled
for convenience:

a

c

f

db

g

h

e

=
c

f

d

g

h

e

b

a

0

1

2

3

The diagram on the right shows the poset redrawn according to the levels of the
elements. We have D(a) = {b, c, d, f, g, h}, D(b) = ∅, D(c) = D(d) = {f, g, h},
D(e) = D(f) = D(g) = {h} and D(h) = ∅. These may be ordered by inclusion as

D(h) = D(b)︸ ︷︷ ︸ ⊂ D(e) = D(f) = D(g)︸ ︷︷ ︸ ⊂ D(c) = D(d)︸ ︷︷ ︸ ⊂ D(a)︸ ︷︷ ︸ .

ℓ(h) = ℓ(b) = 0 ℓ(e) = ℓ(f) = ℓ(g) = 1 ℓ(c) = ℓ(d) = 2 ℓ(a) = 3

Thus ℓ(P ) = 3. The maximal elements of P are e and a, and they lie respectively at
levels 3 and 1. Thus ℓ⋆(P ) = 1. In addition, D0 = ∅, D1 = {h}, D2 = {f, g, h} and
D3 = {b, c, d, f, g, h}. With Li = Li(P ) we also have L0 = {h, b}, L1 = {e, f, g},
L2 = {c, d} and L3 = {a}.

3.1. Removing an element from a (2+ 2)-free poset. Let us begin with the
removal operation, which will be the counterpart of the deletion of the last entry in
an ascent sequence (or the deletion of the largest entry in a permutation of R). Let
P be a (2+ 2)-free poset of cardinality n ≥ 2, and let i = ℓ⋆(P ) be the minimum
level of P containing a maximal element. All the maximal elements located at level
i are order-equivalent in the unlabeled poset P . We will remove one of them. Let
Q be the poset that results from applying:

(Rem1) If |Li(P )| > 1 then simply remove one of the maximal elements at level i.
(Rem2) If |Li(P )| = 1 and i = ℓ(P ) then remove the unique element lying at level

i.
(Rem3) If |Li(P )| = 1 and i < ℓ(P ) then set N = Di+1(P ) \ Di(P ). Make each

element in N a maximal element of the poset by deleting from the order
all relations x < y where x ∈ N . Finally, remove the unique element lying
at level i.

Example 3. Let P be the unlabeled (2+ 2)-free poset with this Hasse diagram:

= *

0

1

2

3

4

# #

The diagram on the right shows the poset redrawn according to the levels of the
elements. There is a unique maximal element of minimal level, which is marked
with ∗ and lies at level 2, so that ℓ⋆(P ) = 2. Since there is a unique element at
level 2 < ℓ(P ), apply Rem3 to remove it. The elements of N are indicated by #’s.
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In order to delete all relations of the form x < y where x ∈ N , one deletes from
the Hasse diagram all edges corresponding to coverings of elements of N , and adds
an edge between the elements at level 0 and 3 to preserve their relation. Finally,
one removes the element at level 2. This gives a new (2+ 2)-free poset, with level
numbers shown on the left.

7→

0

1

3

2

=

3

2

0

1 * *

There are now two maximal elements of minimal level ℓ⋆ = 1, both marked by ∗.
Remove one of them according to rule Rem1. This gives the poset shown on the left
below, for which ℓ⋆ is still 1. Apply Rem1 again to obtain the poset on the right.

7→
*1

0

2

3

7→
1

0

2

3 *

There is now a single maximal element, lying at maximal level 3, so we apply rule
Rem2:

7→ 1

0

2

*

#

The maximal element of minimal level is now alone on level ℓ⋆(P ) = 1 < ℓ(P ) so
apply Rem3. The set N consists of the rightmost point at level 0, giving

7→

0

1

*

The maximal element of minimal level is not alone at level 0, so apply Rem1:

7→
0

1 *

7→ 0

We have thus reduced the original poset P to a one element poset by removing the
elements in a canonical order.

Let us now check that the removal operation gives a (2+ 2)-free poset, and estab-
lish some elementary properties of this operation. If ℓ⋆(P ) = i, and the removal
operation, applied to P , gives Q, we define ψ(P ) = (Q, i).
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Lemma 3. If n ≥ 2, P ∈ Pn and ψ(P ) = (Q, i), then Q ∈ Pn−1 and 0 ≤ i ≤
1 + ℓ(Q). Also,

ℓ(Q) =

{
ℓ(P ) if i ≤ ℓ⋆(Q),

ℓ(P )− 1 if i > ℓ⋆(Q).

Proof. We examine separately the 3 cases described above.

If |Li(P )| > 1 then one simply removes a maximal element at level i to obtain Q:
the set of sets of predecessors is unchanged, and remains linearly ordered. Hence
Q ∈ Rn−1. Also, ℓ(Q) = ℓ(P ). The maximal elements of Q were already maximal
in P . Thus the maximal elements of lowest level in Q are at level i at least, that
is, ℓ⋆(Q) ≥ i.

If |Li(P )| = 1 and i = ℓ(P ), one removes the unique element of maximal level.
One has now D(Q) = D(P ) \ {Di(P )}, which is still linearly ordered. Also, ℓ(Q) =
ℓ(P )− 1. In particular, i = ℓ(Q) + 1 > ℓ⋆(Q).

Finally, if |Li(P )| = 1 and i < ℓ(P ), define the set N as in Rem3. By construction,
the set of sets of predecessors of Q is

D(Q) =
{
D0(P ), . . . , Di−1(P ), Di+1(P ) \ N , . . . , Dℓ(P )(P ) \ N

}
.

To prove that D(Q) can be linearly ordered, it suffices to prove that Di−1(P ) ⊂
Di+1(P ) \ N . By definition, N = Di+1(P ) \Di(P ) and hence

Di+1(P ) \ N = Di+1(P ) \
(
Di+1(P ) \Di(P )

)

= Di+1(P ) ∩Di(P )

= Di(P )

⊃ Di−1(P ).

It is also clear that ℓ(Q) = ℓ(P )− 1. The elements of N are maximal in Q and lie
at level < i. Hence ℓ⋆(Q) < i. �

3.2. Adding an element to a (2+ 2)-free poset. Let us now define the addition
operation, which adds a maximal element to a (2+ 2)-free poset Q.

Given Q ∈ Pn−1 and 0 ≤ i ≤ 1 + ℓ(Q), let ϕ(Q, i) be the poset P obtained from Q
according to the following:

(Add1) If i ≤ ℓ⋆(Q) then introduce a new maximal element which covers the same
elements as the elements of Li(Q).

(Add2) If i = 1 + ℓ(Q), add a new element covering all maximal elements of Q.
(Add3) If ℓ⋆(Q) < i ≤ ℓ(Q), add a new element covering the same elements as

the elements of Li(Q). Let M be the set of maximal elements of Q of
level less than i. Add all relations x ≤ y where x ≤ z for some z ∈ M and
y ∈ Li(Q)∪· · ·∪Lℓ(Q)(Q). In particular, every element of M is now covered
by every minimal element of the poset induced by Li(Q) ∪ · · · ∪ Lℓ(Q)(Q).

Example 4. Starting from the one-element poset, we add successively 7 points
according to the rules above, where the parameter i takes the following values:
i = 1, 2, 3, 1, 0, 1, 2. Note that the sequence (0, 1, 2, 3, 1, 0, 1, 2) is an ascent sequence.
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This is of course not an accident. For each step, the new element is circled.

0
i2=17−−−→
Add2

0

1 i3=27−−−→
Add2

1

2

0

i4=37−−−→
Add2

0

1

2

3

i5=17−−−→
Add1

0

1

2

3

i6=07−−−→
Add1

0

1

2

3

i7=17−−−→
Add3

0

1

2

3

4

i8=27−−−→
Add3

0

1

2

3

4

5

In the final two steps, where the operation Add3 is used, we have inserted dashed
lines indicating the covering of the elements of M. Observe that in a last step,
the addition of these new coverings makes two edges of the next-to-last diagram
transitive: they do not appear any more in the final diagram.

Let us now check that the addition operation gives a (2+ 2)-free poset, and estab-
lish some elementary properties of this operation.

Lemma 4. If n ≥ 2, Q ∈ Pn−1, 0 ≤ i ≤ 1 + ℓ(Q) and P = ϕ(Q, i), then P ∈ Pn.

Also,

ℓ⋆(P ) = i and ℓ(P ) =

{
ℓ(Q) if i ≤ ℓ⋆(Q),

ℓ(Q) + 1 if i > ℓ⋆(Q).

Proof. We examine separately the 3 cases described above.

If i ≤ ℓ⋆(Q), then Add1 is used. We want to show that the set D(P ) = {D(x) :
x ∈ P} of sets of predecessors can be linearly ordered. This is however trivial: By
definition of Add1 we have D(P ) = D(Q) which is linearly ordered. The set of
predecessors of the new element is Di(Q), so it lies at level i. As this element is
maximal, and its level i is not larger than ℓ⋆(Q), we have ℓ⋆(P ) = i. Finally, it
follows from D(P ) = D(Q) that ℓ(P ) = ℓ(Q).

If i = 1 + ℓ(Q), then Add2 is used. The set D(P ) is D(Q) ∪ {Q}, which is still
linearly ordered by inclusion. The highest level increases by one: ℓ(P ) = ℓ(Q) + 1.
Finally, the new element is the only maximal element of P , so that ℓ⋆(P ) = ℓ(P ) =
1 + ℓ(Q) = i.

If ℓ⋆(Q) < i ≤ ℓ(Q), then Add3 is used. The new element has set of predecessors
Di(Q). The elements that had level i or more in Q now include the elements of M
among their predecessors. Consequently,

D(P ) =
{
D0(Q), . . . , Di(Q), Di(Q)∪M, Di+1(Q)∪M, . . . , Dℓ(Q)(Q)∪M

}
, (3)

which is linearly ordered. From this expression for D(P ) we also see that ℓ(P ) =
ℓ(Q) + 1, as claimed. Moreover, as all elements of level less than i in Q are now
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covered, the new element is the only maximal element of minimal level, so that
ℓ⋆(P ) = i. �

Let us now prove the compatibility of our removal and addition operations.

Lemma 5. For any (2+ 2)-free poset Q and integer i such that 0 ≤ i ≤ 1 + ℓ(Q)
we have ψ(ϕ(Q, i)) = (Q, i). And if Q has more than one element we also have

ϕ(ψ(Q)) = Q.

Proof. Let us begin with the first statement, and denote P = ϕ(Q, i). Recall that
ℓ⋆(P ) = i, so that the removal operation applied to P takes out an element of level
i and gives ψ(P ) = (R, i). We want to prove that R = Q.

Assume that i ≤ ℓ⋆(Q) so that Add1 is used to construct P from Q. The new
element is introduced at level i and is not alone at this level. Thus the removal
operation Rem1 is applied to P , and simply removes one maximal element at level
i—either the one that was added, or another, order-equivalent, one. Thus Q and
R coincide, as unlabeled posets.

Assume that i = 1 + ℓ(Q) so that Add2 is used. The new element is the only
maximal element in P , so that the removal operation Rem2 is applied to P , and
simply removes this maximal element. Thus again, R = Q.

Assume that ℓ⋆(Q) < i ≤ ℓ(Q) so that Add3 is used. The new element is maximal,
and is the only element at level i < ℓ(P ) = 1+ ℓ(Q). Thus it will be removed using
Rem3. Let M be the set of maximal elements of Q of level less than i. The set N
that occurs in the description of Rem3 is Di+1(P ) \Di(P ). According to (3), this
set coincides with M. Hence the covering relations that were added to go from Q
to P are now destroyed when going from P to R. Thus R = Q.

A similar argument (with the two transformations interchanged) gives the second
statement of the lemma. �

3.3. From (2+ 2)-free posets to ascent sequences. Our bijection Ψ between
(2+ 2)-free posets of cardinality n and ascent sequences of length n is defined
recursively on n as follows. For n = 1, we associate with the one-element poset the
sequence (0). Now let n ≥ 2, and suppose that the removal operation, applied to
P ∈ Pn, gives ψ(P ) = (Q, i). In other words, P is obtained from Q by adding a new
maximal element at level i, following our addition procedure. Then the sequence
associated with P is Ψ(P ) := (x1, . . . , xn−1, i), where (x1, . . . , xn−1) = Ψ(Q).

For instance, the poset of Example 3 corresponds to the sequence (0, 1, 0, 1, 3, 1, 1, 2),
while the poset of Example 4 corresponds to the sequence (0, 1, 2, 3, 1, 0, 1, 2).

Theorem 6. The map Ψ is a one-to-one correspondence between (2+ 2)-free posets

of size n and ascent sequences of length n.

Proof. Since the sequence Ψ(P ) encodes the construction of the poset P , the map
Ψ is injective. We want to prove that the image of Pn is the set An of ascent
sequences of length n. Our recursive description of the map Ψ tells us that x =
(x1, . . . , xn) ∈ Ψ(Pn) if and only if

x′ = (x1, . . . , xn−1) ∈ Ψ(Pn−1) and 0 ≤ xn ≤ 1 + ℓ
(
Ψ−1(x′)

)
. (4)
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We will prove by induction on n that for all P ∈ Pn, with associated sequence
Ψ(P ) = x = (x1, . . . , xn), one has

ℓ(P ) = asc(x) and ℓ⋆(P ) = xn. (5)

Clearly, this will convert the above description (4) of Ψ(Pn) into the definition of
ascent sequences, thus concluding the proof.

So let us focus on the properties (5). They obviously hold for n = 1. Now assume
they hold for some n − 1, with n ≥ 2, and let P ∈ Pn be obtained by adding a
new element at level i in Q ∈ Pn−1. Then Ψ(P ) = x = (x1, . . . , xn−1, i) where
Ψ(Q) = x′ = (x1, . . . , xn−1). By the induction hypothesis, ℓ(Q) = asc(x′) and
ℓ⋆(Q) = xn−1. Lemma 4 gives ℓ⋆(P ) = i and

ℓ(P ) =

{
asc(x′) if i ≤ xn−1,

asc(x′) + 1 if i > xn−1.

The result follows. �

4. Modified ascent sequences and their applications

In this section we introduce a transformation on ascent sequences and show some
applications. For instance, this transformation can be used to give a non-recursive
description of the bijection Λ between permutations of R and ascent sequences. It is
also useful to characterize the image by Λ of a subclass of R studied by Pudwell [16],
which we enumerate. We also describe how to transform (2+ 2)-free posets into
permutations, without resorting to ascent sequences.

4.1. Modified ascent sequences. Let x = (x1, x2, . . . , xn) be any finite sequence
of integers. We denote by asc(x) the (ordered) list of positions where an ascent
occurs:

asc(x) =
(
i : i ∈ [n− 1] and xi < xi+1

)
;

so asc(x) = |asc(x)|. In terms of an algorithm we shall now describe a function
from integer sequences to integer sequences. Let x = (x1, x2, . . . , xn) be the input
sequence and suppose that asc(x) = (a1, . . . , ak). Do

for i = a1, . . . , ak:
for j = 1, . . . , i− 1:

if xj ≥ xi+1 then xj := xj + 1

and denote the resulting sequence by x̂. Assuming that x is an ascent sequence we
call x̂ the modified ascent sequence. As an example, consider the ascent sequence
x = (0, 1, 0, 1, 3, 1, 1, 2). We have asc(x) = (1, 3, 4, 7) and the algorithm computes
the modified ascent sequence x̂ in the following steps:

x = 0 1 0 1 3 1 1 2
0 1 0 1 3 1 1 2
0 2 0 1 3 1 1 2
0 2 0 1 3 1 1 2

0 3 0 1 4 1 1 2 = x̂

In each step every element strictly to the left of and weakly larger than the boldface
letter is incremented by one. Observe that the positions of ascents in x and x̂
coincide, and that the number of ascents in x (or x̂) is asc(x) = asc(x̂) = max(x̂).
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The above procedure is easy to invert:

for i = ak, . . . , a1:
for j = 1, . . . , i− 1:

if xj > xi+1 then xj := xj − 1

Thus the map x 7→ x̂ is injective.

We can also construct modified ascent sequences recursively as follows: the only
such sequence of length 1 is (0). For n ≥ 2, (y1, . . . , yn) is a modified ascent
sequence if, and only if,

• 0 ≤ yn ≤ yn−1 and (y1, . . . , yn−1) is a modified ascent sequence, or
• yn−1 < yn ≤ 1 + asc(y1, . . . , yn−1), yj 6= yn for all j < n, and

( y1 − ǫ1, . . . , yn−1 − ǫn−1 )

is a modified ascent sequence, where ǫj = 1 if yj ≥ yn, and ǫj = 0 otherwise.

The modified ascent sequence x̂ is related to the level distribution of the poset P
associated with x. First, observe that the removal operation of Section 3.1 induces
a canonical labelling of the size n poset P by elements of [n]: the first element that
is removed gets label n, and so on. Applying this to the poset of Example 3 we get
the following labelling:

0

1

2

3

4

8

7

2

5

46

1 3

The following lemma is easily proved by induction, by combining the descriptions
of the map x 7→ x̂ and of the recursive bijection between ascent sequences and
(2+ 2)-free posets.

Lemma 7. Let P be a (2+ 2)-free poset equipped with its canonical labelling. Let x
be the associated ascent sequence, and x̂ = (x̂1, . . . , x̂n) the corresponding modified

ascent sequence. Then for all i ≤ n, the element i of the poset lies at level x̂i.

For instance, listing the elements of the poset above and their respective levels gives

1 2 3 4 5 6 7 8
0 3 0 1 4 1 1 2 = x̂,

where we recognize the modified ascent sequence of (0, 1, 0, 1, 3, 1, 1, 2) = Ψ(P ).

4.2. From posets to permutations. The canonical labelling of the poset P can
also be used to set up the bijection from (2+ 2)-free posets to permutations of R
without using ascent sequences. We read the elements of the poset by increasing
level, and, for a fixed level, in descending order of their labels. This gives a per-
mutation f(P ). In our example we get 31764825, which is the permutation of R8

associated with the ascent sequence (0, 1, 0, 1, 3, 1, 1, 2) = Ψ(P ). Let us prove that
this works in general.
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Proposition 8. For any (2+ 2)-free poset P equipped with its canonical labelling,

the permutation f(P ) described above is the permutation of R corresponding to the

ascent sequence Ψ(P ). In other words,

Λ−1 ◦Ψ(P ) = L̂0L̂1 . . . L̂ℓ(P ) := π,

where L̂j is the word obtained by reading the elements of Lj(P ) in decreasing order.

Moreover, the active sites of the above permutation are those preceding and following

π, as well as the sites separating two consecutive factors L̂j.

Proof. We proceed by induction on the size of P . The base case n = 1 is easy to
check. So let n ≥ 2, and assume the proposition holds for n − 1. Let P ∈ Pn

be obtained by inserting a new maximal element at level i in Q ∈ Pn−1. By the
induction hypothesis, the permutation corresponding to Q is

τ = L̂′
0L̂

′
1 . . . L̂

′
ℓ(Q),

where L̂′
j is obtained by reading in decreasing order the elements of Lj(Q). Re-

turning to the description of the addition operation, we see that, if i ≤ ℓ⋆(Q),

L̂j =

{
L̂′
j if j 6= i,

{n} ∪ L̂′
i if j = i,

while if i > ℓ⋆(Q),

L̂j =





L̂′
j if j < i,

{n} if j = i,

L̂′
j−1 if j > i.

In both cases, the word obtained by reading the elements of P is

f(P ) = L̂′
0 . . . L̂

′
i−1 n L̂

′
iL̂

′
i+1 . . . L̂

′
ℓ(Q),

which is obtained by inserting n in the active site labeled i of τ . Hence f(P ) =
Λ−1 ◦Ψ(P ). It is then easy to check that the active sites of f(P ) are indeed those
separating the factors L̂j, and those preceding and following f(P ). �

4.3. From ascent sequences to permutations, and vice-versa. By combining
Lemma 7 and Proposition 8, we obtain a non-recursive description of the bijection
between ascent sequences and permutations of R. Let x be an ascent sequence, and
x̂ its modified sequence. Take the sequence x̂ and write the numbers 1 through n
below it. In our running example, x = (0, 1, 0, 1, 3, 1, 1, 2), this gives

x̂ = 0 3 0 1 4 1 1 2
1 2 3 4 5 6 7 8 .

Let P be the poset associated with x. By Lemma 7, the element labeled i in P lies
at level x̂i. This information is not sufficient to reconstruct the poset P but it is

sufficient to reconstruct the word f(P ) obtained by reading the elements of P by
increasing level: Sort the pairs

(
x̂i

i

)
in ascending order with respect to the top entry

and break ties by sorting in descending order with respect to the bottom entry. In
the above example, this gives

0 0 1 1 1 2 3 4
3 1 7 6 4 8 2 5 .
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By Proposition 8, the bottom row, here 31764825, is the permutation Λ−1(x). We
have thus established the following direct description of Λ−1.

Corollary 9. Let x be an ascent sequence. Sorting the pairs
(
x̂i

i

)
in the order

described above gives the permutation π = Λ−1(x). Moreover, the number of entries

of π between the active sites i and i+1 is the number of entries of x̂ equal to i, for

all i ≥ 0.

The second statement gives a non-recursive way of deriving x = Λ(π) (or, rather,
x̂) from π. Take a permutation π ∈ Rn, and indicate its actives sites. For instance,
π =0 3117642832455. Write the letter i below all entries πj that lie between the
active site labeled i and the active site labeled i+ 1:

3 1 7 6 4 8 2 5
0 0 1 1 1 2 3 4 .

Then sort the pairs
(
πj

i

)
by increasing order of the πj :

1 2 3 4 5 6 7 8
0 3 0 1 4 1 1 2 .

We have recovered, on the bottom row, the modified ascent sequence x̂ correspond-
ing to π.

4.4. Permutations avoiding 31̄524̄ and self modified ascent sequences. A
permutation π avoids the barred pattern 31̄524̄ if every occurrence of the (classical)
pattern 231 plays the role of 352 in an occurrence of the (classical) pattern 31524.
In other words, for every i < j < k such that πk < πi < πj , there exists ℓ ∈
(i, j) and m > k such that πiπℓπjπkπm is an occurrence of 31524. Note that
every such permutation avoids the pattern , and thus belongs to the set R.
Permutations avoiding 31̄524̄ were considered by Pudwell, who gave a conjecture for
their enumeration [16, p. 84]. Here, we describe the ascent sequences corresponding
to these permutations via the bijection Λ. Then, we use this description to settle
Pudwell’s conjecture.

An ascent sequence x is self modified if it is fixed by the map x 7→ x̂ defined above.
For instance, (0, 0, 1, 0, 2, 2, 0, 3, 1, 1) is self modified. In view of the definition of the
map x 7→ x̂, this means that, if xi+1 > xi, then xj < xi+1 for all j ≤ i. Recall that
asc(x) = max(x̂). Combining this with the condition defining ascent sequences, we
see that (x1, . . . , xn) is a self modified ascent sequence if and only if x1 = 0 and,
for all i ≥ 1, either xi+1 ≤ xi or xi+1 = 1 + max{xj : j ≤ i}. Consequently, a
modified ascent sequence x with max(x) = k reads 0A01A12A2 . . . k Ak, where Ai

is a (possibly empty) weakly decreasing factor, and each element of Ai is less than
or equal to i.

Proposition 10. The ascent sequence x is self modified if and only if the corre-

sponding permutation π avoids 31̄524̄. In this case, max(x) = asc(π) = rmin(π)−1,
where rmin(π) is the number of right-to-left minima of π, that is, the number of i
such that πi < πj for all j > i.

Proof. We proceed by induction on the size n of the permutations. The statement is
obvious for n = 1, so let n ≥ 2, and assume it holds for n−1. Let π ∈ Rn be obtained
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by inserting n in the active site labeled i of τ ∈ Rn−1. Let x′ = (x1, . . . , xn−1) be
the ascent sequence Λ(τ). The ascent sequence Λ(π) is x = (x1, . . . , xn−1, i).

First, assume π avoids 31̄524̄, and let us prove that x is self modified. Note that
τ avoids 31̄524̄, because the largest entry in this pattern is not barred. By the
induction hypothesis, the ascent sequence x′ = Λ(τ) is self modified. Assume, ab

absurdo, that x is not self modified. This means that xn−1 < i < 1+ asc(x′). That
is, n is inserted to the right of n− 1, but not to the extreme right of τ . Then the
entries n− 1, n, πn form an occurrence of 231 which does not play the role of 352
in an occurrence of 31524 (the 4 is missing). This contradicts the assumption that
π avoids 31̄524̄. Hence x is self modified.

Conversely, assume that x is self modified (so that x′ itself is self modified), and
let us prove that π avoids 31̄524̄. By the induction hypothesis, τ avoids 31̄524̄.
Assume, ab absurdo, that π contains an occurrence of 31̄524̄. Then this occurrence
must contain the entry n, playing the role of 3 in 231. Let πjπkπℓ be such an
occurrence, with n = πk. Obviously, n is not inserted to the extreme right of τ ,
so that i ≤ xn−1. Moreover, either there is no entry smaller than πℓ between πj
and n (the entry 1 is missing), or there is no entry larger than πj to the right of
πℓ (the entry 4 is missing). In the first case, πk−1πkπℓ is another occurrence of
31̄524̄. Since n is inserted in an active site, πk−1 − 1 occurs before πk−1, but then
(πk−1 − 1)πkπℓ forms an occurrence of 31̄524̄ in τ , a contradiction. In the second
case, πj(n − 1)πℓ forms an occurrence of 31̄524̄ in τ , because n − 1 is to the right
of n. This gives a contradiction again. Hence π avoids 31̄524̄.

Still under the assumption that x is self modified, observe that the number of
ascents, and the number of right-to-left minima, increase by one when going from
τ to π if i = 1+asc(x′). If i ≤ xn−1, then n is inserted in an ascent of τ (otherwise
the insertion would create a forbidden pattern), so that the number of ascents is
left unchanged. The same holds for the number of right-to-left minima. �

Proposition 11. The length generating function of 31̄524̄-avoiding permutations

is
∑

k≥1

tk

(1− t)(
k+1

2 )
.

Equivalently, the number of such permutations of length n is

n∑

k=1

((k
2

)
+ n− 1

n− k

)
.

Moreover, the k-th term of this sum counts those permutations that have k right-to-

left minima, or, equivalently, k−1 ascents. This is also the number of self modified

ascent sequences of length n with largest element k − 1.

The corresponding numbers form Sequence A098569 in the OEIS [15].

Proof. By Proposition 10, permutations of length n avoiding 31̄524̄ and having k−1
ascents are in bijection with self modified ascent sequences of length n and largest
entry k − 1. As discussed above, such sequences read

x = 0A01A12A2 . . . (k − 1)Ak−1,
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where Ai is a (possibly empty) weakly decreasing factor, and each element of Ai is
less than or equal to i. That is,

Ai = A
(i)
i A

(i−1)
i . . . A

(0)
i ,

where the factor A(j)
i , for j ≤ i, consists of letters j only. Let ℓ(j)i be the length of

this factor. Clearly, there are 1 + 2 + · · ·+ k =
(
k+1
2

)
factors A(j)

i in x, which may

be empty. The list (ℓ
(0)
0 , ℓ

(1)
1 , ℓ

(0)
1 , . . . , ℓ

(0)
k−1) determines x completely, and forms a

composition of n − k in
(
k+1
2

)
(possibly empty) parts. Thus the number of such

sequences x is (
n− k +

(
k+1
2

)
− 1

n− k

)
=

((k
2

)
+ n− 1

n− k

)

as claimed. �

5. Statistics

We shall now look at statistics on ascent sequences, permutations and posets—
statistics that we can translate between using our bijections.

Let x = (x1, x2, . . . , xn) be any sequence of nonnegative integers. Let last(x) = xn.
Define zeros(x) as the number of zeros in x. A right-to-left maximum of x is
a letter with no larger letter to its right; the number of right-to-left maxima is
denoted rmax(x). For example,

rmax(0, 1, 0,2,2, 0,1) = 3;

the right-to-left maxima are in bold. The statistics right-to-left minima (rmin),
left-to-right maxima (lmax), and left-to-right minima (lmin) are defined similarly.
For sequences x and y of nonnegative integers, let x⊕ y = xy′, where y′ is obtained
from y by adding 1 + max(x) to each of its letters, and juxtaposition denotes
concatenation. For example, (0, 2, 0, 1) ⊕ (0, 0) = (0, 2, 0, 1, 3, 3). We say that
a sequence x has k components if it is the sum of k, but not k + 1, nonempty
nonnegative sequences. Note that y ⊕ z is a modified ascent sequence (as defined
in Section 4) if and only if y and z are themselves modified ascent sequences. This
is the case in the above example.

For permutations π and σ, let π⊕ σ = πσ′, where σ′ is obtained from σ by adding
|π| to each of its letters. We say that π has k components if it is the sum of k, but
not k + 1, nonempty permutations. Observe that π ⊕ σ avoids if and only if
both π and σ avoid it. This is the case for instance for 314265 = 3142⊕ 21, which
corresponds to the above modified ascent sequence (0, 2, 0, 1, 3, 3) = (0, 2, 0, 1) ⊕
(0, 0).

We also recall the definitions of s(π) and b(π). The number of active sites of π is
s(π). Label these active sites with 0, 1, 2, etc. Then b(π) is the label immediately
to the left of the maximal entry of π.

The number of minimal (resp. maximal) elements of a poset P is denoted min(P )
(resp. max(P )). The ordinal sum [18, p. 100] of two posets P and Q is the poset
P ⊕Q on the union P ∪Q such that x ≤P⊕Q y if x ≤P y, or x ≤Q y, or x ∈ P and
y ∈ Q. The definition applies to labeled or unlabeled posets. Let us say that P has
k components if it is the ordinal sum of k, but not k+1, nonempty posets. Observe
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that P⊕Q is (2+ 2)-free if and only if both P and Q are (2+ 2)-free. For instance,
corresponding to the modified ascent sequence (0, 2, 0, 1, 3, 3) = (0, 2, 0, 1)⊕ (0, 0),
above, we have

= ⊕

For a (2+ 2)-free poset P , a sequence x and a permutation π ∈ R, we define the
following polynomials in the indeterminate q:

λ(P, q) =
∑

v∈P

qℓ(v), χ(x, q) =

|x|∑

i=1

qxi , δ(π, q) =

s(π)∑

i=0

diq
i,

where di is the number of entries of π between the active site labeled i and the active
site labeled i+1. Note also that an alternative way of writing the polynomial λ(P, q)
is
∑ℓ(P )

i=0 |Li(P )|qi. Similarly, define the polynomials

λ(P, q) =
∑

v∈Pmax

qℓ(v), χ(x, q) =
∑

xi rl-max

qxi , δ(π, q) =

s(π)∑

i=0

diq
i,

where Pmax is the set of maximal elements of P , the sum defining χ(x, q) is restricted
to right-to-left maxima of x, and di is the number of right-to-left maxima of π
between the active site labeled i and the active site labeled i+ 1.

Theorem 12. Given an ascent sequence x = (x1, . . . , xn) with modified ascent

sequence x̂, let P and π be the poset and permutation corresponding to x under the

bijections described in Sections 2 and 3. Then

min(P ) = zeros(x) = lmin(π);

ℓ⋆(P ) = last(x) = b(π);

ℓ(P ) = asc(x) = asc(π−1);

max(P ) = rmax(x̂) = rmax(π);

comp(P ) = comp(x̂) = comp(π);

λ(P, q) = χ(x̂, q) = δ(π, q);

λ(P, q) = χ(x̂, q) = δ(π, q).

Example 5. Let P be the poset from Example 3 and let x and π be the corre-
sponding ascent sequence and permutation:

P =

0

1

2

3

4

;
x = (0, 1, 0, 1, 3, 1, 1, 2);

x̂ = (0, 3, 0, 1, 4, 1, 1, 2);

π =0 3117642832455,

π−1 = 27158436.

Theorem 12 holds, with min(P ) = 2, ℓ⋆(P ) = 2, ℓ(P ) = 4, max(P ) = 2, comp(P ) =

1, λ(P, q) = q4 + q3 + q2 + 3q + 2, and λ(P, q) = q4 + q2.
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Proof of Theorem 12. The polynomial identity λ(P, q) = χ(x̂, q) = δ(π, q) is a
consequence of Lemma 7 for the first part, and of Corollary 9 for the second
part. Setting q = 0 in λ(P, q) = χ(x̂, q) gives min(P ) = zeros(x) (note that
zeros(x) = zeros(x̂)). Setting q = 0 in the identity χ(x̂, q) = δ(π, q) shows that
zeros(x) is the number of entries of π between the first two active sites. Let us
prove that these are the entries π1, π2, . . . , πk, where k is the largest integer such
that π1 > π2 > · · · > πk. Note that this means that lmin(π) = k. For 1 ≤ i < k,
the entry πi is followed by an inactive site, because πi − 1 appears to the right of
πi. Assume πk > 1. Then πk − 1 appears to the right of πk, but πk+1 > πk, so
that πkπk+1(πk − 1) is an occurrence of the forbidden pattern, a contradiction. So
πk = 1, the site following πk is active, and the result is proved.

The result dealing with last(x) has already been proved, when we established that
Λ and Ψ were indeed bijections. See (2) and (5). The same holds for the connection
between asc(x) and ℓ(P ) (see (5) again). We also know that asc(x) = s(π)− 2, but
we wish to relate this number to asc(π−1).

The next identities will be proved by induction on n. These are easy to check when
n = 1, so we take n ≥ 2. Denote i = xn, (Q, i) = ψ(P ), and let τ be obtained by
deleting the entry n from π. Let x′ = (x1, . . . , xn−1) = Λ(τ) = Ψ(Q).

Let us start with the connection between asc(x) and asc(π−1). The number of
ascents increases (by one) when going from τ−1 to π−1 if and only if n is inserted,
in τ , to the right of n − 1: as shown in the proof of Theorem 1, this means that
asc(x) = 1 + asc(x′) (Case 2 of the proof).

The identity that involves max(P ) is just the case q = 1 of the identity that involves
the polynomial λ(P, q), which we now prove. Let us now study how the polynomi-
als λ(·, q), χ(̂·, q) and δ(·, q) evolve as the size of the poset/sequence/permutation
increases. For posets,

λ(P, q) =





λ(Q, q) + qi if i ≤ ℓ⋆(Q),

qi +

ℓ(Q)∑

j=i

|Lj(Q)|qj+1 if i > ℓ⋆(Q),

where Lj(Q) is the set of maximal elements of Q at level j. Similar relations
hold for χ(x̂, q) and δ(π, q). Denoting the modified ascent sequence of x′ by x̂′ =
(x̂′1, . . . , x̂

′
n−1), we have

χ(x̂, q) =





χ(x̂′, q) + qi if i ≤ xn−1,

qi +
∑

rl-max x̂′

j
≥i

qx̂
′

j+1 if i > xn−1,

δ(π, q) =





δ(τ, q) + qi if i ≤ b(τ),

qi +
∑

j≥i

dj q
j+1 if i > b(τ),

and the statement λ(P, q) = χ(x̂, q) = δ(π, q) follows by induction.
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We shall finally prove that comp(P ) = comp(x̂) = comp(π). First, observe that it
suffices to prove that

x̂ = ŷ ⊕ ẑ with |y| = ℓ and |z| = m

⇔ π = σ ⊕ τ with |σ| = ℓ and |τ | = m

⇔ P = Py ⊕ Pz with |Py | = ℓ and |Pz | = m,

and that σ and Py (resp. τ and Pz) are respectively the permutation and the poset
associated with the ascent sequence y (resp. z). It then follows by induction on
the number of components, not only that x̂, π and P have the same number of
components, but also that the sizes of the components are the same.

From Corollary 9, it is easily seen that π = σ ⊕ τ if and only if x̂ = ŷ ⊕ ẑ, with
Λ(σ) = y and Λ(τ) = z. Assume this holds. Let us write ℓ = |y| and m = |z|. Let
Py and Pz be the posets corresponding to y and z, respectively. Let us prove that
the canonically labeled versions of P, Py and Pz satisfy P = Py ⊕ Pz . Clearly, the
ℓ first steps of the recursive construction of P (starting from the ascent sequence
x) give the (labeled) poset Py, which satisfies ℓ(Py) = max(ŷ) by Lemma 7. Then
comes the letter xℓ+1. As x̂ℓ+1 = 1+max{x̂j : j ≤ ℓ}, the element ℓ+1 ends up, in
the final poset P , at a higher level than the elements 1, 2, . . . , ℓ. This implies that
the element ℓ+1 is added using the operation Add2, and hence covers all maximal
elements of Py . Consequently, the set of predecessors of ℓ + 1 is Py, and the poset
obtained at this stage is Py ⊕ {ℓ+ 1}. One then proceeds by induction of the size
of z. We do not give the details. One checks inductively that the relative order of
the elements labeled ℓ+ 1 to n = ℓ+m in P coincides with their order in Pz , and
that every element of Py is smaller than every element of Pz.

Conversely, assume P = Py ⊕ Pz , with ℓ = |Py|, m = |Pz | and ℓ + m = n. We
will prove that in the canonical labelling of P , the largest m letters are those of
Pz. Again, this follows from an induction on m. As usual, we write (Q, i) = ψ(P ).
If m = 1, then n is the unique maximal element of P , and Q = Py. Otherwise,
the element n is in Pz (as Py contains no maximal element), and one has to check
that Q = Py ⊕ P ′

z where P ′
z is obtained by applying the removal procedure to Pz.

We do not give all the details. The key point is that, when Rem3 is used, the set
N = Di+1\Di of elements that become maximal in Q does not contain any element
of Py . Indeed, every element of Py is smaller than every element of Pz , so that it
belongs to Di. Once it is proved that the m largest elements of P are those of Pz,
one applies Proposition 8 to conclude that the corresponding permutation π reads
σ ⊕ τ , where σ (resp. τ) corresponds to Py (resp. Pz). �

6. The number of (2+ 2)-free posets

The aim of this section is to obtain a closed form expression for the generating
function P (t) of unlabeled (2+ 2)-free posets:

P (t) =
∑

n≥0

pn t
n

= 1 + t+ 2t2 + 5t3 + 15t4 + 53t5 + 217t6 + 1014t7 + 5335t8 +O(t9),

where pn is the number of (2+ 2)-free posets of cardinality n. The sequence (pn)n≥0

is Sequence A022493 in the OEIS [15].
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Theorem 13. The generating function of unlabeled (2+ 2)-free posets is

P (t) =
∑

n≥0

n∏

i=1

(
1− (1− t)i

)
.

Of course, the series P (t) also counts permutations of R, or ascent sequences, by
length. To our knowledge, this result is new. El-Zahar [8] and Khamis [13] used
a recursive description of (2+ 2)-free posets, different from that of Section 3, to
derive a pair of functional equations that define the series P (t). However, they
did not solve these equations. Haxell, McDonald and Thomasson [12] provided an
algorithm, based on a complicated recurrence relation, to produce the first numbers
pn. However, the above series has already appeared in the literature: it was proved
by Zagier [23] to count certain involutions introduced by Stoimenow [20]. (The
connection between these involutions and (2+ 2)-free posets is the topic of the
next section.) Moreover, Zagier derived a number of interesting properties of the
series P (t). In particular, he gave the following asymptotic estimate:

pn
n!

∼ κ

(
6

π2

)n√
n, where κ =

12
√
3

π5/2
eπ

2/12.

Note that since the growth constant 6/π2 is transcendental it follows that the
generating function is not D-finite [19, 22]. Zagier also proved that the series P (t)
satisfies the following remarkable formula:

P (1 − e−24x) = ex
∑

n≥0

Tn
n!
xn,

where ∑

n≥0

Tn
(2n+ 1)!

x2n+1 =
sin 2x

2 cos 3x
.

Our proof of Theorem 13 exploits the recursive structure of ascent sequences. This
structure translates into a functional equation for the generating function of these
sequences, which is solved by the so-called kernel method. This gives a closed form
expression of a bivariate generating function, which counts ascent sequences by their
length and ascent number. However, one still needs to transform this expression to
obtain the above expression for the length generating function.

6.1. The functional equation. Let F (t;u, v) ≡ F (u, v) be the generating func-
tion of ascent sequences, counted by length (variable t), number of ascents (variable
u) and last entry (variable v). This is a formal power series in t with coefficients in
Q[u, v]. The first few terms of F (t;u, v) are

F (t;u, v) = 1 + t+ (1 + uv)t2 + (1 + 2uv + u+ u2v2)t3 +O(t4).

Let G(t;u, v) = F (t;u, v) − 1 ≡ G(u, v) count non-empty ascent sequences. We
write

G(t;u, v) =
∑

a,ℓ≥0

Ga,ℓ(t)u
avℓ,

so that Ga,ℓ(t) is the length generating function of sequences having a ascents and
ending with the value ℓ.
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Lemma 14. The generating function G(t;u, v) satisfies

(v − 1− tv(1− u))G(u, v) = t(v − 1)− tG(u, 1) + tuv2G(uv, 1).

Equivalently, F (t;u, v) = 1 +G(t;u, v) satisfies

(v − 1− tv(1 − u))F (u, v) = (v − 1)(1− tuv)− tF (u, 1) + tuv2F (uv, 1).

Proof. Let x′ = (x1, . . . , xn−1) be a non-empty ascent sequence with a ascents,
ending with the value xn−1 = ℓ. Then x = (x1, . . . , xn−1, i) is an ascent sequence
if and only if i ∈ [0, a + 1]. Moreover, the sequence x has a ascents if i ≤ ℓ, and
a+1 ascents otherwise. Given that (0) is the only ascent sequence of length 1, this
gives:

G(u, v) = t+ t
∑

a,ℓ≥0

Ga,ℓ(t)

(
ℓ∑

i=0

uavi +

a+1∑

i=ℓ+1

ua+1vi

)

= t+ t
∑

a,ℓ≥0

Ga,ℓ(t)u
a

(
vℓ+1 − 1

v − 1
+ u

va+2 − vℓ+1

v − 1

)

= t+ t
vG(u, v)−G(u, 1)

v − 1
+ tuv

vG(uv, 1)−G(u, v)

v − 1
.

The result follows. �

Remark. The variables u and v are needed to transform our recursive description
of ascent sequences into a functional equation, and are thus catalytic, in the sense
of [24]. Setting v = 1 in the equation gives a tautology. Setting u = 1 gives a
relation between G(1, v), G(1, 1) and G(v, 1) which does not suffice to characterize
these series.

6.2. The kernel method. Consider the functional equation satisfied by F (t;u, v)
given by Lemma 14. The coefficient of F (u, v), called the kernel, vanishes when
v = V (u), with V (u) = 1/(1 − t + tu). Recall that F (t;u, v) is a series in t with
coefficients in Q[u, v]. Hence F (u, V (u)) is a well-defined series in t with coefficients
if Q[u]. Replacing v by V (u) in the functional equation cancels the left-hand side,
and results in:

F (u, 1) =
(1− u)(1− t)

(1 − t+ tu)2
+

u

(1− t+ tu)2
F

(
u

1− t+ tu
, 1

)
.

Iterating this equation gives

F (u, 1) =
(1 − u)(1− t)

(1− t+ tu)2
+

u(1− t)2(1− u)

(1− t+ tu)(1− 2t+ 2tu+ t2 − t2u)2

+
u2

(1− t+ tu)(1− 2t+ 2tu+ t2 − t2u)2
F

(
u

1− 2t+ 2tu+ t2 − t2u
, 1

)

=

n∑

k=1

(1− u)uk−1(1 − t)k

(u− (u − 1)(1− t)k)
∏k

i=1(u− (u− 1)(1− t)i)

+
un

(u− (u − 1)(1− t)n)
∏n

i=1(u − (u− 1)(1− t)i)
F

(
u

u− (u − 1)(1− t)n
, 1

)
.

Letting n → ∞, we obtain a first expression of F (t;u, 1), as a formal series in u
with rational coefficients in t.
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Proposition 15. The series F (t;u, 1) counting ascent sequences by their length

and ascent number, seen as a series in u, has rational coefficients in t, and satisfies

F (t;u, 1) =
∑

k≥1

(1 − u)uk−1(1− t)k

(u − (u− 1)(1− t)k)
∏k

i=1(u − (u− 1)(1− t)i)
.

Alas, the above expression is only convergent as a series in u. In particular, if we
set u = 1, the result seems to be zero (because of the factor (1− u)). If we ignore
this factor, what remains reads

∑

k≥1

(1− t)k,

which is not a convergent series in the formal variable t. We will now work out an-
other series expression of F (t;u, 1), which converges as a series in t with coefficients
in Q[u]. In this expression we can set u = 1, and this will give Theorem 13.

6.3. Transforming the solution. Our first lemma tells us that certain series,
which look like the one in Proposition 15, are actually polynomials in u and t.

Lemma 16. Let m ≥ 1 be an integer. Let S(t;u) be the following series in u, with

rational coefficients in t:

S(t;u) =
∑

k≥1

(u− 1)m uk−1(1− t)mk

∏k
i=1(u− (u − 1)(1− t)i)

.

Then S(t;u) is actually a polynomial in u and t:

S(t;u) = −
m−1∑

j=0

(u − 1)jum−1−j(1− t)j
m−1∏

i=j+1

(
1− (1− t)i

)
.

Proof. Consider the following equation in Φ(t;u) ≡ Φ(u):

Φ(u) =
(u− 1)m(1− t)m

1− t+ tu
+ u(1− t+ tu)m−2 Φ

(
u

1− t+ tu

)
.

By iterating it, we see that it has a unique solution in the space of series in u with
rational coefficients in t, and that this solution is the first expression of S(t;u) given
above. Moreover, by writing the equation as follows:

(1− t+ tu)Φ(u) = (u− 1)m(1− t)m + u(1− t+ tu)m−1Φ

(
u

1− t+ tu

)
,

one checks easily that the second expression of S(t;u) (a polynomial in t and u) is
also a solution. Since a polynomial in t and u is (also) a series in u with rational
coefficients in t, the identity is established. �

From the above lemma, we are going to derive another expression of the series
F (t;u, 1), in which the substitution u = 1 raises no difficulty.

Theorem 17. Let n ≥ 0, and consider the following polynomial in t and u:

Fn(t;u) =

n∑

ℓ=0

(u− 1)n−ℓuℓ
n∑

m=ℓ

(−1)n−m

(
n

m

)
(1 − t)m−ℓ

m∏

i=m−ℓ+1

(
1− (1 − t)i

)
.
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Then Fn(t;u) is a multiple of tn. Moreover, the generating function of ascent

sequences, counted by the length and the ascent number, is

F (t;u, 1) =
∑

n≥0

Fn(t;u).

When u = 1,

Fn(t; 1) =

n∏

i=1

(
1− (1 − t)i

)
,

and Theorem 13 follows.

Proof. We return to the expression of F (t;u, 1) given in Proposition 15. The ex-
pansion

1

u− (u − 1)(1− tk)
=

1

1− (u − 1)((1− t)k − 1)
=
∑

n≥0

(u− 1)n((1 − t)k − 1)n

is valid in the space of series in t with polynomial coefficients in u, as (1− t)k − 1 =
O(t). It holds as well in the larger space of formal power series in t and u. Moreover,
the nth term is O(tn). Hence, in the space of series in t and u,

F (t;u, 1) =
∑

k≥1

(1− u)uk−1(1− t)k
∏k

i=1(u− (u − 1)(1− t)i)

∑

n≥0

(u− 1)n((1− t)k − 1)n =
∑

n≥0

Fn(t;u)

where

Fn(t;u) = −
∑

k≥1

(u− 1)n+1 uk−1(1− t)k
∏k

i=1(u− (u− 1)(1− t)i)
((1 − t)k − 1)n

= −
∑

k≥1

(u− 1)n+1 uk−1(1− t)k
∏k

i=1(u− (u− 1)(1− t)i)

n∑

m=0

(
n

m

)
(1− t)km(−1)n−m

= −
n∑

m=0

(
n

m

)
(−1)n−m(u− 1)n−m

∑

k≥1

(u− 1)m+1 uk−1(1 − t)k(m+1)

∏k
i=1(u − (u− 1)(1− t)i)

.

It remains to apply Lemma 16, with m replaced by m+ 1:

Fn(t;u) =

n∑

m=0

(−1)n−m

(
n

m

)
(u−1)n−m

m∑

j=0

(u−1)jum−j(1−t)j
m∏

i=j+1

(
1− (1 − t)i

)
.

The expected expression of Fn(t;u) follows, upon writing j = m− ℓ. �

7. Involutions with no neighbour nesting

As discussed above, the series of Theorem 13 is known to count certain involutions
on 2n points, called regular linearized chord diagrams (RLCD) by Stoimenow [20].
This result was proved by Zagier [23], following Stoimenow’s paper. In this section,
we give a new proof of Zagier’s result, by constructing a bijection between RLCDs
on 2n points and unlabeled (2+ 2)-free posets of size n.

Let I2n be the collection of involutions π in S2n that have no fixed points and for
which every descent crosses the main diagonal in its dot diagram. Equivalently, if
πi > πi+1 then πi > i ≥ πi+1. An alternative description can be given in terms of
the chord diagram of π, which is obtained by joining the points i and πi by a chord
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(Figure 2, top left). Indeed, π ∈ I2n if and only if, for any i, the chords attached
to i and i + 1 are not nested, in the terminology used recently for partitions and
involutions (or matchings) [6, 14]. That is, the configurations shown on the left of
the rules of Figure 3 are forbidden (but a chord linking i to i+ 1 is allowed). Such
involutions were called regular linearized chord diagrams by Stoimenow. We prefer
to say that they have no neighbour nesting.

Recall that a poset P is (2+ 2)-free if and only if it is an interval order [10]. This
means that there exists a collection of intervals on the real line whose relative order
is P , under the relation:

[a1, a2] < [a3, a4] ⇐⇒ a2 < a3. (6)

Let π be a fixed point free involution with transpositions {(αi, βi)}ni=1 where αi < βi
for all i. Define Ω(π) to be the interval order (or equivalently, (2+ 2)-free poset)
associated with the collection of intervals {[αi, βi]}ni=1. The transformation Ω has a
symmetry property that will be important: the poset associated with the mirror of
π (obtained by reflecting the chord diagram of π across a vertical line) is the dual
of Ω(π).

b

a d e

c

1 2 3 4 5 6 7

a b c

d

e
8 9 10

Figure 2. The involution π = 4 5 7 1 2 8 3 6 10 9 ∈ I10, the cor-
responding collection of intervals and the associated (2+ 2)-free
poset.

Example 6. Consider π = 4 5 7 1 2 8 3 6 10 9 ∈ I10. The transpositions of π are
shown in the chord diagram of Figure 2. Beneath the chord diagram is the collection
of intervals that corresponds to π, and the (2+ 2)-free poset Ω(π) is shown on the
right-hand side. We have added labels to highlight the correspondence between
intervals and poset elements.

Theorem 18. The map Ω, restricted to involutions with no neighbour nesting,

induces a bijection between involutions of I2n and (2+ 2)-free posets on n elements.

Proof. Let us first prove that the restriction of Ω is a surjection. That is, for every
poset P ∈ Pn, one can find an involution π ∈ I2n such that Ω(π) = P . Let P ∈ Pn.
As P is an interval order, there exists a collection of n intervals on the real line whose
relative order is P , under the order relation (6). We can assume that the (right
and left) endpoints of these n intervals are 2n distinct points. Indeed, if some point
x occurs k times as an endpoint, then the intervals ending at x are incomparable,
and one can replace x by k distinct points and obtain a new collection of intervals
whose order is still P , as shown below.



26 M. BOUSQUET-MÉLOU, A. CLAESSON, M. DUKES, AND S. KITAEV

Note that in this figure, intervals are represented by chords rather than segments
for the sake of clarity. In particular, an interval reduced to one point is represented
by a loop.

i+ 1

πiπi+1 i i+ 1 πi+1πi i+ 1i

πi πi+1i+ 1ii πi+1 πi

Figure 3. Two operations on chord diagrams.

Clearly, we can then assume that the 2n distinct endpoints of our n intervals are
exactly 1, 2, . . . , 2n. These intervals thus form a chord diagram, and there exists
a fixed point free involution π ∈ S2n such that Ω(π) = P . However, π may have
neighbour nestings. Transform recursively every such nesting as shown in Figure 3.
The corresponding poset does not change with these transformations, while the
number of crossings in the chord diagram increases. Hence the sequence of trans-
formations must stop, and when it stops we have obtained an involution π′ with no
neighbour nesting such that Ω(π′) = P . An example is shown in Figure 4, where
we have indicated by a white dot which nesting is transformed.

1 2 3 4 6 7 85 109 1 2 3 4 6 7 85 109

1 2 3 4 6 7 85 109 1 2 3 4 6 7 85 109

1 2 3 4 6 7 85 109

Figure 4. Deleting neighbour nestings from an involution.

Let us now prove that Ω, restricted to I2n, is injective. Assume π ∈ I2n and
Ω(π) = P . We will prove that one can reconstruct the chord diagram of π from P .
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We associate with π a word u = u1u2 · · ·u2n over the alphabet {o, c} as follows:
ui = o (resp. c) if there is an opening (resp. closing) chord at i. That is, if πi > i
(resp. πi < i). We define an opening run to be a maximal factor of u containing
only the letter o. We define similarly closing runs. For instance, the involution in
Figure 2 has 3 opening runs (and consequently 3 closing runs).

The order P = Ω(π) can be seen as an order on the chords of π: given a chord
a = (i, j), with i < j, the chords that are smaller than a (the predecessors of a) are
those that close before i, and the chords that are larger than a are those that open
after j. From this observation, it follows easily, by induction on i, that the level of
a in P (as defined in Section 3) is the number of closing runs found before i in u.
Let k = ℓ(P ) be the highest level of an element of P , and for 0 ≤ i ≤ k, denote by
mi the number of elements at level i in P . Then the preceding discussion implies
that the word u associated with π is of the form om0cnkom1cnk−1 · · · omkcn0 where
ni > 0 for all i. But by symmetry, ni must be the number of elements at level i in
P ∗ (and moreover, ℓ(P ) = ℓ(P ∗)). Thus the word u can be reconstructed from P
and its dual. We represent u by a sequence of 2n half-chords, some opening, some
closing. For instance, we show below the sequence of half-chords obtained from the
poset P of Figure 2 and its dual P ∗. It is convenient to assign with each opening
(resp. closing) half-chord a label, equal to the level of the corresponding element
of P (resp. P ∗).

10 0 0 012 2 21

|L0(P
∗)| = 1, |L1(P

∗)| = 2, |L2(P
∗)| = 2|L0(P )| = 3, |L1(P )| = 1, |L2(P )| = 1

P P ∗

It remains to see that the matching between opening and closing half-chords that
characterizes π is forced by P . We will prove this recursively, by matching opening
chords run by run, from left to right. That is, we match the m0 opening chords
labelled 0, then the m1 opening chords labelled 1, and so on. Assume we have
matched the first m0 +m1 + · · · +mi−1 opening chords. For 0 ≤ j ≤ k, let mi,j

be the number of elements of P that have level i in P and level j in P ∗. This
is the number of chords of π with opening label i and closing label j. Of course,
mi,0 + · · ·+mi,k = mi.

Observe the following property:

(⋆) An involution π avoids neighbour nestings if and only if, for
every opening run found at positions i, i + 1, . . . , i + ℓ, one has
πi < πi+1 < · · · < πi+ℓ, and symmetrically, for every closing run
found at positions i− ℓ, . . . , i−1, i, one has πi−ℓ < · · · < πi−1 < πi.

This property implies that the mi,k first (i.e., leftmost) opening chords labelled i
must be matched with closing chords labelled k, the mi,k−1 next opening chords
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labelled i must be matched with closing chords labelled k − 1, and so on. The
second part of property (⋆) then forces the choice of the mi,j closing chords that
will be matched with opening chords labelled i: they are the leftmost unmatched
closing chords labelled j. The matching of half-arches is thus forced, and π can be
completely reconstructed from P . Hence the restriction of Ω to I2n is injective.

Let us illustrate the matching procedure by completing our running example. For
the above poset P , we find m0,2 = 2, m0,1 = 1, m0,0 = 0, which allows us to match
the chords of the first opening run (equivalently, the opening chords labelled 0):

10 0 0 012 2 21

Then, m1,2 = 0, m1,1 = 1, m1,0 = 0, which forces the matching of the (unique)
opening chord labelled 1:

10 0 0 012 2 21

Finally, m2,2 = 0, m2,1 = 0, m2,0 = 1, and we recover the involution with no
neighbour nesting shown in Figure 2:

10 0 0 012 2 21

�

Remarks

1. It follows from the proof of Theorem 18 that, given any collection of intervals
with distinct endpoints whose relative order is P , the transformations in Figure 3,
applied in any order, will yield ultimately the chord diagram of the involution
Ω−1(P ). Note that these transformations boil down to conjugating a fixed point
free involution by the elementary transposition (i, i+ 1).

2. We have worked out the recursive description of involutions of I2n that cor-
responds, via the transformation Ω, to the recursive construction of (2+ 2)-free
posets described in Section 3, but it is rather involved [7].

3. The correspondence Ω allows one to read from an involution π ∈ I2n the statistics
defined in Section 5 for the poset P = Ω(π). For instance, the number of minimal
elements in P is the length of the first opening run of π. Symmetrically, the number
of maximal elements of P is the length of the last closing run of π. We have already
discussed how the distribution of levels of the elements of P can be read from π.
Finally, there is a natural analogue on involutions for the number of components
of a poset.

8. Final questions and remarks

Question 1. Is there a simple graphical construction on the dot diagram of a
permutation in Rn that gives bijectively an unlabeled (2+ 2)-free poset on n ele-
ments?
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A simple idea would be to view the dots of the diagram as a poset under the
standard product order on N2, as is done in [5]. For n ≤ 4 the posets associated
with permutations of Rn are exactly the unlabeled (2+ 2)-free posets of size n.
However, for n = 5 the poset corresponding to the permutation π = 41523 ∈ R5

contains an induced copy of 2+ 2. This is illustrated in the diagram below.

1 2 3 4 5

1

2

3

4

5

Question 2. Ascent sequences are special inversion tables. Turn these inversion
tables into permutations in the two standard ways (see [18, p. 20-21]). Is there a
simple characterisation of those sets of permutations?

Question 3. A simple involution acts on the set of (2+ 2)-free posets: duality, or
order-reversion. In terms of chord diagrams, this corresponds to taking the mirror
image of a diagram. What is the corresponding transformation on permutations
of R? For instance, the permutation associated with the poset P of Example 3 is
31746825, while the permutation associated with the dual poset P ∗ is 41726583.

Acknowledgment. Thanks to Henning Úlfarsson for pointing out that bivincular
permutations form a quasigroup, rather than a group as we incorrectly claimed in
an earlier draft.
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