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Abstract

We compute the number of self-dual rooted maps with n edges. We also compute the

number of 2-connected and 3-connected self-dual rooted maps, and show that the later are
counted by the Fine numbers.

1 Introduction

Let G be a graph embedded in the plane and let G* be its dual graph. We say that G is self-dual
if G and G* are isomorphic as embedded planar graphs, that is, if there exists an orientation-
preserving homeomorphism of the sphere taking G into G*. Notice that we are not asking merely
that G and G* are isomorphic as graphs, they must be the same embedded plane graph. There
are a number of references in the literature on self-dual planar graphs, mainly on how to produce
them [1, 6, 7). We remark that in these references, as opposed to our definition, G and G* ar
allowed to differ by a reflection.

In this paper we are interested in counting self-dual plane graphs. To this end we consider
rooted planar maps instead of plane graphs. A map is a connected planar graph embedded in the
sphere. A map is rooted if an edge e = vw is distinguished together with a vertex v on e and a
face f incident with e. We follow the convention that f is the face to the right of e going from v
to w. We call e, v and f, respectively, the root edge, vertex and face. The root edge is marked by
an arrow on e going from the tail v to the head w. Maps are allowed to have loops and multiple
edges. Two rooted maps are isomorphic if there is a homeomorphism of the sphere taking one
map into the other, preserving incidences between vertices, edges and faces, and preserving the
root vertex, edge and face. We recall that maps can be defined in a purely combinatorial way by
means of the cyclic ordering of the edges around each vertex [9].

Figure 1: Rooting the dual map.

If M is a rooted map, we define the dual map M™* as follows. As a plane graph, M* is the
dual plane graph of M. If e = vw is the root edge of M, then the root edge of M* is xy, where
x corresponds to the root face of M, and xy is defined as follows. Let e* = xz be the edge of
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M* crossed by e. Then take as zy the edge following xz in counter-clockwise order. Notice that
in this way, the root vertex and face of M* correspond, respectively, to the root face and vertex
of M. This rule has to be followed too in the special case when e* is a loop (equivalently, when
e is an isthmus). See Figure 1 for an illustration, where vertices of M* are white and edges are
dashed. It is easy to check that with this definition duality is an involution on rooted maps, that
is, M** and M are isomorphic as rooted maps. A rooted map M is self-dual if M and M* are
isomorphic.

All maps in this paper are rooted, so that we just speak of maps. We consider arbitrary
(connected), 2-connected and 3-connected maps. A map is 2-connected if it has no loops and no
cut vertices or it has only one edge (either a loop or an isthmus). It is 3-connected if in addition
has no multiple edges and no separators of size less than three. We remark that 2-connected maps
are also called non-separable, and 3-connected maps are called polyhedral. Since k-connectivity,
for k = 1,2, 3, is preserved under duality, it makes sense to consider self-dual maps in these classes.
If a map M is self-dual, then it has the same number of vertices as faces and, by Euler’s formula,
the number of edges is even. If M has 2n edges, then it has n + 1 vertices and n + 1 faces.

Let us recall the following classical formulas [8] for the numbers M,, and B,, respectively, of
maps and 2-connected maps with n edges:
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The generating function M (z) = Y M, 2" satisfies the equation
M(z) =1—162 4 182M(2) — 272 M (2)>. (2)

For the number T,, of 3-connected maps we do not have a closed formula, but one can compute
the generating function T'(z) = Y T,,2", whose first terms are

T(z) = 28 + 425 4+ 62° + 24210 + 21421 4 ...
We also need to recall the Fine numbers F},, which are defined through their generating function
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They are related to the Catalan numbers C,, through the recurrence C,, = 2F,, + F,,_1 (see [3]).
Our main results are summarised in the following theorem.

Theorem 1.

1. For n > 3, the number of 3-connected self-dual maps with 2n edges equals the Fine number
Fo_q.

2. Forn > 1, the number of 2-connected self-dual maps with 2n edges is equal to
1/3n—-2
n\n—1),

3. Forn > 1, the number of self-dual maps with 2n edges is equal to

3" [2n
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The next table shows the number of self-dual maps with at most 12 edges.

Number of edges | 3-connected | 2-connected | Arbitrary
2 1 3

4 2 18

6 1 7 135

8 2 30 1134

10 6 143 10206

12 18 728 96228

Figure 2 shows a catalogue of self-dual maps with small number of edges. When a map has two
arrows, it means it can be rooted in two non-isomorphic ways as a self-dual map. Observe that
a map and its reflection though a line are considered different if they are not isomorphic in the
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Figure 2: A catalogue of small self-dual maps.

From Theorem 1 it is easy to derive asymptotic estimates for the number of self-dual maps.

Corollary 2. The number of self-dual maps with 2n edges is asymptotically

1
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—p3/219m for arbitrary maps.

n=3/24n for 3-connected maps;

n
> for 2-connected maps;

Proof. The following estimate for the Fine numbers is well-known [3]:
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Since the number of self-dual 3-connected maps is equal to F,,_1, the first claim follows. An
application of Stirling’s estimate to the explicit formulas proves the second and the third claim. [

—-3/2 —5/2

Observe the term n that appears in the estimates instead of the usual n that appears
as a rule in the enumeration of planar maps [4]. This conforms to the fact that requiring some
kind of symmetry for a map usually changes the subexponential term in the asymptotic estimate.
On the other hand, the exponential growth (disregarding polynomial terms) of maps, 2-connected
maps and 3-connected maps with 2n edges is, respectively, 122", (27/4)?" and 4?". Hence, in all
cases the number of self-dual maps with 2n edges is roughly the square root of the total number of
maps of the same kind. As we are going to see, this can be interpreted in the sense that a self-dual
map with 2n edges is essentially made of two equal ‘pieces’ with n edges, suitably rotated.

In the paper we make a systematic use of a standard bijection between maps with n edges
and quadrangulations with n faces. Given a map M with vertices B and faces W, the associated
quadrangulation ) has as vertices BUW and edges connecting b € B and w € W if the face w is
incident with b (as many edges as incidences between w and b). The quadrangulation @ is rooted
from the root vertex of M to the root face of M, and inherits a natural embedding from that of
M. See an illustration in Figure 3, where vertices in B and W are drawn black and white. All
quadrangulations are taken with a fixed 2-colouring in such a way that the root vertex is coloured
black. Observe that @ can have faces consisting of a double edge (a digon) and an isthmus inside
it, or a digon with another digon inside. A face consisting of four distinct vertices is called a
square.

The following is also well-known: M is 2-connected if and only if @ has no multiple edges; and
M is 3-connected if and only if @ has no multiple edges and no separating quadrangles, that is,
cycles of length four not bounding a face. Observe that the cut-vertex x in Figure 3 gives rise to
a double edge between z and f, and that the 2-cut {y, z} produces a separating quadrangle ygzf.
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Figure 3: The quadrangulation associated to a map.

We now formulate a key observation, that allows us to work with quadrangulations having a
certain symmetry instead of working directly self-dual maps. This simplifies the analysis greatly.

Observation. Let M be a map, let @ be the associated quadrangulation, and let bw be the root
edge. Then M is self-dual if and only if the quadrangulation @’ obtained from ) by interchanging
black and white colours and rooting it at edge wb is isomorphic (as a rooted map) to @. In plain
words, @ is the same when looked from the root edge bw as from the root edge wb after exchanging
colours. We call such quadrangulations symmetric.

The rest of the paper is organised as follows. In Section 2 we enumerate 2-connected self-dual
maps. Using the decomposition of a 2-connected map into 3-connected components (in terms of



quadrangulations), we enumerate 3-connected self-dual maps in Section 3. Using the decomposi-
tion of a connected map into 2-connected components (again in terms of quadrangulations), we
enumerate connected self-dual maps in Section 4.

2 Two-connected maps

The enumeration of 2-connected self-dual maps is implicitly contained in the work of Brown [2].
In this section we show how to obtain item 2 from Theorem 1, and recall several results that are
needed later.

From the previous observations, 2-connected self-dual maps with 2n edges are in one to one
correspondence with symmetric quadrangulations @ with 2n faces and without multiple edges.
Throughout this section we only consider quadrangulations that have no multiple edges. Let @
be a quadrangulation with at least 4 faces and root edge byw;. Let bjwibsws be the root face
traversed in counter-clockwise order, and let b;wibows be the other face incident with byw;. Then
we redraw @ as a quadrangulation Qp, of a regular hexagon bjwsbowybsws, except that the root
edge is not drawn; see Figure 4.

Lemma 3. With the previous notations, @ is symmetric if and only if Qp is itnvariant under a
rotation of m degrees around the center of the hexagon.

The proof is immediate from the definitions (note that we do not ask that the rotation preserves
the colours of the vertices). Notice that symmetry of @ is much easier to visualize in Q.

Figure 4: A symmetric quadrangulation and the associated quadrangulation of the hexagon.

Thus our goal is to count quadrangulations of (), a hexagon with a rotational symmetry of 7
degrees, but we are not allowed to use the edge b;w; inside the hexagon, since this would produce
a double edge in ). For brevity, a quadrangulation (of a hexagon or otherwise) invariant by a
rotation of m degrees is called w-invariant.

The following result is contained in formula (11.12) from [2], with the value p = 1. The notation
2Uay, 2 there stands for quadrangulations with 2n inner vertices and 442 = 6 outer vertices, having
a rotational symmetry of order two. With these parameters, the number of inner faces is 2n + 2.

Lemma 4 (Brown). The number of w-invariant quadrangulations of a hexagon with 2n + 2 inner

faces is equal to
9(3n + 2)!

" opl(2n +3)

Proof of item 2 from Theorem 1. As we have just seen, the number of 2-connected self-dual
planar maps with 2n edges equals the number of quadrangulations with 2n — 2 faces given in
the previous lemma, minus those containing the edge bjw;. Of these there as many as arbitrary



quadrangulations with » — 1 inner faces (take any quadrangulation below bjw; and its symmetric
above bywy), and of these there as many as 2-connected maps with n edges. Using formula (1)
for B, the final result is

fn2 =B =15 _9(;,;&”42 - n(3n2— 2) @Z : i) B % (3: - 12)’

as was to be proved. O

In the rest of this section we state several formulas needed later on generating functions for
several classes of quadrangulations. Let B(z) be the generating function of quadrangulations of
a square, according to the number of inner faces. The series H*(z) and H(z) are generating
functions for quadrangulations of a hexagon bywsbsw1bsws, in the first case arbitrary ones and in
the second not containing the edge byw;. The variable z marks again the number of inner faces.
The series S5(z) and Sa(z) are the generating functions of those quadrangulations of the hexagon
that are m-invariant, in the second case forbidding again the edge byw;. This time z marks half
the number of number of inner faces (hence, 1+ 255(z) is the generating function for 2-connected
self-dual maps by half the number of edges).

The series B(z)/z and H*(z)/z? are the constant coefficient and the coefficient of y? in the series
U from [2, Eq. (6.3)], respectively; the series S3(z)/z is oU.o from [2, Eq. (11.9)]. The expressions
for these generating functions become quite compact thanks to a clever parametrisation due also
to Brown. Let u(z) be the solution to

u(2)(1 —u(2))? = 2.

B(z) = W_sz +62% 42221 4 9125 4

(3 — Tu(2))u(z)?

* _ _ 9.2 3 4 5. ...
H*(2) = A u(2)? = 32"+ 142° + 632" + 2942° +
2 — 6u(z) + 3u(2)?)u(z)?
H(z) = H*(z)-B(2)*= ( El) u(zg)‘z (2) =222 +102° +472* +2262° + - -
* _ Bu(z) 2 3 4 5
S3(z) = A—u() 3z 4 927 + 362° + 1652~ 4+ 819z2° +
So(z) = Si(z)—B(z) = @oul)uz) _,, + 722 +302° 4 1432% + 72825 + - -

1= u(2))?
(4)

Let us remark that, due to the bijection between maps and quadrangulations, the coefficient of
2"~ in B(z) is equal to By, as given in (1).

3 Three-connected maps

This section is devoted to the proof of the first item in Theorem 1. As in the previous section, we
continue to work with the quadrangulation @} of a hexagon obtained from the quadrangulation
associated to a map M. As mentioned above, M is self-dual 3-connected if and only if @y, is
m-invariant and together with the root b;w; has no multiple edges or separating quadrangles.
Therefore, we focus on enumerating such quadrangulations of a hexagon. In order to work with
the quadrangulation @, alone, we analyse how the root edge b;w, may affect the conditions above.
Let bywsbowibsws be the boundary of the hexagon counter-clockwise. Then as in the 2-connected
case, the edge byw; must not be present in the quadrangulation Q. Throughout this section, a
quadrangulation of a hexagon has no multiple edges and does not contain the edge byw;. As for
separating quadrangles, we must forbid configurations that would create such a quadrangle with



the root edge. This happens if @ contains one of the diagonal edges bows and bzws, or any path
of the form byxbs, by xbs, wizws or wizws, or a path of the form b;zyw;, where in all cases x and
y are vertices not on the hexagon. We refer to these edges and paths as forbidden paths.

Let Qj be a m-invariant quadrangulation of a hexagon without separating quadrangles or
forbidden paths. Each face f of @, is mapped to another face f’ of @ by the m degrees rotation,
and since the number of faces is even, all faces come in pairs and there is no fixed face. For each
pair of faces {f, f'}, choose a quadrangulation ¢y (which could be just a square) and replace both
f and f" by ¢, in a way that the resulting quadrangulation @’ of the hexagon is m-invariant.
This process has created a quadrangulation ' with possibly some separating quadrangles. Also,
observe that substituting a face by a quadrangulation cannot create new forbidden paths.

It is also easy to see that a m-invariant quadrangulation of a hexagon without forbidden paths
can be obtained by the process above from a unique m-invariant quadrangulation of that hexagon
without separating quadrangles or forbidden paths.

Next we translate this decomposition into generating functions. Let S5(z) be the generating
function of m-invariant quadrangulations of a hexagon without separating quadrangles or forbidden
paths, where z marks half the number of inner faces (thus, zS3(z) is the generating function of
3-connected self-dual maps by half the number of edges). Let P(z) be the generating function of
m-invariant quadrangulations of a hexagon that contain some forbidden path, where again z marks
half the number of inner faces. Then

S3(B(2)) = S2(2) — P(2). (5)
The following equation gives an expression for P(z) in terms of B(z), H(z) and Sa(z).

(1+52(2))(H(2) +2B(2))

PE) = = 7H ) + 280

(6)

Proving this equation occupies the rest of this section, but before we show how to deduce from
it the number of 3-connected self-dual maps, as stated in Theorem 1.

By replacing the right hand-side of Equation (5) by the expressions of B(z), H(z) and Sa(z)
in terms of u(z) given in (4), we arrive at

u(z)?

S3(B(z)) = T=2u()

Now let w(z) be the functional inverse of B(z) and let v(z) = u(w(z)), so that

S3(2) = v(2)?/(1 - 2v(2)).
From the expression of B(z) in terms of u(z) we get

(1 —=2v(2))v(z)
(1—wv(2))?

and eliminating v(z) from the last two equations we conclude that S3(z) is a root of

:Z’

s2(22 4+ 22) +5(222 + 22 — 1) 4 22

We thus find
1—-22—222—+/1—4z
53(2’) = 5
22(24 z2)

which equals F'(z) — 1, where F'(z) is defined in (3).

We now turn to the proof of Equation (6). To find an expression for P(z) we consider two
classes &1 and &; of w-invariant quadrangulations of a hexagon; the class £; includes all m-invariant
quadrangulations that contain either an edge bows or byws, or a path of the form by xb; or wizw;



for i € {2,3}; we call such a path a short diagonal. The class £ is made of all m-invariant
quadrangulations that contain a path byzyw;, called a long diagonal. If E1(z) and E5(z) denote
the associated generating functions and F15(z) is the generating function of & N & (the variable
z always marking half the number of inner faces) we have

P(Z) = El(z) + EQ(Z) - Elg(z).

We shall find (by dropping the variable for ease of reading):

E, = 2(1-1—52)1_'_%7 (7)
H(1+S5)

s 1+H+§B’ (8)

B 2B(B+ H)(1+ 5,) ©

(1+B)(1+H+2B)

Then E; + E2 — Eq5 gives the value claimed in (6).

To find E; consider first a quadrangulation with a short diagonal b;xbs, and, moreover, among
all possible choices for z, take the one that it is closest to we. Hence the quadrangulation restricted
to the quadrangle by xbsws has no path of the form by ybs; we call such a path a black diagonal. As
the quadrangulation is m-invariant, there is a vertex z’ such that the square wyx’wsbs is the image
of byzbswy by the m degrees rotation. Therefore, a quadrangulation with a short diagonal byxbs
can be decomposed as a m—invariant quadrangulation of an hexagon bywsz’w1bsx together with
a quadrangulation of a square b;xbzw, without black diagonals and its image under a 7w degrees
rotation. (See the left hand-side of Figure 5.)

Figure 5: Left. A member of & with a short diagonal: D is a quadrangulation without a black
diagonal, D is the 7 degrees rotation of D and S is a 7m-invariant quadrangulation. Right. A
member of &: S is as before, L is a quadrangulation without long diagonals or a short diagonal
containing z or y, and L is the 7 degrees rotation of L.

The case of a diagonal of the form b;xb, is identical, so that the only quadrangulations in the
class & not considered so far are those that contain one of the edges bows or bzws but no diagonal
bixb; for i € {2,3}. Those are easily decomposed as a quadrangulation of a square without black
diagonals and its image under a 7 degrees rotation. Thus, if D is the generating function of
quadrangulations of a square without black diagonals, we have E; = 2(1 + S3)D. To find D,
note that an arbitrary quadrangulation of a square can be seen as a sequence of quadrangulations
without black diagonals, so that B=1/(1 — D) — 1 and



We have thus proved Equation (7).

We now analyse the class £&. Consider a m—invariant quadrangulation of a hexagon with a
path of the form byxyw;, and take z and y to be closest to the edge wybs. If there are only one
such x and y, the path by xyw; splits the hexagon into two hexagons, whose quadrangulations are
obtained from each other by a 7 degrees rotation. If there is more than one path, then there are
Z',y' such that the initial quadrangulation is split into three hexagons, the middle one being -
invariant and the other two being images of each other (see the right hand-side of Figure 5). Note
that the quadrangulation of the hexagon by xyw;bsws is not arbitrary, because by the choice of x
and y it must not contain any path that gives rise to a long diagonal of the initial quadrangulation.
Let L be the generating function of such quadrangulations. Then

Ey =L+ SoL.

We classify the quadrangulations of an hexagon b, xyw;bsws that do give rise to a long diagonal
of the quadrangulation of bywsbswibsws into two non-disjoint classes £1 and L. The class £
consists of those quadrangulations that contain a long diagonal and Lo of those that contain a
short diagonal with one end in either x or y. If L;(z) and Ly(z) are the corresponding generating
functions, and Lja(2) is the generating function of £1 N Lo (with z always marking the number of
inner faces), we have

L=H—(L;+ Ly — Ly2).

By further decomposing the quadrangulations it is easy to show that Ly = LH, Ly = 2DH and
Lis = 2(DHL+ DBL); we just note that the third case splits into two subcases, corresponding to
whether the long and the short diagonal are disjoint or not. Adding these contributions together,
we arrive at
H(1-2D)
1+ H(1-2D)-2DB’

which proves Equation (8).

Finally, we consider those quadrangulations that contain both short and long diagonals. As
before, let x be such that byxbs is a short diagonal and the quadrangulation restricted to by xbzws
has no black diagonal. By the 7 degrees rotation invariance, the initial quadrangulation decom-
poses as a quadrangulation without black diagonals of the square byxbsws, together with its 7
degrees rotation image, and a m-invariant quadrangulation of the hexagon b wsx’w1bsx, such that
the resulting quadrangulation has a long diagonal. This long diagonal can come from either the
quadrangulation of this hexagon bjwsz’wybsx or from a short diagonal wyyx (implying the short
diagonal byy’z’) or from the edge xz’. In terms of generating functions, all this translates in to

FE,—-F
E12:2D(E2—|—1212>.
Hence
. _ DEi+2DE,
27"y D

from which Equation (9) follows.

4 Arbitrary maps

To prove item 3 from Theorem 1 we need to enumerate symmetric quadrangulations with multiple
edges allowed. Let S;(z) be the generating function of symmetric quadrangulations with multiple
edges allowed, where z marks half the number of faces. The outer face of such a quadrangulation
can be a proper quadrangle (i.e., with no multiple edges), a pair of digons (two pairs of parallel
edges) or a digon and a bridge. We treat the three cases separately.

In the case of the outer face being a digon and a bridge, it is easy to check that for the
quadrangulation to be symmetric, the root edge must be one of the edges of the digon. As the other



face adjacent to the root edge must also be formed by a bridge and a digon, the quadrangulation
is, up to reflection, of the form depicted in Figure 6, where the shaded area corresponds to a
quadrangulation of a digon that is m-invariant (in a degenerate case, the shaded area would be
reduced to just one edge).

There is a straightforward bijection between m-invariant quadrangulations of a digon and ar-
bitrary symmetric quadrangulations: simply remove the edge of the digon that is parallel to the
root edge. The contribution of this case to S1(z) is thus 2(z + 251 (2

e

Figure 6: Possible structures of a symmetric quadrangulation when the outer face is not a square.

The case of the outer face being composed of two digons is similar; there are only two possi-
bilities, and the only possibility, up to reflection, is depicted in Figure 6. The grey area is again
a m-invariant quadrangulation of a digon (or just an edge), S is an arbitrary quadrangulation of
a digon and S is a copy of S suitable placed such that resulting quadrangulation symmetric. As
before, removing the edge parallel to the root in the outer face is a bijection between arbitrary
quadrangulations of a digon and arbitrary quadrangulations. Then the contribution of this case
to S1(z) is 2(M(2) — 1)(2 + 251(2)), where M (z) is the generating function in Equation (2).

Finally, if the outer face is a square, removing the root edge leaves a map where the two
faces that were adjacent to the root edge have merged into a face of length 6, and all other faces
remain quadrangles. This face of length 6 can be a proper hexagon, as in previous sections, but
can also be composed of a digon and two bridges, two digons and one bridge, three digons, or
three bridges. We depict all possibilities in Figure 7, where as before a shaded area represents a
m-invariant quadrangulation of the corresponding polygon and S and S are two copies of the same
quadrangulation of a digon.

@0

Figure 7: Possible structures of a symmetric quadrangulation of a square, with the root edge
removed.

The contribution to S1(z) of all cases, except of the hexagon, follows as in the previous para-
graphs, and equals 251 (z) + 2(M(z) — 1) + 251(2)(M(2) — 1) + z = M (2)(z + 251(2)).

Now we only need to count w-invariant quadrangulations of a hexagon that can have multi-
ple edges. To construct such a quadrangulation, start from a quadrangulation @) of a hexagon
brwsbzwi baws without multiple edges and w-invariant (but allowing the presence of the edge bywy).
It follows that edges are paired by the 7 degrees rotation, except for one which is mapped to itself
by the rotation. In @, replace this edge by a symmetric quadrangulation of a digon, and replace
every edge and its image under the rotation by the same rotation of a digon (making the replace-
ment so that the resulting quadrangulation of the hexagon is still w-invariant). This procedure
gives all quadrangulations of a hexagon w-invariant, allowing multiple edges and the edge byw;.

Taking into account that a quadrangulation of a hexagon with 2¢ inner faces has a total of
2(2i+ 1) + 1 edges, the contribution of this case is 1+ (14 2571 (2))(1 4+ 2M (2)) S5 (2(1 + 2M (2))?).
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Adding everything together gives the equation

Sy(2) = M(2)(z + 251(2))(3 + S5 (2M(2)?)). (10)

From the expression of S3(z) in terms of u(z) and the equation for u(z), we obtain that
S = 83(2M(2)?) satisfies

272 M (2)* + (272M (2)? — 9)S + 92M (2)%5? + 2 M (2)2S* = 0.

With this equation we can eliminate Sj(2M(z)?) from Equation (10), and from the result
eliminate M (z) with Equation (2), obtaining finally the following equation for S;(z).

S1(2) = 3z + 6251 (2) + 3251 (2)?,

giving S1(z) = >_,51 3"C(n), as claimed.
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