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Abstract

The paper offers an overview over selected results in the litera-
ture on partially ordered patterns (POPs) in permutations, words and
compositions. The POPs give rise in connection with co-unimodal pat-
terns, peaks and valleys in permutations, Horse permutations, Catalan,
Narayana, and Pell numbers, bi-colored set partitions, and other com-
binatorial objects.
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1 Introduction

An occurrence of a pattern T in a permutation 7 is defined as a subsequence
in 7 (of the same length as 7) whose letters are in the same relative order
as those in 7. For example, the permutation 31425 has three occurrences of
the pattern 1-2-3, namely the subsequences 345, 145, and 125. Generalized
permutation patterns (GPs) being introduced in [1] allow the requirement
that some adjacent letters in a pattern must also be adjacent in the permuta-
tion. We indicate this requirement by removing a dash in the corresponding
place. Say, if pattern 2-31 occurs in a permutation 7, then the letters in
7 that correspond to 3 and 1 are adjacent. For example, the permutation
516423 has only one occurrence of the pattern 2-31, namely the subword 564,
whereas the pattern 2-3-1 occurs, in addition, in the subwords 562 and 563.
Placing “[” on the left (resp., “]” on the right) next to a pattern p means the
requirement that p must begin (resp., end) from the leftmost (resp., right-
most) letter. For example, the permutation 32415 contains two occurrences
of the pattern [2-13, namely the subwords 324 and 315 and no occurrences of
the pattern 3-2-1]. We refer to [5] and [20] for more information on patterns
and GPs.
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A further generalization of the GPs (see [19]) is partially ordered patterns
(POPs), where the letters of a pattern form a partially ordered set (poset),
and an occurrence of such a pattern in a permutation is a linear extension
of the corresponding poset in the order suggested by the pattern (we also
pay attention to eventual dashes and brackets). For instance, if we have a
poset on three elements labeled by 1/, 1, and 2, in which the only relation is
1 < 2 (see Figure 1), then in an occurrence of p = 1’-12 in a permutation =
the letter corresponding to the 1’ in p can be either larger or smaller than
the letters corresponding to 12. Thus, the permutation 31254 has three
occurrences of p, namely 3-12, 3-25, and 1-25.
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Figure 1: A poset on three elements with the only relation 1 < 2.

Let S,,(p1,- .., px) denote the set of n-permutations avoiding simultane-
ously each of the patterns pi, ..., pg.

The POPs were introduced in [17]! as an auxiliary tool to study the
maximum number of non-overlapping occurrences of segmented GPs (SGPs),
also known as consecutive GPs, that is, the GPs, occurrences of which in
permutations form contiguous subwords (there are no dashes). However,
the most useful property of POPs known so far is their ability to “encode”
certain sets of GPs which provides a convenient notation for those sets and
often gives an idea how to treat them. For example, the original proof of
the fact that |S,(123,132,213)| = (Ln%J) took 3 pages ([16]); on the other
hand, if one notices that |S,(123,132,213)| = |S,(11'2)|, where the letters
1, 1/, and 2 came from the same poset as above, then the result is easy
to see. Indeed, we may use the property that the letters in odd and even
positions of a “good” permutation do not affect each other because of the
form of 11’2. Thus we choose the letters in odd positions in (Ln72 J) ways,
and we must arrange them in decreasing order. We then must arrange the
letters in even positions in decreasing order too.

The POPs can be used to encode certain combinatorial objects by re-
stricted permutations. Examples of that are Theorem 1, Propositions 10,
11, 17, and 20, as well as several other results in the literature (see, e.g., [4]).
Such encoding is interesting from the point of view of finding bijections be-
tween the sets of objects involved, but it also may have applications for
enumerating certain statistics. The idea is to encode a set of objects under
consideration as a set of permutations satisfying certain restrictions (given
by certain POPs); under appropriate encodings, this allows us to transfer
the interesting statistics from the original set to the set of permutations,
where they are easy to handle. For an illustration of how encoding by POPs

!The POPs in this paper, as well as in [19], are the same as the POGPs in [17], which
is an abbreviation for Partially Ordered Generalized Patterns.



can be used, see [22, Thm. 2.4] which deals with POPs in compositions
(discussed in Section 5) rather than in permutations, though the approach
remains the same.

As a matter of fact, some POPs appeared in the literature before they
were actually introduced. Thus the notion of a POP allows us to collect
under one roof (to provide a uniform notation for) several combinatorial
structures such as peaks, valleys, modified mazima and modified minima in
permutations, Horse permutations and p-descents in permutations discussed
in Section 2.

There are several other ways to define occurrences of patterns in permu-
tations (and other combinatorial objects like words and compositions) for
which POPs can be defined and studied (see, e.g., [30] where certain POPs
are studied in connection with cyclic occurrence of patterns). However, this
survey deals with occurrences of patterns in the sense specified above.

The paper is organized as follows. Section 2 deals with co-unimodal pat-
terns and some of their variations. In particular, this involves considering
peaks and wvalleys in permutations, as well as so called V- and A—patterns.
Sections 3 and 4 discuss POPs with, and without, dashes involved, respec-
tively. In particular, Section 3 deals with Horse permutations and multi-
patterns, while Section 4 presents results on flat posets, non-overlapping
SPOPs in permutations and words, and g-analogues for non-overlapping
SPOPs (SPOP abbreviates Segmented POP). Further, Section 5 states some
of results on POPs in compositions, which can be viewed as a generalization
for certain results on POPs in words. Finally, in Section 6, we state a couple
of concluding remarks.

In what follows we need the following notations. Let o and 7 be two
POPs of length greater than 0. We write o < 7 to indicate that any letter
of o is less than any letter of 7. We write ¢ <> 7 when no letter in o is
comparable with any letter in 7. The GF (EGF; BGF) denotes the (expo-
nential; bivariate) generating function. If 1 = ajaz---a, € Sy, then the
reverse of wis n” := a,, - - - asaq, and the complement of 7 is a permutation
7¢ such that 7§ = n+1—a;, wherei € [n] = {1,...,n}. We call 7", 7¢, and
(") = (7€) trivial bijections.

2 Co-unimodal patterns and their variations

For a permutation 7 = myma -« -1, € Sy, the inversion indez, inv(r), is the
number of ordered pairs (7,7) such that 1 < i < j < n and m; > m;. The
major index, maj(r), is the sum of all ¢ such that m; > m;11. Suppose o is
a SPOP and

place,(m) = {i | m has an occurrence of o starting at m;}.

Let maj, () be the sum of the elements of place, ().
If o is co-unimodal, meaning that k = o1 > 09 > --- > 0; < --- < 0}, for
some 2 < j < k (see Figure 2 for a corresponding poset in the case j = 3
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Figure 2: A poset for co-unimodal pattern in the case j = 3 and k = 5.

and k = 5), then the following formula holds [3]:

Z tmaJU(nfl)qmaJ(w) _ Z 7jmaja(rl)qlnv(yr).

TES, TESH

If Kk = 2 we deal with usual descents. Thus a co-unimodal pattern can be
viewed as a generalization of the notion of a descent. This may be a reason
why a co-unimodal pattern p is called p-descent in [3]. Also, setting t = 1 we
get a well-known result by MacMahon on equidistribution of maj and inv.

The notion of co-unimodal patterns was refined and generalized in [29],
where the authors use symmetric functions along with A-brick tabloids and
weighted \-brick tabloids to obtain their (new) results as well as some known
results. Moreover, in all the cases in [29], it is possible to extend the results
to g-analogues, where the powers of ¢ count the inversion statistic. See [28§]
for basic techniques and ideas used in [29].

2.1 Peaks and valleys in permutations

A permutation 7 has exactly k peaks (resp., valleys), also known as mazima
(resp., minima), if |{j | 7; > max{mj_1,7mj41}}| = k (resp., [{j | m; <
min{7m;_1,mj41}}| = k). Thus, an occurrence of a peak in a permutation is
an occurrence of the SPOP 121", where relations in the poset are 1/ < 2
and 1” < 2. Similarly, occurrences of valleys correspond to occurrences of
the SPOP 212", where 2’ > 1 and 2” > 1. See Figure 3 for the posets
corresponding to the peaks and valleys. So, any research done on the peak
(or valley) statistics can be regarded as research on (S)POPs (e.g., see [33]).
2 2/ 2//
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Figure 3: Posets corresponding to peaks and valleys.

Also, results related to modified mazima and modified minima can be
viewed as results on SPOPs. For a permutation o1 ...0, we say that o;
is a modified mazximum if 0,1 < o; > 0441 and a modified minimum if
Oi—1 > 0 < 0441, for i = 1,...,n, where o9 = o1 = 0. Indeed, we can
view a pattern p as a function from the set of all symmetric groups U,>oSy
to the set of natural numbers such that p(7) is the number of occurrences of



pin 7, where 7 is a permutation. Thus, studying the distribution of modified
maxima (resp., minima) is the same as studying the function ab]+1'21"+[dc
(resp., ba] +2'12" + [ed) where a < b, ¢ < d and the other relations between
the patterns’ letters are taken from Figure 3. Also, recall that placing “[”
(resp., “]”) next to a pattern p means the requirement that p must begin
(resp., end) with the leftmost (resp., rightmost) letter.

A specific result in this direction is problem 3.3.46(c) on page 195 in [11]:
We say that o; is a double rise (resp., double fall) if 0;_1 < 0y < 041 (resp.,
0i—1 > 0; > 0i+1); The number of permutations in S, with i; modified
minima, 7o modified maxima, i3 double rises, and i4 double falls is

n Q2T a1z
i1, i2—1, i3 ig L e —¢
upuy uguy —

n! | age*® — qpe*2®

where s = uius, a1 + g = ug + ug.

In Corollary 30 one has an explicit generating function for the distrib-
ution of peaks (valleys) in permutations. This result is an analogue to a
result in [9] where the circular case of permutations is considered, that is,
when the first letter of a permutation is thought to be to the right of the
last letter in the permutation. In [9] it is shown that if M(n, k) denotes the
number of circular permutations in S, having & maxima, then

2" zz(l — ztanhxz)
M P =
ZZ (n, k)y n! z — tanhzz

n>1k>0

where z = /1 — y.

2.2 V- and A—patterns

A variation of co-unimodal patterns is when we do not require in a co-
unimodal pattern the first element to be the largest one. More precisely, we
say that a factor m;_---m; -+ m e of a permutation m ---m, is an occur-
rence of the pattern V(k,?) (resp. A(k,?)) if mj—p > mj—prq1 > - >m <
Tl < o0 < Tiqp (resp. Tl < Ti—fog1 < oo < TG > Tig] > 200 > 7Ti+g).
Such patterns are a refinement of the concept of peaks and valleys.

A general approach to study avoidance of V- and A—patterns is sug-
gested in [23] (see [23, Subsec. 2.2]). Below, we list explicit enumerative
results in [23] starting with the one having a combinatorial interpretation
for avoidance of a certain V-pattern.

Let K], denote the corona of the complete graph K, and the complete
graph K7; in other words, K/, is the graph constructed from K, by adding
for each vertex v a new vertex v’ and the edge vv’. The following theorem
provides a combinatorial property involving the pattern V(1,2).

Theorem 1. ([23, Thm 7]) The set of (n+ 1)-permutations avoiding simul-
taneously the patterns 213 and V (1,2) is in one-to-one correspondence with



the set of all matchings of K/,. Thus, the EGF for the number of permuta-
tions avoiding the patterns 213 and V(1,2) is given by

x 2
Alz) =1 —l—/ 2T dt.
0

Theorem 2. ([23, Thm 1]) The EGF A(z) for the number of permutations
avoiding V (2,1) is given by

14 exp <32:E) sec <\/2?:x + g) /0 exp (_32u> cos <\/2§u + g) du.

Theorem 3. ([23, Thm 2|) The EGF A(x) for the number of permutations
avoiding simultaneously the patterns V(1,2), V(2,1), and A(1,2) is given
by

1
5(6’” + (tanz +secz)(e” + 1) — (1 + 2z + 2?)).

Theorem 4. ([23, Thm 2]) The EGF A(z) for the number of permutations
avoiding simultaneously the patterns V(1,2) and A(1,2) is given by

1+ 2+ (tanx +secz — 1)(e* —1).

Theorem 5. ([23, Cor 5]) The EGF A(x) for the number of permutations
avoiding simultaneously the patterns V(1,2) and A(2,1) is given by

\/g x \/§ s - x?
7exp<§>sec 7.%4-6 +e —<1+:c+2>.

Theorem 6. ([23, Thm 6]) The number of n-permutations avoiding V (1, 2)
and V(2,1) simultaneously is given by

n n—i+1
An = Z Z i
=1 ] -1
n—1i—j is odd
with

(1) ifn>i>1 and
AP — . n—1 —j = —1,
A I TG I Gy I G I Gy ifn—i—j=1,

where E,, is the number of alternating permutations.

3 POPs involving dashes

In this section we consider some of the results on POPs involving at least
one dash.



3.1 Patterns containing O-symbol

In [15] the authors study simultaneous avoidance of the patterns 1-3-2 and
1023. A permutation 7 avoids 1023 if there is no m; < m; < mj41 with
i < j — 1. Thus the O symbol has the same meaning as “-” except for O
does not allow the letters separated by it to be adjacent in an occurrence
of the corresponding pattern. In the POP-terminology, 1023 is the pattern
1-1'-23, or 1-1'23, or 11’-23, where 1’ is incomparable with the letters 1,2,
and 3 which, in turn, are ordered naturally: 1 < 2 < 3. The permutations
avoiding 1-3-2 and 1023 are called Horse permutations. The reason for
the name came from the fact that these permutations are in one to one
correspondence with Horse paths, which are the lattice paths from (0,0) to
(n,n) containing the steps (0,1), (1,1), (2,1), and (1,2) and not passing
the line y = x. According to [15], the generating function for the horse
permutations is

1—2—+1—2x— 322 — 423
222(1+ x)
Moreover, in [15] the generating functions for Horse permutations avoiding,
or containing (exactly) once, certain patterns are given.

In [10], patterns of the form z-yOz are studied, where zyz € S3. Such a
pattern can be written in the POP-notation as, for example, x-y-a-z where a
is not comparable to x, y, and z. A bijection between permutations avoiding
the pattern 1-203, or 2-103, and the set of odd-dissection convex polygons
is given. Moreover, generating functions for permutations avoiding 1-302
and certain additional patterns are obtained in [10].

3.2 Patterns of the form o-m-7

Let o and 7 be two SGPs (the results below work for SPOPs as well). We
consider the POP a = o-m-7 with m > o, m > 7, and ¢ <> 7, that is, each
letter of ¢ is incomparable with any letter of 7 and m is the largest letter in
a. The POP « is an instance of so called shuffle patterns (see [17, Sec 4]).

Theorem 7. ([17, Thm. 16]) Let A(x), B(z) and C(x) be the EGF for the
number of permutations that avoid o, T and « respectively. Then C(x) is
the solution to the following differential equation with C'(0) = 1:

C'(z) = (A(z) + B(x))C(x) — A(z)B(2).
If 7 is the empty word then B(x) = 0 and we get the following result for
segmented GPs:

Corollary 8. ([17, Thm. 13],[24]) Let « = o-m, where o is a SGP on
[k —1]. Let A(z) (resp., C(x)) be the EGF for the number of permutations
that avoid o (resp., ). Then C(z) = e @A) where F(z, A) = Iy Aly) dy.

Example 1. ([17, Ex 15]) Suppose a = 12-3. Here o = 12, whence A(z) =
e”, since there is only one permutation that avoids o. So

C’(m) _ eF(w,eXp) _ ee’“‘—l‘



We get [6, Prop. 4] since C(x) is the EGF for the Bell numbers.

Corollary 9. ([17, Cor. 19]) Let a = o-m-7 is as described above. We
consider the pattern o(a) = p1(0)-m-pa(T), where 1 and pa are any trivial
bijections. Then |Sp(a)| = |Sn(p(a))|.

3.3 Patterns of the form m-o-m

This subsection contains results on patterns in which two largest incompara-
ble elements of the corresponding poset embrace the other elements building
a consecutive POP (SPOP).

Proposition 10. ([12]) Suppose the elements 1,2,3',3" build the poset with
the relations 1 < 2 < 3" and 2 < 3" (3" is incomparable with 3"). Then
permutations avoiding the POP 3'-12-3" are in one-to-one correspondence
with bi-colored set partitions.

Proposition 11. ([12]) Suppose the elements 1',1”,2,3"3" build the poset
with the relations 1/,1" < 2 < 3',3" (1’ is incomparable with 1", and 3" is
incomparable with 3"). Then permutations avoiding the POP 3'-1'21"-3" are
in one-to-one correspondence with Dowling partitions. Moreover, the EGF
for such permutations is given by

o b2t —1
1 —|—/ exp <6+> dt.
0 2

3.4 Multi-patterns

Suppose {o1,09,...,0%} is a set of segmented GPs and p = o1-09-+---0%
where each letter of o; is incomparable with any letter of o; whenever i # j
(0; <> 0j). We call such POPs multi-patterns. Clearly, the Hasse diagram
for such a pattern is k disjoint chains similar to that in Figure 4.

S

Figure 4: A poset corresponding to a multi-pattern.

Theorem 12. ([17, Thm. 23 and Cor. 24]) The number of permutations
avoiding the pattern p = o01-09---- -0k is equal to that avoiding a multi-
pattern obtained from p by an arbitrary permutation of o;’s as well as by
applying to o;’s any of trivial bijections.

The following theorem is the basis for calculating the number of permu-
tations that avoid a multi-pattern.



Theorem 13. ([17, Thm. 28]) Let p = 01-02-- - - -0}, be a multi-pattern and
let A;(x) be the EGF for the number of permutations that avoid o;. Then
the EGF A(x) for the number of permutations that avoid p is

k i—1
=> Ai(2) [[((z = DA;(z) + 1).
i=1 j=1

Corollary 14. ([17, Cor. 26]) Let p = 01-02--+- -0} be a multi-pattern,
where |o;| = 2 for all i. That is, each o; is either 12 or 21. Then the EGF
for the number of permutations that avoid p is given by

—(1+ (z—1)e")

l1—zx

Az) =1

Remark 15. Although the results in Theorems 12 and 13 are stated in [17]
for ;’s which are SGPs, they are true for o;s which are SPOPs ([19, Remark

7).

4 Segmented POPs (SPOPs)

Patterns in Section 2 are also examples of SPOPs. In fact, the most of
known results on POPs are related to SPOPs.

4.1 Segmented patterns of length four

In this subsection we provide the known results related to SPOPs of length
four. Theorem 2, Proposition 24, and Corollary 29 give extra results on
such patterns. In this subsection, A(z) = > ., Apx™/n! is the EGF for
the number of permutations in question. The patterns in the subsection are
built on the poset in Figure 6 and the letter 1” is not comparable to any
other letter.

Theorem 16. ([17, Thm. 30]) For the SPOP 122'1’, we have that

Ax) = % + itanw(l + €2 + 2e"sinx) + %em COS .
Proposition 17. ([18, Prop. 8,9]) There are (L(nn:l)l/m) (LH%J) permutations
in Sy, that avoid the SPOP 12'21'. The (n+ 1)-permutations avoiding 12'21
are in one-to-one correspondence with different walks of n steps between
lattice points, each in a direction N, S, E or W, starting from the origin and
remaining in the positive quadrant.

Proposition 18. ([18, Prop. 4,5,6]) For the SPOP 11'1"2, one has

n!

[n/3]!L(n+1)/3]!(n +2)/3]""

n—1
and for the SPOP 11'21"” and n > 1, we have A, = n - ( >
[(n—1)/2]

Moreover, for the SPOPs 1'1"12 and 1'121”, we have Ay = A1 = 1, and, for
n>2 A, =n(n-1).

A, =




Proposition 19. ([18, Prop. 7]) For the SPOP 1231’, we have

~1
var V3o m) 11,

A — z/2
(x) = ze <cos 5 3 5

and for the SPOPs 1321’ and 2131’, we have

X
A(z) = z(1 —/ e 2 gyt 41
0
We end up this subsection with a result on multi-avoidance of SPOPs
that has a combinatorial interpretation.

Proposition 20. ([4, Prop. 2.1,2.2]) There are 2(L1’L72J) n-permutations
avoiding the SPOPs 11'22" and 22'11" simultaneously. For n > 3, there is a
bijection between such n-permutations and the set of all (n + 1)-step walks
on the x-axis with the steps a = (1,0) and a = (—1,0) starting from the
origin but not returning to it.

4.2 SPOPs built on flat posets

In this subsection, we consider flat posets built on k41 elements a, a1, ..., ax
with the only relations a < a; for all i. A Hasse diagram for the flat poset
is in Figure 5. Theorem 26 and Corollary 30 are the main results in the
subsection.

a1a2 .. ak

Y

a
Figure 5: A flat poset.

The following proposition generalizes [6, Prop. 6]. Indeed, letting k =
2 in the proposition we deal with involutions and permutations avoiding
1-23 and 1-32. Note that even though Proposition 21 and Corollary 22
contain dashes in the patterns, those results are actually on SPOPs due to
Proposition 23. (We stated the results with dashes to be consistent with [6,
Prop. 6].)

Proposition 21. ([19, Prop. 14]) The permutations in S, having cycles of
length at most k are in one-to-one correspondence with permutations in S,
that avoid a-a1 - - - ag.

Corollary 22. ([19, Cor. 15]) The EGF for the number of permutations
avoiding a-ay - - - ag, is given by eXp(Zf:1 x' /7).

Proposition 23. ([19, Prop. 16]) One has S, (a-ay - - ag) = Sp(aay - - - ax),
and thus the EGF for the number of permutations avoiding aay---ay s

exp(3is; 2°/i).

10



Proposition 24. ([19, Cor. 17]) The EGF for the number of permutations
avoiding aaiasag is given by exp(x + x2/2 + 23/3).

Theorem 25. (Distribution of aajas - - - ag, [19, Thm. 18]) Let

P:=P(x,y) = Z Z ye™ g /)

n>0TES,

be the BGF on permutations, where e(m) is the number of occurrences of the
SPOP p = aayas ---ay in w. Then P is the solution to
opP 1—y)(1—ak
Jpry (L= =ah)

ox 1-=x (1)

with the initial condition P(0,y) = 1.

Note, that if y = 0 in Theorem 25, then the function in Corollary 22,
due to Proposition 23, is supposed to be the solution to (1), which is true.
If £ =1 in Theorem 25, then as the solution to (1) we get nothing else but
the distribution of descents in permutations: (1 — y)(e® =% —4)~1. Thus
Theorem 25 can be thought as a generalization of the result on the descent
distribution.

The following theorem generalizes Theorem 25. Indeed, Theorem 25 is
obtained from Theorem 26 by plugging in £ = 0 and observing that obviously
aai -+ ar and ai - - - aga are equidistributed.

Theorem 26. (Distribution of ajas - - - agaagi1ak12 - - - agre, [19, Thm. 19]))

Let
P :=P(z,y) = Z Z ye(m g™ /)

n>07ES,

be the BGF of permutations where e(m) is the number of occurrences of the
SPOP p = ajag - - axaax110k+2 - - - apre in w. Then P is the solution to

ok o k0 k0 ke
OP (P—l x><P_1 :c>+2 zt -t 1—2f -2+ 2

or Y l—z 1—x - (1—x)2

11—z
with the initial condition P(0,y) = 1.

If y = 0 in Theorem 26 then we get the following corollary:

Corollary 27. ([19, Cor. 20]) The EGF A(z) = }_,5qAnz™/n! for the
number of permutations avoiding the SPOP p = ajas - - - 4005110542 - - - Gfrp
satisfies the following differential equation with the initial condition A(0) =
1:
2 — gk — 2t 1 — ok — gt 4 ghtt
Allz) = """ Ax) —
(x) @) -

1—=x

The following corollaries to Corollary 27 are obtained by plugging in
k=/¢=1and k=1 and ¢ = 2 respectively.

11



Corollary 28. ([16]) The EGF for the number of permutations avoiding
aiaay is (exp(2z) +1)/2 and thus |S, (a1aasz)| = 2771

Corollary 29. ([19, Cor. 22]) The EGF for the number of permutations
avoiding aiaaqas 1s

1+\f(eq~(\[x+f)—er(f)) (@) +2

where erf(x) \f/  dt is the error function.

If Kk =1 and ¢ = 1, then our pattern ajaas is nothing else but the
valley statistic. In [31] a recursive formula for the generating function of
permutations with exactly k valleys is obtained, which however does not
seem to allow (at least easily) finding the corresponding BGF. As a corollary
to Theorem 26 we get the following BGF by solving (2) for kK =1 and ¢ = 1:

Corollary 30. ([19, Cor. 23]) The BGF for the distribution of peaks (val-
leys) in permutations is given by

1 1
1——4+- y—l-tan(m y—l—i—arctan(
vy oy

7=1))

4.3 Distribution of SPOPs on flat posets with additional re-
strictions

The results from this subsection are in a similar direction as that in the
papers [2], [25], [26], and several other papers, where the authors study
1-3-2-avoiding permutations with respect to avoidance/counting of other
patterns. Such a study not only gives interesting enumerative results, but
also provides a number of applications (see [2]).

To state the theorem below, we define P, = Zﬁ;é %H(Q:) ™. That is,
Py, is the sum of initial k£ terms in the expansion of the generating function

@ of the Catalan numbers.

Theorem 31. (Distribution of ajas - - - agaariiagso - agre on S,(2-1-3),
[19, Thm. 24]) Let

P.= Z Z ye(ﬂ')xn

n>0 €S, (2-1-3)

be the BGF of 2-1-3-avoiding permutations where e(m) is the number of
occurrences of the SPOP p = ajag -+ - araap+10k+2 - - - Qgr¢ 0 w. Then P is
given by

1—2(1—y)(Py+ P) — \/(x(1 — y)(Pe + Pr) — 1)? — day(x(y — 1) PPy + n

2xy

12



We now discuss several corollaries to Theorem 31. Note that letting
y = 1, we obtain the GF for the Catalan numbers. Also, letting y = 0 in the
expansion of P, we obtain the GF for the number of permutations avoiding
simultaneously the patterns 2-1-3 and ajas2 - - - apaar10g12 - - - Gpye-

If k=1 and £ = 0 in Theorem 31, then P, = 1 and P, = 0, and
we obtain the distribution of descents in 2-1-3-avoiding permutations. This
distribution gives the triangle of Narayana numbers (see [32, A001263]).

If Kk =¢ =1 in Theorem 31, then we deal with avoiding the pattern
2-1-3 and counting occurrences of the pattern 312, since any occurrence of
aijaas in a legal permutation must be an occurrence of 312 and vice versa.
Thus the BGF of 2-1-3-avoiding permutations with a prescribed number of
occurrences of 312 is given by

1-22(1—y)— /41 —y)z2 + 1 —4da
22y ’

Reading off the coefficients of the terms involving only z in the expansion
of the function above, we can see that the number of n-permutations avoiding
simultaneously the patterns 2-1-3 and 312 is 2"~!, which is known and is
easy to see directly from the structure of such permutations.

Reading off the coefficients of the terms involving y to the power 1, we
see that the number of n-permutations avoiding 2-1-3 and having exactly
one occurrence of the pattern 312 is given by (n — 1)(n — 2)2"~%.  The
corresponding sequence appears as [32, A001788] and it gives an interesting
fact having a combinatorial proof:

Proposition 32. ([19, Prop. 25]) There is a bijection between 2-dimensional
faces in the (n + 1)-dimensional hypercube and the set of 2-1-3-avoiding
(n + 2)-permutations with exactly one occurrence of the pattern 312.

If Kk =1and ¢ = 2 in Theorem 31, then we deal with avoiding the pattern
2-1-3 and counting occurrences of the pattern ajaasas. In particular, one
can see that the number of permutations avoiding simultaneously 2-1-3 and
ajaagas is given by the Pell numbers p(n) defined as p(n) = 2p(n — 1) +
p(n —2) for n > 1; p(0) = 0 and p(1) = 1. The Pell numbers appear as [32,
A000129], where one can find objects related to our restricted permutations.

4.4 Non-overlapping SPOPs

This subsection deals additionally with occurrences of patterns in words.
The letters 1,2,1’,2" appearing in the examples below are ordered as in
Figure 6.

Theorem 13 and its counterpart in the case of words [21, Thm. 4.3]
and [21, Cor. 4.4], as well as Remark 15 applied for these results, give an
interesting application of the multi-patterns in finding a certain statistic,
namely the mazimum number of non-overlapping occurrences of a SPOP
in permutations and words. For instance, the maximum number of non-
overlapping occurrences of the SPOP 11’2 in the permutation 621394785 is

13



Figure 6: A poset giving partial order for 1,2,3,1’, and 2'.

2, and this is given by the occurrences 213 and 478, or the occurrences 139
and 478.
Theorem 33 generalizes [17, Thm. 32] and [21, Thm. 5.1].

Theorem 33. ([18, Thm. 16]) Let p be a SPOP and B(x) (resp., B(x;k))
is the EGF (resp., GF) for the number of permutations (resp., words over [k])
.. [
avoiding p. Let D(z,y) = yNP(”)T;—“ and D(z, y; k) = 32,50 2wekn y V(W) gn
where Np(s) is the mazimum number of non-overlapping occurrences of p
in s. Then D(xz,y) and D(x,y; k) are given by

B(x) and B(x; k)
1—y(l+ (z—1)B(z)) 1—y(1+ (kx —1)B(z;k))’

The following examples are corollaries to Theorem 33.

Example 2. ([18, Ex 1]) If we consider the SPOP 11’ then clearly B(z) =
1+ 2z and B(z;k) =1+ kz. Hence,

142 it
D(x,y) = =Y @+ Py,

1~ ya? i>0
and
D(v,y;k)= ————— = kx)? + (kx)* )yt
(k) = 1 e = () ()

Example 3. ([18, Ex 2]) For permutations, the distribution of the maximum
number of non-overlapping occurrences of the SPOP 122’1’ is given by

2+ Ltanz(1 + ¥ + 2e”sinz) + e cosx

D(x,y) = .
(@y) 1—y(l+ (z—1)(5 + Ftanz(1 + €2 + 2e”sinz) + 3e® cosz))

4.5 g-analogues for non-overlapping SPOPs

We fix some notations. Let p be a segmented POP (SPOP) and A” | be the
number of n-permutations avoiding p and having k inversions. As usually,

g = "+ -+ ¢ [nlg! = [nlg--- g . ] - [[% and, as

i i]gl[n—i]q!?
above, inv(7) denotes the number of inversions in a permutation 7. We set
AL (0) =X, avoids » g™ (™) Moreover,

n

™ x nV(r 2!
Apw) =LA g = A = Y
n,k n

| |
Mq' [n]q. 7 avoids p

14



All the definitions above are similar in case of permutations that quasi-
avoid p, indicated by B rather than A, namely, those permutations that have
exactly one occurrence of p and this occurrence consists of the |p| rightmost
letters in the permutations.

Theorem 34. ([19, Thm. 28]; a g-analogue of [17, Thm. 28] that is valid
for POPs) Let p = py----- pr be a multi-pattern (p;s are SPOPs, and letters
of p; and p; are incomparable for i # j). Then

k 1—1 k 1—1
An(e) = 3" A () [] BY (@) = _ 42 (@) (@ — 1) A (@) + 1),
i=1 j=1 i=1 j=1

Theorem 35. ([19, Thm. 28]; a g-analogue of [18, Thm. 16]) If Ny(m)
denotes the maximum number of non-overlapping occurrences of a SPOP p
in 7, then

Z pr(W)qinU(W) ﬂ _ Ag(l') _ Ag(l')
- 7! 1-yBj(x) 1—y(x—DAG(x) +1)

5 POPs in compositions

Compositions are objects closely related to words, and some of the results
on POPs in compositions can be viewed as generalizations of certain results
on words. In this subsection we review some of the results in [13] and [22].

5.1 Avoiding POPs in compositions

Let N be the set of all positive integers, and let A be any ordered finite set of
positive integers, say A = {a1,aq9,...,ar}, where a1 < ag < ag < -+ < ay.
A composition ¢ = 0103...0., of n € N is an ordered collection of one or
more positive integers whose sum is n. The number of summands, or parts,
namely m, is called the number of parts of the composition. For any ordered
set A = {a1,as,...,ar} C N, we denote the set of all compositions of n with
parts in A (resp. with m parts in A) by C2 (resp. C,f;m). Occurrences of
patterns, in particular, POPs in compositions are defined similarly to that
in permutations and words.

Theorem 36. [13, Thm. 3.3] Let A = {a;,ag,...,ar} CN.

1. Let ¢ be a shuffle pattern T-£-v, that is, £ is the largest element in the
pattern while each letter in 7 is incomparable to any letter in v. Then
forall k > ¢,

A CA 0 g, y) — 2y O @,y ot (2, )
Cy(z,y) = A—{ap} A—{ay} :
(1 —zwyCr " (z,y)) (1 — 2% yCy, " (2, y))
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2. Let 1) be a POP 7-1-v, where 1 is the smallest element in the pattern
while each letter in 7 is incomparable to any letter in v». Then for all
k>,

Co M ) — any O @, y) 0 (2, y)

(1= aoyC? ™ () (1 = eyl ()

Cil(z,y) =

Theorem 37. [13, Thm. 3.7] Let A C N and let 7 = 11-T2-----T5s be a
multi-pattern (see Subsection 3.4). Then

(ny“ — 1> C’é(x,y) +1

a€A

s 7j—1
Ciw,y) =Y Ca(zy [] :
j=1 i=1

Theorem 38. [13, Thm. 4.1] Let A be any ordered set of positive integers
and let T be a consecutive pattern. Then

Z Z 75N.r(a)xnym _ 071-4('%'7 y)
L=t[(yXaeaz® = 1) Ci(w,y) + 1]

where N;(o) is the mazimum number of non-overlapping occurrences of T
mo.

5.2 Counting POPs in compositions

While dealing with counting patterns in some objects, say, permutations,
we typically solve the following problem: “find the number of permutations
containing certain number of occurrences of a given pattern.” In [22] another
problem related to counting patterns was considered: “given a POP, how
many times it occurs among all compositions?” Such studies generalize some
of results in the literature, for example, those in [14] (see [22, Introd.]). To
state results in this direction, we need some definitions.

Given a SPOP w = wjws---w,, with m parts, let c,(n,?,s) be the
number of occurrences of w among compositions of n with £+ m parts such
that the sum of the parts preceding the occurrence is s. Let Q,(z,y, z) be
the generating function for ¢, (n,?, s):

Qu(z,y,2) = Z cw(n, €, )™y 25
n,l,seEN

Given a segmented pattern v and n € N, let P,(n) denote the number of
compositions of n that are order isomorphic to v. If j is the largest letter of
v, then P,(n) is the number of integral solutions t1,...,t; to the system

where f, is the number of £’s in v. We call p = (u1,...,1;) the content
vector of v. By expanding terms into geometric series, one can see that the
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number of integral solutions to (3) is the coefficient of z™ in
my

J
Py(x) = H ﬁw» (4)
k=1

where my = prj_pq41 + -+ py for 1 <k < g

Theorem 39. Let w be a SPOP. Then

(2,7, 2) = : (1 -2)(1 - x2) ) S Py (@) (5)

l—z—2y)(1 —xz — zyz

where the sum is over all linear extensions v of w.

6 Concluding remarks

The study of POPs, being a natural generalization of considering general-
ized patterns in permutations and words, is not only dealing with challenging
enumerative problems, but also with ways to discover new connections be-
tween restricted permutations/words/compositions and other combinatorial
objects. There are infinitely many partially ordered sets and patterns, which
provides many opportunities for further research on POPs. Some open prob-
lems on POPs can be found in [19, Sec. 5]. We expect that POPs will play
a major role in research on (permutation) patterns in the future.
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