
On uniquely k-determined permutations

Sergey Avgustinovich∗ and Sergey Kitaev†

16th March 2007

Abstract

Motivated by a new point of view to study occurrences of consec-
utive patterns in permutations, we introduce the notion of uniquely
k-determined permutations. We give two criteria for a permutation to
be uniquely k-determined: one in terms of the distance between two
consecutive elements in a permutation, and the other one in terms of
directed hamiltonian paths in the certain graphs called path-schemes.
Moreover, we describe a finite set of prohibitions that gives the set
of uniquely k-determined permutations. Those prohibitions make the
application of the transfer matrix method possible for determining the
number of uniquely k-determined permutations.

1 Introduction

A pattern τ is a permutation on {1, 2, . . . , k}. An occurrence of a consecutive
pattern τ in a permutation π = π1π2 . . . πn is a word πiπi+1 . . . πi+k−1 that is
order-isomorphic to τ . For example, the permutation 253164 contains two
occurrences of the pattern 132, namely 253 and 164. In this paper we deal
only with consecutive patterns, which causes omitting the word “consecutive”
in defining a pattern to shorten the notation.

There are several approaches in the literature to study the distribution
and, in particular, avoidance, of consecutive patterns in permutations. For

∗Sobolev Institute of Mathematics, Acad. Koptyug prospect 4, Novosibirsk 630090,
Russia, avgust@math.nsc.ru

†Institute of Mathematics, Reykjav́ık University, Ofanleiti 2, 101 Reykjav́ık, Iceland,
sergey@ru.is

1



example, direct combinatorial considerations are used in [9]; the method of
inclusion-exclusion is used in [7, 10]; the tree representations of permutations
are used in [5]; the spectral theory of integral operators on L2([0, 1]k) is used
in [4]. In this paper we suggest yet another approach to study occurrences of
consecutive patterns in permutations. The approach is based on considering
the graph of patterns overlaps defined below, which is a similar to the de
Bruijn graph studied broadly in the literature mainly in connection with
combinatorics on words and graph theory. However, we do not intend to
study/develope the approach in this paper, rather using it as a possible
motivation for introducing our objects of interest.

Suppose we are interested in the number of occurrences of a pattern
τ of length k in a permutation π of length n. To find this number, we
scan π from left to right with a “window” of length k, that is, we consider
Pi = πiπi+1 . . . πi+k−1 for i = 1, 2, . . . , n − k + 1: if we meet an occurrence
of τ , we register it. Each Pi forms a pattern of length k, and the procedure
of scanning π gives us a path in the graph Pk of patterns overlaps of order
k defined as follows (graphs of patterns/permutations overlaps appear in
[1, 2, 8]). The nodes of Pk are all k! k-permutations, and there is an arc
from a node a1a2 . . . ak to a node b1b2 . . . bk if and only if a2a3 . . . ak and
b1b2 . . . bk−1 form the same pattern. Thus, for any n-permutation there is a
path in Pk of length n − k + 1 corresponding to it. For example, if k = 3
then to the permutation 13542 there corresponds the path 123 → 132 → 321
in P3. It is also clear that every path in the graph corresponds to at least
one permutation.

Our approach to study the distribution of a consecutive pattern τ of
length k among n-permutations is to take Pk and to consider all paths of
length n − k + 1 passing through the node τ exactly ` times, where ` =
0, 1, . . . , n − k + 1. Then we could count the permutations corresponding
to the paths. Similarly, for the “avoidance problems” that attracted much
attention in the literature, we proceed as follows: given a set of patterns of
length k to avoid, we remove the corresponding nodes with the corresponding
arcs from Pk, consider all the paths of certain length in the graph obtained,
and then count the permutations of interest.

However, a complication with the approach is that a permutation does not
need to be reconstructible uniquely from the path corresponding to it. For
example, the permutation 13542 above has the same path in P3 corresponding
to it as the permutations 23541 and 12543. Thus, different paths in Pk

may have different contributions to the number of permutations with the

2



required properties; in particular, some of the paths in Pk give exactly one
permutation corresponding to them. We call such permutations uniquely k-
determined or just k-determined for brevity. The study of such permutations
is the main concern of the paper, and it should be considered as the first
step in understanding how to use our approach to the problems described.
Also, in our considerations we assume that all the nodes in Pk are allowed
while dealing with k-determined permutations, that is, we do not prohibit
any pattern.

The paper is organized as follows. In Section 2 we study the set of k-
determined permutations. In particular, we give two criteria for a permuta-
tion to be k-determined: one in terms of the distance between two consecutive
elements in a permutation, and the other one in terms of directed hamiltonian
paths in the certain graphs called path-schemes. We use the second criteria
to establish (rough) upper and lower bounds for the number of k-determined
permutations. Moreover, given an integer k, we describe a finite set of prohi-
bitions that determines the set of k-determined permutations. Those prohi-
bitions make the application of the transfer matrix method [14, Thm. 4.7.2]
possible for determining the number of k-determined permutations and we
discuss this in Section 3. As a corollary of using the method, we get that
the generating function for the number of k-determined permutations is ra-
tional. Besides, we show that there are no crucial permutations in the set
of k-determined permutations. (Crucial objects, in the sense defined below,
are natural to study in infinite sets of objects defined by prohibitions; for
instance, see [6] for some results in this direction related to words.) We con-
sider in more details the case k = 3 in Subsection 3.1. Finally, in Section 4,
we state several open problems for further research.

2 Uniquely k-determined permutations

2.1 Distance between consecutive elements; a criterion
on k-determinability

Suppose π = π1π2 . . . πn is a permutation and i < j. The distance dπ(πi, πj) =
dπ(πj, πi) between the elements πi and πj is j−i. For example, d253164(3, 6) =
d253164(6, 3) = 2.

Theorem 1. [First criterion on k-determinability] An n-permutation π is k-
determined if and only if for each 1 ≤ x < n, the distance dπ(x, x+1) ≤ k−1.
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Proof. Suppose for an n-permutation π, d(x, x + 1) ≥ k for some 1 ≤ x < n.
This means that x and x + 1 will never be inside a window of length k while
scanning consecutive elements of π. Thus, these elements are incomparable in
π in the sense that switching x and x+1 in π will lead to another permutation
π′ having the same path in Pk as π has. So, π is not k-determined.

On the other hand, if for each 1 ≤ x < n, the distance dπ(x, x+1) ≤ k−1,
then assuming we know where 1 is in π (which is the case, see below), we can
place uniquely 2, then 3, and so on, leading to the fact that π is k-determined.

To complete the proof, suppose that there are two permutations, π1 6= π2,
satisfying the element distance condition, having the same path in Pn, and
such that 1 is in position i in π1 and 1 is in position j in π2, i < j. Let
X = x1x2 . . . xk be the pattern formed by the elements in positions from
the set Y = {j − k + 1, j − k + 2, . . . , j} in the permutations. Consider
now placing the elements 1, 2,. . ., one-by-one, in π1. Let t, 1 ≤ t ≤ j − 1,
be the minimum element such that t occupies one of the positions from Y ,
say s, in π1. Because of the element distance condition, we cannot “jump
over” X while placing two consecutive elements, and thus s < j. We get a
contradiction, since because of π1, xs must be minimal in X while because of
π2, xj must be minimal in X. Thus, the position of 1 is uniquely determined
and we get the desired result.

The following corollary to Theorem 1 is straightforward.

Corollary 2. An n-permutation π is not k-determined if and only if there
exists x, 1 ≤ x < n, such that dπ(x, x + 1) ≥ k.

So, to determine if a given n-permutation is k-determined, all we need
to do is to check the distance for n − 1 pairs of numbers: (1, 2), (2, 3),...,
(n−1, n). Also, the language of determined k-permutations is factorial in the
sense that if π1π2 . . . πn is k-determined, then so is the pattern of πiπi+1 . . . πj

for any i ≤ j, which is a simple corollary to Theorem 1. Coming back to the
permutation 13542 above and using Corollary 2, we see why this permutation
is not 3-determined (k = 3): the distance d13542(2, 3) = 3 = k.

2.2 Directed hamiltonian paths in path-schemes; an-
other criterion on k-determinability

Let V = {1, 2, . . . , n} and M be a subset of V . A path-scheme P (n,M) is
a graph G = (V,E), where the edge set E is {(x, y) | |x − y| ∈ M}. See
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Figure 1 for an example of a path-scheme.

1 2 3 4 5 6

Figure 1: The path-scheme P (6, {2, 4}).

Path-schemes, also known as “distance graphs” [3], appear in the litera-
ture, for example, in connection with counting independent sets (see [11]).
However, we will be interested in path-schemes having M = {1, 2, . . . , k− 1}
for some k (the number of independent sets for such M in case of n nodes
is given by the (n + k)-th k-generalized Fibonacci number). Let Gk,n =
P (n, {1, 2, . . . , k − 1}), where k ≤ n. Clearly, Gk,n is a subgraph of Gn,n.

Any permutation π = π1π2 . . . πn determines uniquely a directed hamil-
tonian path in Gn,n starting with π1, then going to π2, then to π3 and so on.
The reverse is also true: given a directed hamiltonian path in Gn,n we can
easily construct the permutation corresponding to it.

The following theorem is just another formulation of Theorem 1.

Theorem 3. [Second criterion on k-determinability] Let Φ be the map that
sends a k-determined n-permutation π to the directed hamiltonian path in
Gn,n corresponding to π−1. Φ is a bijection between the set of all k-determined
n-permutations and the set of all directed hamiltonian paths in Gk,n.

Theorem 3 suggests a quick checking of whether an n-permutation π is
k-determined or not. One simply needs to consider n − 1 differences of the
adjacent elements in π−1 and check whether at least one of those differences
exceeds k − 1 or not. Moreover, one can find the number of k-determined
n-permutations by listing them and checking for each of them the differences
of consecutive elements in the manner described above. Using this approach,
one can run a computer program to get the number of k-determined n-
permutations for initial values of k and n, which we record in Table 1.

It is remarkable that the sequence corresponding to the case k = 3 in
Table 1 appears in [13, A003274], where we learn that the inverses to the
3-determined permutations are called the key permutations and they appear
in [12]. Another sequence appearing in Table 1 is [13, A003274]: 0, 2, 12,
72, 480, 3600, .... In our case, this is the number of n-determined (n + 1)-
permutations, n ≥ 1; in [13], this is the number of (n+1)-permutations that
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k = 2 1, 2, 2, 2, 2, 2, 2, 2, 2, . . .
k = 3 1, 2, 6, 12, 20, 34, 56, 88, 136, . . .
k = 4 1, 2, 6, 24, 72, 180, 428, 1042, 2512, . . .
k = 5 1, 2, 6, 24, 120, 480, 1632, 5124, 15860, . . .
k = 6 1, 2, 6, 24, 120, 720, 3600, 15600, 61872, . . .
k = 7 1, 2, 6, 24, 120, 720, 5040, 30240, 159840, . . .
k = 8 1, 2, 6, 24, 120, 720, 5040, 40320, 282240, . . .

Table 1: The initial values for the number of k-determined n-permutations.

have 2 predetermined elements non-adjacent (e.g., for n = 2, the permuta-
tions with say 1 and 2 non-adjacent are 132 and 231). It is clear that both of
the last objects are counted by n!(n − 1). Indeed, to create a n-determined
(n + 1)-permutation, we take any permutation (there are n! choices) and
extend it to the right by one element making sure that the extension is not
adjacent to the leftmost element of the permutation (there are n − 1 pos-
sibilities; here we use Theorem 1). On the other hand, to create a “good”
permutation appearing in [13], we take any of n! permutations, and insert
one of the predetermined elements into any position not adjacent to the other
predetermined element (there are (n − 1) choices). A bijection between the
sets of permutations above is given by the following: Suppose a and b are
the predetermined elements in π = π1 . . . πn, and πi = a and πj = b. We
build the permutation π′ corresponding to π by setting π′1 = i, π′n = j, and
π′2 . . . π′n−1 is obtained from π by first removing a and b, and then, in what
is left, by replacing i by a and j by b. For example, assuming that 2 and 4
are the determined elements, to 134526 there corresponds 514263 which is a
5-determined 6-permutation.

Another application of Theorem 3 is finding lower and upper bounds for
the number Ak,n of k-determined n-permutations.

Theorem 4. We have 2((k − 1)!)bn/kc < Ak,n < 2(2(k − 1))n.

Proof. According to Theorem 3, we can estimate the number of directed
hamiltonian paths in Gk,n to get the desired result. This number is two times
the number of (non-directed) hamiltonian paths in Gk,n, which is bounded
from above by (2(k− 1))n, since 2(k− 1) is the maximum degree of Gk,n (for
n ≥ 2k − 1). So, Ak,n < 2(2(k − 1))n.
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To see that Ak,n > 2((k − 1)!)bn/kc, consider hamiltonian paths starting
at node 1 and not going to any of the nodes i, i ≥ k + 1 before it goes
through all the nodes 1, 2, . . . , k. Going through all the first k nodes can be
arranged in (k − 1)! different ways. After covering the first k nodes we send
the path under consideration to node k + 1, which can be done since we deal
with Gk,n. Then the path covers all, but not any other, of the k − 1 nodes
k + 2, k + 3, . . . , 2k (this can be done in (k − 1)! ways) and comes to node
2k + 1, etc. That is, we subdivide the nodes of Gk,n into groups of k nodes
and go through all the nodes of a group before proceeding with the nodes of
the group to the right of it. The number of such paths can be estimated from
below by ((k − 1)!)bn/kc. Clearly, we get the desired result after multiplying
the last formula by 2 (any hamiltonian path can be oriented in two ways).

Remark 5. The bounds we get in Theorem 4 are rough. We are grateful
to the referee for pointing out to an improvement of the upper bound in
the theorem by making it n(2k − 2)(2k − 3)n−2. In fact, one can show that
n(2k−2)(2k)!(2k−3)n−2k−2 is an upper bound in Theorem 4. However, these
expressions being less compact do not improve significantly the asymptotic
behavior of the bound, and we keep the original upper bound in the theorem.

3 Prohibitions giving k-determinability

The set of k-determined n-permutations can be described by the language
of prohibited patterns L′k,n as follows. Using Theorem 1, we can describe
the set of k-determined n-permutations by prohibiting patterns of the forms
xX(x+1) and (x+1)Xx, where X is a permutation on {1, 2, . . . , |X|+2}−
{x, x + 1} (|X| is the number of elements in X), the length of X is at least
k− 1, and 1 ≤ x ≤ 1 + |X| < n. We collect all such patterns in the set L′k,n;
also, let L′k = ∪n≥0L′k,n.

Before proceeding further, we need to justify that prohibiting the patterns
from L′k we indeed get all k-determined permutations and no other permu-
tation. One direction is trivial: if one has a factor yY (y + 1) (considerations
for (y + 1)Y y are similar and we skip them in what follows) of length k + 1
or more in a permutation π, then π is not k-determined, and the pattern of
this factor is of the form xX(x + 1) with the conditions stated above.

Conversely, we have to prove that, as soon as a factor in π has a pattern
xX(x + 1), the permutation is not k-determined. Note that the factor itself
may not be of the form yY (y + 1): for instance, take π = 14532, k = 3; the
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pattern of 1453 is of the prohibited form, but 1453 itself is not of the form
yY (y + 1). Let a factor yY z in π, y < z, have a pattern xX(x + 1) from L′k.
Obviously, there are no t in Y such that y < t < z. Next, consider maximum
i, 0 ≤ i ≤ z − 1, such that all the elements y, y + 1, . . . , y + i are to the left
of Y in π and y + i+1 is to the right of Y in π (such y + i+1 exists because
of z). Then clearly the distance between y + i and y + i + 1 is at least k and
thus π is not k-determined due to Theorem 1.

A prohibited pattern X = aY b from L′k, where a and b are some consec-
utive elements and Y is a (possibly empty) word, is called irreducible if the
patterns of Y b and aY are not prohibited, in other words, if the patterns of
Y b and aY are k-determined permutations. Let Lk be the set consisting only
of irreducible prohibited patterns in L′k.
Theorem 6. Let k be fixed. The number of (irreducible) prohibitions in Lk

is finite. Moreover, the longest prohibited patterns in Lk are of length 2k−1.

Proof. Suppose that a pattern P = xX(x + 1) of length 2k or larger belongs
to Lk (the case P = (x + 1)Xx can be considered in the same way). Then
obviously X contains either x − 1 or x + 2 on the distance at least k − 1
from either x or x+1. In any case, clearly we get either a prohibited pattern
P ′ = yY (y+1) or P ′ = (y+1)Y y, which is a proper factor of P . Contradiction
with P being irreducible.

Theorem 6 allows us to use the transfer matrix method to find the number
of k-determined permutations. Indeed, we can consider the graph P2k−1(Lk),
which is the graph P2k−1 of pattern overlaps without nodes containing pro-
hibited patterns as factors. Then each path in the graph determines a single
permutation since to be “k-determined” implies to be “(2k−1)-determined.”
Thus the number Ak,n of k-determined n-permutation is equal to the number
of paths of length n − 2k + 1 in the graph, which can be found using the
transfer matrix method [14, Thm. 4.7.2]. In particular, the method makes
the following statement true.

Theorem 7. The generating function Ak(x) =
∑

n≥0 Ak,nx
n for the number

of k-determined permutations is rational.

Remark 8. In fact, one can use a smaller graph, namely P2k−2(Lk), in
which we mark arcs by corresponding permutations of length 2k−1; then we
remove arcs containing prohibitions and use the transfer matrix method. In
this case, to an n-permutation there corresponds a path of length n−2k +2.
See Figure 2 for such a graph in the case k = 3.
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A permutation is called crucial with respect to a given set of prohibitions,
if it does not contain any prohibitions, but adjoining any element to the
right of it leads to a permutation containing a prohibition. In our case, an
n-permutation is crucial if it is k-determined, but adjoining any element to
the right of it, and thus creating an (n + 1)-permutation, leads to a non-
k-determined permutation1. If such a π exists, then the path in P2k−1(Lk)
corresponding to π ends up in a sink. However, the following theorem shows
that there are no crucial permutations with respect to the set of prohibitions
Lk, thus any path in P2k−1(Lk) can always be continued.

Theorem 9. There do not exist crucial permutations with respect to Lk.

Proof. If k = 2 then only the monotone permutations are k-determined, and
we always can extend to the right a decreasing permutation by the least
element, and the increasing permutation by the largest element.

Suppose k ≥ 3 and let Xx be an n-permutation avoiding Lk, that is, Xx
is k-determined. If x = 1 then Xx can be extended to the right by 1 without
creating a prohibition; if x = n then Xx can be extended to the right by n+1
without creating a prohibition. Otherwise, due to Theorem 1, both x−1 and
x + 1 must be among the k leftmost elements of Xx. In particular, at least
one of them, say y, is among the k−1 leftmost elements of Xx. If y = x−1,
we extend Xx by x (the “old” x becomes (x+1)); if y = x+1, we extend Xx
by x + 1 (the “old” x + 1 becomes (x + 2)). In either of the cases considered
above, Theorem 1 guarantees that no prohibitions will be created. So, Xx
can be extended to the right to form a k-determined (n + 1)-permutation,
and thus Xx is not a crucial n-permutation.

3.1 The case k = 3

In this subsection we take a closer look at the graph P4(L3) whose paths
give all 3-determined permutations (we read marked arcs of a path to form
the permutation corresponding to it). It turns out that P4(L3) has a nice
structure (see Figure 2).

Suppose w′ denotes the complement to an n-permutation w = w1w2 · · ·wn.
That is, w′

i = n − wi + 1 for 1 ≤ i ≤ n. P4(L3) has the following 12 nodes

1As it is mentioned in the introduction, crucial words are studied, for example, in [6].
We define crucial permutations with respect to a set of prohibited patterns in a similar
way. However, as Theorem 9 shows, there are no crucial permutations with respect to Lk.
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(those are all 3-determined 4-permutations): a = 1234, a′ = 4321, b = 1324,
b′ = 4231, c = 1243, c′ = 4312, d = 3421, d′ = 2134, e = 1423, e′ = 4132,
f = 3241, f ′ = 2314.

In Figure 2 we draw 20 arcs corresponding to the 20 3-determined 5-
permutations. Notice that P4(L3) is not strongly connected: for example,
there is no directed path from c to f .

a

b

d′ c

f ′

f

d c′

a′

b′

e

e′

-

-

R

R

R

Rµ

µ

µ

µ

I

I

ª

ª

Figure 2: Graph P4(L3) (the case k = 3).

To find the generating function A3(x) =
∑

n≥0 A3,nx
n for the number of

3-determined permutations one can build a 12×12 matrix (for example, the
one given by the adjacency table in Figure 3) corresponding to P4(L3) and
to use the transfer matrix method to get

A3(x) =
1− 2x + 2x2 + x3 − x5 + x6

(1− x− x3)(1− x)2

which is true due to the known result [13, A003274] mentioned above. Note
that the largest eigenvalue of the matrix given by Figure 3 is 1.4655 . . ., and
thus A3,n grows like (1.4655 . . .)n, while the lower bound in Theorem 4 is
2n/3 = (1.2599 . . .)n.

In general, even though finding explicit generating functions for k ≥ 4
by the transfer matrix method is a rather difficult problem, one can use
the method for studying the asymptotic behavior of Ak,n by attempting to
find/estimate the largest eigenvalue of the corresponding matrix.
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a c b e d′ e′ f ′ f d c′ a′ b′

a 1 1 0 0 0 0 0 0 0 0 0 0
d′ 1 1 0 0 0 0 0 0 0 0 0 0
c 0 0 1 1 0 0 0 0 0 0 0 0
b 0 0 0 0 1 0 0 0 0 0 0 0
e 0 0 0 0 0 1 0 0 0 0 0 0
e′ 0 0 0 1 0 0 0 0 0 0 0 0
f ′ 0 0 0 0 1 0 0 1 0 0 0 0
f 0 0 0 0 0 0 1 0 1 0 0 0
d 0 0 0 0 0 0 0 0 0 1 1 0
a′ 0 0 0 0 0 0 0 0 0 1 1 0
c′ 0 0 0 0 0 1 0 0 0 0 0 1
b′ 0 0 0 0 0 0 0 0 1 0 0 0

Figure 3: Transfer matrix corresponding to P4(L3).

4 Open problems

It is clear that any n-permutation is n-determined, whereas for n ≥ 2 no
n-permutation is 1-determined. Moreover, for any n ≥ 2 there are exactly
two 2-determined permutations, namely the monotone permutations. For
a permutation π, we define its index IR(π) of reconstructibility to be the
minimal integer k such that π is k-determined.

Problem 1. Describe the distribution of IR(π) among all n-permutations.

Problem 2. Study the set of k-determined permutations in the case when
a set of nodes is removed from Pk, that is, when some of patterns of length
k are prohibited.

An n-permutation π is m-k-determined, m, k ≥ 1, if there are exactly m
(different) n-permutations having the same path in Pk as π has. In particular,
the k-determined permutations correspond to the case m = 1.

Problem 3. Find the number of m-k-determined n-permutations.

Problem 3 is directly related to finding the number of linear extensions of
a poset. Indeed, to any path w in Pk there naturally corresponds a poset W .
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In particular, any factor of length k in w consists of mutually comparable
elements in W . For example, if k = 3 and w = 134265 then W is the poset
in Figure 4 (the elements of the poset are the w’s elements; the order of the
poset is the natural order on {1, 2, . . . , n} where two elements are comparable
if and only if they lie at distance at most k − 1 in w).

1 2
3
4
6

5

Figure 4: The poset associated with the path w = 134265 in P3 (k = 3).

If all the elements are comparable to each other in w, then W is a linear
order and w gives a k-determined permutation. If W contains exactly one
pair of incomparable elements, then w gives (two) 2-k-determined permuta-
tions. In the example in Figure 4, there are 4 pairs of incomparable elements,
(1,2), (1,5), (3,5), and (4,5), and this poset can be extended to a linear order
in 7 different ways giving (seven) 7-3-determined permutations.

Problem 4. Which posets on n elements appear while considering paths (of
length n − k + 1) in Pk? Give a classification of the posets (different from
the classification by the number of pairs of incomparable elements).

Problem 5. How many linear extensions can a poset (associated to a path
in Pk) on n elements with t pairs of incomparable elements have?

Problem 6. Describe the structure of Lk (see Section 3 for definitions) that
consists of irreducible prohibitions. Is there a nice way to generate Lk? How
many elements does Lk have?
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