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Abstract. A graph G = (V, E) is an alternation graph if there exists a
word W over the alphabet V' such that letters x and y alternate in W if
and only if (z,y) € E for each z # y.

In this paper we give an effective characterization of alternation graphs
in terms of orientations. Namely, we show that a graph is an alternation
graph if and only if it admits a semi-transitive orientation defined in
the paper. This allows us to prove a number of results about alternation
graphs, in particular showing that the recognition problem is in NP, and
that alternation graphs include all 3-colorable graphs.

We also explore bounds on the size of the word representation of the
graph. A graph G is a k-alternation graph if it is represented by a word
in which each letter occurs exactly k times; the alternation number of G
is the minimum k for which G is a k-alternation graph. We show that
the alternation number is always at most n, while there exist graphs for
which it is n/2.

1 Introduction

Consider a scenario with n recurring tasks with requirements on the alternation
of certain pairs of tasks. This captures typical situations in periodic scheduling,
where there are recurring precedence requirements.

When tasks occur only once, the pairwise requirements form precedence con-
straints, which are modeled by partial orders. When the orientation of the con-
straints is omitted, the resulting pairwise constraints form comparability graphs.
The focus of this paper is to study the class of undirected graphs induced by the
alternation relationship of recurring tasks.

Consider, e.g., the following five tasks that may be involved in the operation
of a given machine: 1) Initialize controller, 2) Drain excess fluid, 3) Obtain
permission from supervisor, 4) Ignite motor, 5) Check oil level. Tasks 1 & 2, 2
& 3,3 &4, 4 & 5, and 5 & 1 are expected to alternate between all repetitions of
the events. This is shown in Fig. 1(b). One possible task execution sequence that
obeys these recurrence constraints — and no other — is shown in Fig. 1(a). We
introduce later an orientation of such graphs that will be called semi-transitive.
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Fig. 1. The word in (a) corresponds to the alternation graph in (b). A semi-transitive
orientation of the graph is given in (c).

Execution sequences of recurring tasks can be viewed as words over an alpha-
bet V, where V' is the set of tasks. A graph G = (V, E) is an alternation graph if
there exists a word W over the alphabet V' such that letters  and y alternate in
W if and only if (z,y) € E for each z # y. If each letter appears exactly k times
in the word, the graph is said to be a k-alternation graph. It is known that any
alternation graph is a k-alternation graph for some k [10]. Alternation graphs
are also known as representable graphs [11, 10, 5].

Our results. We introduce the following notion. A directed graph (digraph)
G = (V, E) is semi-transitive if it is acyclic and for any directed path vyva...vp
either vivy, € E or v;v; € E for all 1 < i < j < k. Clearly, all transitive (i.e.,
comparability) graphs are semi-transitive.

The main result of this paper is that the graph is an alternation graph if
and only if it admits a semi-transitive orientation. This result allows us to make
progress on the three most fundamental issues about alternation graphs:

— Which types of graphs are alternation graphs and which ones are not?

— How large words can be needed to represent alternation graphs?

— Are there alternative representations of these graphs that aid in reasoning
about their properties?

We show that the class of alternation graphs captures non-trivial graph prop-
erties. In particular, all 3-colorable graphs are alternation graphs, whereas var-
ious types of 4-chromatic graphs cannot all be represented in this way. This
resolves a conjecture of [10] regarding the Petersen graph, showing that it is an
alternation graph. The result also properly captures all the previously known
classes of alternation graphs: outerplanar, prisms, and comparability graphs.

Finally, we show that any alternation graph on n vertices is an n-alternation
graph, again utilizing the semi-transitive orientability. This result implies that



the problem of deciding whether a given graph is an alternation graph is con-
tained in NP. Previously, no polynomial upper bound was known on the al-
ternation number, which is the smallest value k such that the given graph is
k-alternation. This bound on the alternation number is tight up to a constant
factor, as we construct graphs with alternation number n/2. We also show that
deciding if an alternation graph is k-alternation is NP-complete for 3 < k < n/2,
while the polynomially decidable class of circle graphs coincides with the class
of graphs with alternation number at most 2.

Related work. Several graph classes are defined in terms of interrelationships
between letters in words, where the vertices represent the letters. Circle graphs
are those whose vertices can be represented as chords on a circle in such a way
that two nodes in the graph are adjacent if and only if the corresponding chords
overlap. By viewing each chord as a letter and listing the chords in order of
appearance on the circle we find that these graphs correspond to words where
each letter appears twice and two nodes are adjacent if and only if the letter
occurrences alternate [2]. They therefore correspond to 2-alternation graphs in
our vocabulary.

This has been generalized to polygon-circle graphs (see [14]), which are the
intersection graphs of polygons inscribed in a circle. If we view each polygon as
a letter and read the incidences of the polygons on the circle in order, we see
that two polygons intersect if and only if there exists a pair of occurrences of
the two polygons that alternate. This compares with alternation graphs where
all occurrences of the two letters must alternate in order for the nodes to be
adjacent.

The notion of directed alternation graphs was introduced in [11] to obtain
asymptotic bounds on the free spectrum of the widely-studied Perkins semigroup
which has played central role in semigroup theory since 1960, particularly as
a source of examples and counterexamples. The class of alternation graphs is
known to contain comparability graphs [11]; in fact, the comparability graphs
are precisely the permutational alternation graphs (see Sec. 2). In [10] numerous
properties of alternation graphs were derived and several types of alternation
and non-alternation graphs pinpointed. In particular, outerplanar graphs, prisms
and 3-subdivision graphs are all alternation graphs. Also, the neighborhood of
each vertex in an alternation graph induces a comparability graph. Some open
questions from [10] were resolved recently in [5], including the representability of
the Petersen graph. These works however do not give alternative representations
or essential structural characteristics of alternation graphs.

Cyclic (or periodic) scheduling problems have been studied extensively in the
operations research literature [6,7,13], as well as in the Al literature [3]. These
are typically formulated with more general constraints, where, e.g., the 10th
occurrence of task A must be preceded by the 5th occurrence of task B. The focus
of this work is then on obtaining effective periodic schedules, while maintaining
a small cycle time. We are, however, not aware of work on characterizing the
graphs formed by the cyclic precedence constraints.



A different periodic scheduling application related to alternation graphs was
considered by Graham and Zang [4], involving a counting problem related to
the cyclic movements of a robot arm. More generally, given a set of jobs to be
performed periodically, certain pairs (a,b) must be done alternately, e.g. since
the product of job a is used as a resource for job b. Any valid execution sequence
corresponds to a word over the alphabet formed by the jobs. The alternation
graph given by the word must then contain the constraint pairs as a subgraph.

Organization. The paper is organized as follows. In Section 2 we give definitions
of objects of interest and review some of the known results. In Section 3 we
give a characterization of alternation graphs in terms of orientations and discuss
some important corollaries of this fact. In Section 4 we examine the alterna-
tion number, and show that it is always at most n but can be as much as n/2.
We explore in Section 5 which classes of graphs are alternation graphs, show-
ing, in particular, that 3-colorable graphs are alternation graphs, but numerous
other properties are orthogonal to the alternation property. The construction
for triangle-free non-alternation graphs is also presented there. Finally, we con-
clude with a discussion of algorithmic complexity and some open problems in
Section 6.

2 Definitions, notation, and known results

In this section we follow [10] to define the objects of interest.

Let W be a finite word. If W involves the letters z1, zo,. .., z, then we write
Var(W) ={x1,...,2,}. A word is k-uniform if each letter appears in it exactly
k times. A l-uniform word is also called a permutation. Denote by W1W5 the
concatenation of words W and W,. We say that the letters x; and z; alternate
in W if the word induced by these two letters contains neither x;x; nor z;z;
as a factor. If a word W contains k copies of a letter z then we denote these k
appearances of = by z!, 2% ... 2F. We write 27 < xéﬂ if ] occurs in W before
xfc, i. e., xf is to the left of xéﬂ in W.

We say that a word W represents the graph G = (V| E) if there is a bijection
¢ : Var(W) — V such that (¢(z;), ¢(z;)) € E if and only if x; and x; alternate
in W. We call a graph G an alternation graph if there exists a word W that
represents G. It is convenient to identify the vertices of an alternation graph and
the corresponding letters of a word representing it. If G can be represented by
a k-uniform word, then we say that G is a k-alternation graph. The alternation
number of an alternation graph G is the minimum k such that G is a k-alternation
graph. We call a graph a permutational alternation graph if it can be represented
by a word of the form PP, ... P, where all P; are permutations.

A digraph is transitive if the adjacency relation is transitive, i. e. for every
vertices x,y,z € V, the existence of the arcs xy,yz € F yields that zz € E. A
comparability graph is an undirected graph having an orientation of the edges
that yields a transitive digraph.



The following properties of alternation graphs are useful [10]. A graph G is
an alternation graph if and only if it is k-alternation for some k. If W = AB
is k-uniform word representing a graph G, then the word W' = BA also k-
represents G.

The wheel W5 is the smallest non-alternation graph. The non-alternation
graphs on 6 and 7 vertices (from [10]) are given in Fig. 2.
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Fig. 2. Small non-alternation graphs.

3 Characterization of Alternation Graphs by
Orientability

The word representation of alternation graphs is simple and natural. Yet it does
not lend itself to easy arguments for the characteristic of alternation graphs.
Non-alternation is even harder to argue. The main result of this section is a new
characterization of alternation graphs that is effective algorithmically.

We give a characterization in terms of orientability, which implies that alter-
nation corresponds to a property of a digraph obtained by directing the edges
in certain way. It is known that a graph is a permutational alternation graph
if and only if it has a transitive orientation (i.e., is a comparability graph) [11].
We prove a similar fact on alternation graphs, namely, that a graph is an alter-
nation graph if and only if it has a certain semi-transitive orientation that we
shall define. Our definition, in fact, generalizes that of a transitive orientation.

Other orientations have been defined in order to capture generalizations of
comparability graphs. As transitive orientations form constraints on the order-
ings of induced Ps, these generalizations form constraints on the orderings of
induced Py. These include perfectly orderable graphs (and its subclasses) and
opposition graphs [1]. Classes such as chordal graphs are defined in terms of
vertex-orderings, and imply therefore indirectly acyclic orientations. None of
these properties captures our definition below, nor does our characterization
subsume any of them.

We turn to the characterization and start with definitions of certain directed
graphs. A semi-cycle is the directed acyclic graph obtained by reversing the
direction of one arc of a directed cycle. An acyclic digraph is a shortcut if it



is induced by the vertices of a semi-cycle and contains a pair of non-adjacent
vertices. Thus, a digraph on the vertex set {vg,v1,...,v:}, is a shorteut if it
contains a directed path vovy ...vs, the arc vov; and it is missing an arc v;v;,
0 <i < j <t (in particular, t > 3).

A digraph is semi-transitive if it is acyclic and contains no shortcuts. A
graph is semi-transitively orientable if there exists an orientation of the edges
that results in a semi-transitive graph. Our main result in this paper is the
following.

Theorem 1. A graph is an alternation graph if and only if it is semi-transitively
orientable.

We first need some additional definitions and lemmas. A topological order
(or topsort) of an acyclic digraph is a permutation of the vertices that obeys the
arcs, i. e. for each arc uv, u precedes v in the permutation. For a node-labeled
digraph, let the topsort also refer to the word obtained by visiting the nodes
in that order. Let D = (V, E) be a digraph. The t-string digraph D? of D is
defined as follows. The vertices of D! are v*, for v € V and i = 1,2,...,t, and
viu/ is an arc in D! if and only if either i = j and vu € E or i < j and uwv € E.
Intuitively, the t-string digraph of D has t copies of D strung together. Given a
word S, let Gg denote the graph represented by S. If S is a topsort of D then
we also denote by G's the graph represented by the word S’ obtained from S by
omitting the superindices of the vertices (i. e. the copies of the same vertex in
S are considered as the same letters in S).

Given a digraph D, let Gp be the graph obtained by ignoring orientation.

We argue that the word representing a semi-transitive digraph comes from
a special topological ordering of the t-string digraph D! for some t. We first
observe that any topological ordering of D? preserves arcs.

Lemma 1. Let D be a digraph with distinct node-labels. Let S be a topological
ordering of a D*. Then Gp is a subgraph of Gs.

Proof. Consider an edge uv in Gp, and suppose without loss of generality that
it is directed as wv in D. Then, in D?, there is a directed path w'v'uv? ... utot.

Thus, occurrences of u and v in a topsort of D? are alternating. Hence, uv € Gg.

To prove equivalence, we now give a method to produce a topological ordering
of Dt that generates all non-arcs. We say that an induced subgraph H covers a
set A of non-arcs if each non-arc in A is also a non-arc in H. A word covers the
non-arc if the digraph that it represents covers them.

Lemma 2. The non-arcs incident with a path in a semi-transitive digraph can
be covered with a 2-uniform word.

Proof. Let P be a path in a semi-transitive digraph D. We shall form a topsort
of the 2-string digraph D? and show that it covers all non-arcs having at least
one endpoint on P. Let P! (P?) be the first (second) copy of P in D2. Observe



that any topsort of D? must list the nodes in P! before the nodes in P2, and
each copy in order.

We say that a node z of D? depends on node y, and denote it by y ~» x,
if there is a directed path from y to  in D2, i. e. y must appear before x in a
topological ordering of D2

Let S be any topological ordering of D? satisfying the following two con-
straints on pairs ,y of nodes in D?:

1. if ! € P! and y is listed after z', then y depends on z'.

2. if 22 € P? and y is listed before 22 but after 2' (the corresponding node in
P1), then 22 depends on y.

The ordering of other nodes is arbitrary, within these constraints. Intuitively
speaking, the nodes in P! are listed as late as possible, while the nodes in P2
are listed as early as possible.

We claim that this word S covers all non-arcs involving nodes in P. Consider
a pair u,v, where uv € Gp and u € P. Note that v may also belong to P, in
which case we may assume that the path goes from u to v. Observe that v may
depend on v, or vice versa, but not both. Let u!, v, u?,v? be the corresponding
vertices of D?. There are three cases to consider.

Case (i): There is a path from u to v in D. We claim that u? does not depend
on v'. Suppose it does, i. e. v! ~» u2. Then, there is an arc z'y? € D? such
that v! ~» 2! and y? ~» 2. By the assumptions and the symmetry of the two
copies of D in D?, it follows that y' ~» u! ~ v! ~s 2'. By the definition of
2-string graphs, yz is an arc in D, so y'z! € F(D?). Then, by semi-transitivity,
ulvl € E(D?), which implies that uv € E(Gp), which is a contradiction. It now
follows that the nodes will occur as ulu?v'v? in S, i. e. uv € E(Gs).

Case (ii): There is a path from v to w in D. This is symmetric to case (i),
with u replaced by v. Thus, the nodes will occur as v'v2u'u? in S.

Case (iii): The nodes u and v are incomparable in D. In particular, v is not
in P. Then, u' and v' do not depend on each other, nor do «? and v2. If v?

depends on u! then the nodes occur as v'u'u?v? in S. Otherwise, their order is

viv?ulu?.

We now return to the proof of Theorem 1, starting with the forward direction.
Given a word S, we direct an edge of Gg from x to y if the first occurrence of x
is before that of y in the word. Let us show that such an orientation D of Gg is
semi-transitive. Indeed, assume that xoz; € E(D) and there is a directed path
Tox1...2¢ in D. Then in the word S we have z}) < 2} < ... < z! for every i.
Since zox; € E(D) we have x§ < x4 But then for every j < k and i there
must be x; <zl < x;’.'H, i.e. zjzj € E(D). So, D is semi-transitive.

For the other direction, denote by G the graph and by D its semi-transitive
orientation. Let Py, Ps, ..., Py be the set of directed paths covering all vertices of
D.Foreveryi=1,2,...,7 denote by S; the topsort of the digraph D? satisfying
the conditions of Lemma 2 for the path P;. Put S = 5155...5;. Clearly, S is
a 27-uniform word; it can be treated as a topsort of a 27-string D?7. Then
G = Ggs. Indeed, by Lemma 1 we have E(G) C E(Gg). On the other hand, if



uv & E(G) then u € P; for some ¢, and thus by Lemma 2 the letters u and v are
not alternating in the subword S;. Therefore, uv ¢ E(S). Theorem 1 is proved.
O

Theorem 1 makes clear the relationship to comparability graphs, which are
those that have transitive orientations. Since transitive digraphs are also semi-
transitive, this immediately implies that comparability graphs are alternation
graphs.

The construction in Lemma 2 shows that all alternation graphs can be rep-
resented “almost” permutationally. This is made more precise as follows.

Observation 2 Let G be an alternation graph. Then there is a word W rep-
resenting G such that for any prefic P of W and any pair a,b of letters, the
number of occurrences of a and b in P differ by at most two.

4 The Alternation Number of Graphs

We focus now on the following question: Given an alternation graph, how large
is its alternation number? In [10], certain classes of graphs were proved to be
2- or 3-alternation, and an example was given of a graph (the triangular prism)
with the alternation number of 3. On the other hand, no examples were known
of graphs with alternation numbers larger than 3, nor were there any non-trivial
upper bounds known. We show here that the maximum alternation number of
alternation graphs is linear in the number of vertices.

For the upper bound, we use the results of the preceding section. We have
the following directly from the proof of Theorem 1.

Corollary 1. An alternation graph G is a 27(G)-alternation graph, where 7(G)
s the minimum number of paths covering all nodes in some semi-transitive ori-
entation of G.

This immediately gives an upper bound of 2n on the alternation number. We
can improve this somewhat with an effective procedure.

Theorem 3. Given a semi-transitive digraph D on n vertices, there is a polyno-
mial time algorithm that generates an n-uniform word representing Gp. Thus,
each alternation graph is an n-alternation graph.

Proof. The algorithm works as follows.

Step 0. Start with A =0 and i = 1.

Step i. If D contains a path P; covering at least two vertices from V'\ A then
let A:=AUV(F;) and i := i+ 1. Otherwise, let B =V \ A and go to the Final
Step.

Final Step. Let S; be the topsort of the digraph D? satisfying the conditions
of Lemma 2 for the path P; and put S’ = §155...S5; where ¢ is the number of
paths found at previous steps. If |B| <1 then let S = 5’. Otherwise, consider a
topsort Sy of D where the vertices of B are listed in a row (since the vertices of



B do not depend on each other, such a topsort must exist) and in particular in
the reverse order of their appearance in S;. Let S = S’Sj.

Clearly, Gp = Ggs (the proof is the same as in Theorem 1). It is easy to
verify that each letter appears in S at most n times.

Theorem 3 implies that the graph property of alternation is polynomially
verifiable, answering an open question in [10]. Indeed, having an alternation
graph G, we may ask for a word representing it and verify this fact in time
bounded by the polynomial in n.

Corollary 2. The recognition problem for alternation graphs is in NP.

We now show that there are graphs with alternation number of n/2, matching
the upper bound within a factor of 2.

The crown graph Hyj is the graph obtained from the complete bipartite
graph Ky, by removing a perfect matching. Denote by G}, the graph obtained
from a crown graph Hj ;. by adding an all-adjacent vertex.

Theorem 4. The graph Gy, has alternation number k = |n/2].

The proof is based on three statements; the proof of the first is given in the
appendix.

Lemma 3. Let H be a graph and G be the graph obtained from H by adding
an all-adjacent verter. Then G is a k-alternation graph if and only if H is a
permutational k-alternation graph.

Lemma 4. A comparability graph is permutational k-alternation graph if and
only if the poset induced by this graph has dimension at most k.

Proof. Let H be a comparability graph and W be a word permutationally k-
representing it. Each permutation in W can be considered as a linear order where
a < b if a meets before b in the permutation (and vice versa). We want to show
that the comparability graph of the poset induced by the intersection of these
linear orders coincides with H.

Two vertices @ and b are adjacent in H if and only if their letters alternate
in the word. So, they must be in the same order in each permutation, i. e. either
a < b in every linear order or b < a in every linear order. But this means that
a and b are comparable in the poset induced by the intersection of the linear
orders, i. e. a and b are adjacent in its comparability graph.

Lemma 5 ([9]). The poset P over 2k elements {a1,as,...,ak,b1,ba,... by}
such that a; < b; for every i # j and all other elements are not comparable has
dimension k.

Now we can prove Theorem 4.

Proof. Since the crown graph Hy, ; is a comparability graph of the poset P, we
deduce from Lemmas 5 and 4 that Hj ;. is permutational k-alternation graph
but not a permutational (k — 1)-alternation graph. Then by Lemma 3 we have
that Gy, is a k-alternation graph but not a (k — 1)-alternation graph. Theorem 4
is proved. a



The above arguments help us also in deciding the complexity of determining
the alternation number. From Lemmas 3 and 4, we see that it is as hard as
determining the dimension & of a poset. Yannakakis [16] showed that the latter
is NP-hard, for any 3 < k < [n/2]. We therefore obtain the following.

Proposition 1. Deciding whether a given graph is a k-alternation graph, for
any given 3 < k < [n/2], is NP-complete.

It was further shown by Hegde and Jain [8] that it is NP-hard to approximate
the dimension of a poset within almost a square root factor. We therefore obtain
the same hardness for the alternation number.

Proposition 2. Approzimating the alternation number within n'/?=¢-factor is
NP-hard, for any e > 0.

5 Characteristics of Alternation Graphs

When faced with a new graph class, the most basic questions involve the kind
of properties it satisfies: which known classes are properly contained (and which
not), which graphs are otherwise contained (and which not), what operations
preserve alternation (or non-alternation), and which properties hold for these
graphs.

Previously, it was known that the class of alternation graphs includes compa-
rability graphs, outerplanar graphs, subdivision graphs, and prisms. The purpose
of this section is to clarify this situation significantly, including resolving some
conjectures. We start with exploring the relation of colorability and alternation.

Theorem 5. 3-colorable graphs are semi-transitively orientable, and thus alter-
nation graphs.

Proof. Given a 3-coloring of a graph, direct its edges from the first color class
through the second to the third class. It is easy to see that we obtain a semi-
transitive digraph.

This implies a number of earlier results on alternation, including that of
outerplanar graphs, subdivision graphs, and prisms. The theorem also shows that
2-degenerate graphs, graphs of maximum degree 3 (via Brooks theorem), and
triangle-free planar graphs (via Grotzch’s theorem) are all alternation graphs.

This result does not extend to higher chromatic numbers. The examples in
Fig. 2 show that 4-colorable graphs can be non-alternation. We can, however,
obtain a result in terms of the girth of the graph, which is the length of its
shortest cycle.

Proposition 3. Let G be a graph whose girth is greater than its chromatic num-
ber. Then, G is an alternation graph.



Proof. Suppose the graph is colored with x(G) natural numbers. Orient the
edges of the graph from small to large colors. There is no directed path with
more than x(G) — 1 arcs, but since G contains no cycle of x(G) or fewer edges,
there can be no shortcut. Hence, the digraph is semi-transitive.

The next theorem shows us how to construct an infinite series of triangle-free
non-alternation graphs. This answers an open question in [10].

Theorem 6. There exist triangle-free non-alternation graphs.

Proof. Let H be a 4-chromatic graph with girth at least 10 (such graphs exist
by Erdos theorem). For every path P of length 3 in H add to H the edge ep
connecting its ends. Denote the obtained graph by G. Let us show that G is a
triangle-free non-alternation graph.

If G contains a triangle on the vertices u, v, w then H contains three paths
Py, Puw, and Py, of lengths 1 or 3 connecting these vertices. Let T' be a graph
spanned by these three paths. Since T has at most 9 edges and the girth of H
is at least 10, T is a tree. Clearly, it cannot be a path. So, it is a subdivision
of K; 3 with the leafs u,v,w. But then at least one of the paths Py, Puw, Pow
must have an even length, a contradiction.

So, G is triangle-free. Assume that G has a semi-transitive orientation. Then
it induces a semi-transitive orientation on H. Since H is 4-chromatic, each of
its acyclic orientation must contain a directed path P of length at least 3. But
then the orientation of the edge ep in G produces either a 4-cycle or a shortcut,
contradicting the semi-transitivity. So, G is a triangle-free non-alternation graph.

6 Concluding Remarks and Open Questions

It is natural to ask about optimization problems on alternation graphs. Theo-
rem 5 implies that many classical optimization problems are NP-hard on alter-
nation graphs:

Observation 7 The optimization problems Independent Set, Dominating Set,
Graph Coloring, Clique Partition, Clique Covering are NP-hard on alternation
graphs.

Note that it may be relevant whether the representation of the graph as
a semi-transitive digraph is given; solvability under these conditions is open.
However, some problems remain polynomially solvable:

Observation 8 The Cligue problem is polynomially solvable on alternation graphs.

Indeed, we can simply use the fact that the neighborhood of any node is
a comparability graph. The clique problem is easily solvable on comparability
graphs. Thus, it suffices to search for the largest clique within all induced neigh-
borhoods.

We conclude with several open questions about alternation graphs:



1. Is it NP-hard to decide whether a graph is an alternation graph?

2. What is the maximum alternation number of a graph? We know that it lies
between n/2 and n.

3. Are all graphs of maximum degree 4 alternation graphs?

4. Is there an algorithm that forms an f(k)-representation of a k-alternation
graph, for some function f? Namely, can the alternation number be approx-
imated as a function of itself? The same question holds also for the partial
order (or poset) dimension [8].
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Appendix: Proof Missing in the Main Text

Lemma 3. Let H be a graph and G be the graph obtained from H by adding
an all-adjacent vertex. Then G is a k-alternation graph if and only if H is
permutationally k-alternation.

Proof. Let 0 be the letter corresponding to the all-adjacent vertex. Then every
other letter of the word W representing G must appear exactly once between two
consecutive zeroes. We may assume also that W starts with 0. Then the word
W\ {0}, formed by deleting all occurrences of 0 from W, is a permutational k-
representation of H. Conversely, if W’ is a word permutationally k-representing
H, then we insert 0 in front of each permutation to get a (permutational) k-
representation of G.



