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Abstract

A graph is word-representable if it can be represented in a certain
way using alternation of letters in words. Word-representable graphs
generalise several important and well-studied classes of graphs, and they
can be characterised by semi-transitive orientations. Recognising word-
representability is an NP-complete problem, and the bottleneck of the
theory of word-representable graphs is how to convince someone, e.g. a
referee, that a graph is non-word-representable keeping in mind that ref-
erences to (publicly available) software are not always welcome? (Word-
representability can be justified by providing a semi-transitive orientation
as a certificate that can be checked in polynomial time.)

In the literature, a variety of (usually ad hoc) proofs of non-word-
representability for particular graphs, or families of graphs, appear, but
for a randomly selected graph, one should expect looking at O(Z#Gdges)
orientations and justifying that none of them is semi-transitive. Even if
computer would print out all these orientations and would point out what
is wrong with each of the orientations, such a proof would be essentially
non-checkable by a human.

In this paper, we develop methods for an automatic search of human-
verifiable proofs of graph non-word-representability. As a proof-of-concept,
we provide “short” proofs of non-word-representability, generated auto-
matically by our publicly available user-friendly software, of the Shrikhande
graph on 16 vertices and 48 edges (9 “lines” of proof) and the Clebsch
graph on 16 vertices and 40 edges (33 “lines” of proof). As a bi-product of
our studies, we correct two mistakes published multiple times (two graphs
out of the 25 non-word-representable graphs on 7 vertices were actually
word-representable, while two non-word-representable graphs on 7 ver-
tices were missing).
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1 Introduction

There is a long line of research papers in the literature dedicated to the the-
ory of word-representable graphs (e.g. see [5, 6] and references therein). The
motivation to study these graphs is their relevance to algebra, graph theory,
computer science, combinatorics on words, and scheduling [6]. In particular,
word-representable graphs generalize several fundamental classes of graphs (e.g.
circle graphs, 3-colorable graphs and comparability graphs).

Two letters z and y alternate in a word w if after deleting in w all letters
but the copies of x and y we either obtain a word zyxy--- (of even or odd
length) or a word yayx--- (of even or odd length). A graph G = (V,E) is
word-representable if and only if there exists a word w over the alphabet V'
such that letters « and y, x # y, alternate in w if and only if zy € E. The
minimum (by the number of vertices) non-word-representable graph is on 6
vertices, and the only such graph is the wheel graph W5, while there are 25
non-word-representable graphs on 7 vertices [6].

An orientation of a graph is semi-transitive if it is acyclic, and for any di-
rected path vg — v; — -+ — v either there is no edge between vy and vy,
or v; — v; is an edge for all 0 <9 < j < k. An induced subgraph on vertices
{vo,v1,...,v;} of an oriented graph is a shortcut if its orientation is acyclic
(contains no directed cycles) and non-transitive, and there is the directed path
vg — v1 — - -+ — v and the edge vg — v called the shortcutting edge. A semi-
transitive orientation can then be alternatively defined as an acyclic shortcut-
free orientation. A fundamental result in the area is the following theorem.

Theorem 1 ([4]). A graph is word-representable if and only if it admits a semi-
transitive orientation.

Recognizing word-representability of a graph is an NP-complete problem
[6], and the bottleneck of the theory of word-representable graphs is how to
convince someone, e.g. a referee, that a graph is non-word-representable keeping
in mind that references to (publicly available) software, such as [2], are not
always welcome? (Word-representability can be justified by providing a semi-
transitive orientation as a certificate that can be checked in polynomial time [6].)

1.1 Approaches to deal with non-word-representability

It is known [7] that the neighbourhood of each node in a word-representable
graph is a comparability graph, and recognition of a comparability graph is a
polynomially solvable problem [3]. Hence, we have a polynomial test for non-
word-representability of a graph G: for each vertex, go through its neighbour-
hood and check whether it is a comparability graph; if a “non-comparability
neighbourhood” is found, G is not word-representable. However, such a test
serves us as a “COVID-19 lateral test” in detecting COVID-19: if the result is
positive (resp., there is a non-comparability neighbourhood) then you are likely
to have COVID-19 (resp., G is definitely non-word-representable), while if it



is negative (resp., all neighbourhoods are comparability graphs), then essen-
tially no information is obtained (resp., the graph may or may not be word-
representable [6]).

Thus, basically we are left with three choices when recognising and then
justifying non-word-representability: either

a) to come up with some sort of an ad hoc smart argument, usually using
t ith t of d h t t 11 i
properties and/or symmetries of the graph in question, or

(b) to go through O(Z#nges) orientations justifying that none of them is
semi-transitive (symmetries can be used here sometimes to reduce the
search space, in particular, any given edge can be assumed to be oriented
in any way), or

(c) to go through all O(#vertices®) words containing each of the vertex labels
at least once and to justify that none of them have the right alternation
properties (if a graph with n vertices is word-representable then there is
a word of length at most n? representing it [4]).

Approach (a) above is preferable, but usually hard to implement. Approach
(c) requires going through O(n?") words, however, constraint programming can
be used here to speed up the process [13]. In either case, how do we convince
someone that the graph is non-word-representable without a reference to soft-
ware? A variation of approach (b) is used in some existing pieces of software
[2, 10]. Tt works as follows: orient an edge e; in a given graph G, then consider
a still undirected edge es in G and branch on it, namely, create two copies of
the partially oriented graph by orienting ey differently; then branch on es, etc.
At each step, make sure that no directed cycles or shortcuts are created (if they
are, the respective branch is not to be considered). In any case, even if com-
puter would print out all these orientations (or the entire branching process) and
would point at a directed cycle or a shortcut in each of the orientations, such a
proof would be essentially non-checkable by a human, as it would typically be
a way too long.

1.2 A game changer approach

In this paper we consider producing “short” proofs of non-word-representability
dropping the number of cases to be considered from exponential to polyno-
mial, and thus enabling human to verify such proofs. The basic idea is in
modifying the branching process by avoiding unnecessary branching via certain
pre-processing. The following lemma is the key to our approach.

Lemma 2 ([8]). Suppose that an undirected graph G has a cycle C = x1x9 -+ Ty,
where m > 4 and the vertices in {x1,2a,...,2m} do not induce a clique in G.

If G is oriented semi-transitively, and m—2 edges of C' are oriented in the same
direction (i.e. from x; to x;41 or vice versa, where the index m + 1 := 1) then
the remaining two edges of C are oriented in the opposite direction.



Graph 12/

Figure 1: The undirected versions of Graphs 12" and 17’ were assumed to be non-
word-representable several times in the literature, for example in [6], although
they are actually word-representable as is witnessed by the semi-transitive ori-
entations given in the figure. Graph 12’ misses the edge (1,3). Graph 17" should
not have the edge (1,7).

Hence, if we try to find a semi-transitive orientation by exhaustively going
through all possibilities to orient one edge at the time, and we see a cycle non-
inducing a clique with all but two edges oriented in the same direction, we do
not need to branch on the remaining two edges as they must be oriented in the
opposite direction by Lemma 2. Similarly, if we see a non-clique cycle with all
but two edges oriented in the same direction and an edge e in the cycle oriented
in the opposite direction, then we known that the remaining edge is oriented in
the same direction as e.

In Section 2, we introduce three algorithms getting use of Lemma 2 to gen-
erate shorter proofs for non-word-representable graphs. The primarily criteria
of the efficiency of an algorithm is the number of “lines” (in the sense speci-
fied below) in the proof it produces; the secondary criteria is the running time
of the algorithm, whose discussion is omitted from this paper as less relevant
(the problem is NP-complete, so the running time is exponential, and further
details are not so important for us). We test and rank our algorithms on the
25 non-word-representable graphs on 7 vertices correcting, as a by-product, two
mistakes published multiple times, e.g. in [6]. Indeed, two graphs out of the 25
graphs were produced incorrectly. These incorrect graphs are the undirected
versions of the semi-transitively oriented graphs in Figure 1. We leave it to
the Reader as a straightforward exercise to prove that the orientations in Fig-
ure 1 are indeed semi-transitive. A correct list of the 25 non-word-representable
graphs can be found in Figure 3.

We would like to emphasise that the approach involving Lemma 2 is not
novel: several papers, including [8], use it or its simpler version (consider-
ing cycles of length 3 and 4) to justify non-word-representability. However,
our paper is the first one to discuss an automated search of human verifiable
proofs of graph non-word-representability that allowed us to create publicly
available user-friendly software [10]. As a proof-of-concept, we use the software
to find “short” proofs of non-word-representability, generated automatically, of



the Shrikhande graph on 16 vertices and 48 edges (9 “lines” of proof; see Sec-
tion 3) and the Clebsch graph on 16 vertices and 40 edges (33 “lines” of proof; see
Section 4). Proving, without referring to computer software, that the Clebsch
graph and the Shrikhande graph are non-word-representable was non-feasible
before appearing of our work.

2 Three algorithms to search for short proofs of
non-word-representability

In this section, we consider three algorithms to find shorter proofs of non-word-
representability of graphs. All three algorithms use the observation that the
branching process should not involve any edges that do not belong to a cycle, as
such edges can be oriented arbitrarily (they will never be involved in a directed
cycle of a shortcut). Further, all three algorithms use the assumption that to
produce a shorter proof, branching should be made on edges belonging to many
cycles (which should increase the number of applications of Lemma 2).

2.1 The format of a proof

By a “line” of a proof we mean a sequence of instructions that directs us in ori-
enting a partially oriented graph and necessarily ends with detecting a shortcut
or another contradiction showing that this particular orientation branch will not
produce a semi-transitive orientation. The idea is that if no branch produces
a semi-transitive orientation then the graph is non-semi-transitively orientable
(and hence non-word-representable by Theorem 1).

Each proof begins with A — B showing the orientation of an edge AB,
the first edge we orient, that is selected by an algorithm in a certain way. Be-
cause reversing all orientations in a semi-transitively oriented graph produces a
semi-transitively oriented graph, without loss of generality we can omit consid-
ering (partially) oriented graphs having B — A, which significantly reduces the
number of cases to consider. Further, there are four types of instructions:

e “MC” followed by a number X means “Move to Copy X", where Copy X
of the graph in question is a partially oriented version of the graph that
was created at some point in the branching process. This instruction is
always followed by an oriented edge A — B reminding on the directed
edge obtained after application of the branching process; see description
of “B” to be discussed next.

e “B” followed by “X — Y (Copy Z)” means “Branch on edge XY, orient
the edge as X — Y/, create a copy of the current version of the graph except
orient the edge XY there as Y — X, and call the new copy Z; leave Copy
Z aside and continue to follow the instructions”. The instruction B occurs
when the software detects that no application of Lemma 2 is possible in
the partially oriented graph.



1. 1215 B14—15 (Copy 2) B12—14 (Copy 3) O7—15 012—7 (C7-15-14-12) [other
instructions] S:7-4-8-16
2. MC4 16—7 016—15 (C7-16-15) [other instructions] S:4-11-3-7

Figure 2: Parts of the first two lines in the proof of non-word-representability
of the Shrikhande graph in Figure 4

e One “O” followed by “X — Y7, in turn followed by, in brackets, “C”
followed by a cycle “X-Y-Z”. This instruction tells us to orient the edge
XY as X — Y because otherwise, in the triangle XY 7, we would get a
directed cycle. If instead of a triangle we see a longer cycle, then we deal
with an application of Lemma 2 to a cycle where all but two edges are
oriented in one direction, and one of the remaining two edges is oriented
in the opposite direction.

e Two “O”s followed by “X — Y, in turn followed by, in brackets, “C”
followed by a cycle “X-Y-Z----7. This instruction tells us to which cycle
Lemma 2 can be applied and which edges will become oriented.

FEach line ends with either “S : X-Y —..-—Z” or with “F : X-Y —---—Z".
In the former case, a shortcut with the shortcutting edge X — Z is obtained,
while in the latter case, all but one edges in the non-clique cycle X =Y —-.-—Z

are oriented in the same direction, while the remaining edge e is not oriented,
which is a contradiction since there is no way to orient e without creating a
shortcut or a directed cycle (“E” stands for “Error”). In the two proofs below,
there is only one line, line 5 in Subsection 3.1, that ends with “E”.

Next, we will explain parts of the first two lines in the proof of non-word-
representability of the Shrikhande graph in Figure 4 that is presented in Sec-
tion 3, which are given in Figure 2.

To begin checking the proof, one should arrange 9 undirected copies of the
Shrikhande graph, possibly printed on a single page. Begin with orienting edge
12—15 in the first copy of the graph. Branching is necessary at this stage, we
orient edge 14—15 in Copy 1 and create partially oriented Copy 2 currently
having edges 12—15 and 15—14. We continue with considering Copy 1. An-
other branching is required, and we orient the edge 12—14 and create partially
oriented Copy 3 currently having edges 12—15, 14—15 and 14—12. Looking
at the cycle 7-15-14-12 in Copy 1, we can see that Lemma 2 can be applied
and we can orient edges 7—15 and 12—7. Continuing following the instruc-
tions, we see that the shortcut 7-4-8-16 will eventually be obtained in Copy 1
showing that Copy 1 can now be disregarded as any way to complete its orien-
tation will result in a shortcut being present (so that the orientation would be
non-semi-transitive).

We can now consider any of the three partially oriented copies of the graph
(Copies 2, 3, 4). Our algorithm suggests considering the latest created copy
(Copy 4) that has the most number of oriented edges. MC4 instructs us to do



so, and 16—7 reminds us on the correct orientation of the edge (7,16) obtained
as the result of the branching process (when Copy 4 was created). Next, we
look at the triangle 7-16-15 where we must orient edge 16— 15 or else we obtain
a directed cycle of length 3. Continuing following the instructions, we see that
the shortcut 4-11-3-7 will eventually be obtained in Copy 4 showing that Copy
4 can now be disregarded, and another copy should be considered.

2.2 Algorithm 1

Algorithm 1 sorts edges according to the number of cycles they are in, then
branches on an edge belonging to the most number of cycles (whenever branch-
ing is required). If there are two or more such edges, the choice on branching is
done lexicographically.

2.3 Algorithm 2

Algorithm 2 selects a cycle C' with the smallest number of non-oriented edges.
The non-oriented edges in C' are sorted, similarly to Algorithm 1, based on the
number of cycles they are in and branching is done on an edge belonging to
the most number of cycles. If there are two or more such edges, the choice on
branching is done lexicographically.

2.4 Algorithm 3

Algorithm 3 is similar to Algorithm 2, but it selects a cycle hat has the biggest
number N of edges oriented in the same direction. Among the cycles with the
same N, Algorithm 3 selects a cycle C that has smallest number of non-oriented
edges. Then, similarly to Algorithm 2, the non-oriented edges in C are sorted
based on the number of cycles they are in and branching is done on an edge
belonging to the most number of cycles. If there are two or more such edges,
the choice on branching is done lexicographically.

2.5 Ranking of algorithms

Note that Algorithm 1 is static while Algorithms 2 and 3 are dynamic meaning
that they require resorting edges whenever an orientation is added to an edge.

To make general statements on the efficiency of algorithms in the sense of
the number of lines they produce, or about the time complexity, does not seem
to be feasible. However, an indication of the efficiency of the algorithms can
be obtained by looking at their performance on small non-word-representable
graphs. For example, on the wheel graph W5 (on 6 vertices), Algorithm 1
produces 10 lines of proof, while Algorithms 2 and 3 produce 7 lines of proof.
As the next step, we test the algorithms on all 25 non-word-representable graphs
in Figure 3, and the results of the test are presented in Table 1. It turns out
that Algorithm 2 is (much) better/not worse in 24 out of 25 cases, and what is
somewhat surprising, Algorithm 1 being clearly the worst one, has actually the
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best performance on Graph 11. On average, Algorithms 2 and 3 are essentially
the same. In any case, Algorithm 2 is used in the software [10].

Graph | Algorithm 2 | Algorithm 3 | Algorithm 1
1 7 lines 7 lines 10 lines
2 7 lines 7 lines 13 lines
3 10 lines 10 lines 17 lines
4 7 lines 7 lines 13 lines
5 7 lines 7 lines 10 lines
6 7 lines 7 lines 10 lines
7 11 lines 11 lines 11 lines
8 16 lines 20 lines 18 lines
9 9 lines 11 lines 15 lines
10 9 lines 11 lines 15 lines
11 21 lines 21 lines 15 lines
12 8 lines 8 lines 12 lines
13 9 lines 9 lines 17 lines
14 9 lines 9 lines 14 lines
15 9 lines 9 lines 13 lines
16 11 lines 12 lines 14 lines
17 9 lines 9 lines 12 lines
18 7 lines 7 lines 13 lines
19 7 lines 7 lines 16 lines
20 9 lines 11 lines 11 lines
21 10 lines 10 lines 10 lines
22 6 lines 6 lines 19 lines
23 9 lines 11 lines 14 lines
24 7 lines 7 lines 15 lines
25 9 lines 12 lines 11 lines

Average 9.2 lines 9.8 lines 13.5 lines

Table 1: Ranking of the algorithms

3 The Shrikhande graph

The Shrikhande graph is the graph on 16 vertices and 48 edges in Figure 4.
Among numerous properties of this graph [12], it is known for being the smallest
distance-regular graph that is not distance-transitive [1, p. 136].

We will prove that the Shrikhande graph is not word-representable. In Fig-
ure 4, we present a subgraph 57 of the Shrikhande graph, and a subgraph S5
of the graph S;. Using software [2, 10] suggests that both S; and S are not
word-representable, and moreover, that S, is a minimal non-word-representable



Shrikhande graph O Subgraph S ( Subgraph S,

Figure 4: The Shrikhande graph and two of its minimal non-word-representable
subgraphs

graph (removing any vertex in Sy results in a word-representable graph). Thus,
taking into account the hereditary nature of word-representability, it is sufficient
for us to prove that either S, or Ss, is non-word-representable.

It is counterintuitive that unlike natural expectations, our software [10] pro-
duces 19 lines of proof for the graph S5, and only 9 lines of proof for the
larger graph S;. We finish the section by providing a proof of non-word-
representability of the graph S7, which will imply that the Shrikhande graph is
not word-representable as well.

3.1 A proof of non-word-representability of S;, and thus
of the Shrikhande graph

1. 12515 B14—15 (Copy 2) B12—14 (Copy 3) O7—15 012—7 (C7-15-14-12) B7—16
(Copy 4) 015—16 (C7-16-15-12) 010—16 O7—10 (C7-15-16-10) O13—16 01413
(C13-16-15-14) 013—10 (C7-16-13-10) O8—16 O13—8 (C8-16-10-13) O14—11 0118
(C8-13-14-11) 0124 O4—11 (C4-12-14-11) O4—8 (C4-11-8) O7T—4 (C4-12-15-7) S:7-
4-8-16

2. MC4 16—7 016—15 (C7-16-15) 016—9 09—15 (C7-16-9-15) B8—+16 (Copy
5) 08—9 (C8-16-9) 08—4 04—7 (C4-8-16-7) 04—12 (C4-12-15-7) 03—7 04—3
(C3-7-12-4) 0113 08—11 (C3-11-8-4) 06—15 03—6 (C3-7-15-6) O11—6 (C3-11-6)
0411 (C3-6-11-4) S:4-11-3-7

3. MC5 16—8 09—8 (C8-16-15-9) 013—8 016—13 (C8-13-16-9) O14—13 (C13-
16-15-14) O14—11 O11—8 (C8-13-14-11) 012—4 04—11 (C4-12-14-11) O4—8 (C4-
11-8) O7—4 (C4-12-15-7) S:16-7-4-8

4. MC3 1412 06—15 014—6 (C6-15-12-14) B7—15 (Copy 6) O7—12 (C7-
15-14-12) O7—16 016—+15 (C7-16-15-12) B13—16 (Copy 7) O13—14 (C13-16-15-14)
013—11 011—6 (C6-14-13-11) O11—14 (C6-15-14-11) O11—3 03—6 (C3-11-14-6)
03—7 (C3-7-15-6) S:13-11-3-7-16

5. MC7 1613 010—13 O7—10 (C7-16-13-10) 016—10 (C7-15-16-10) 03—10
07—3 (C3-10-16-7) 06—3 (C3-7-15-6) O11—3 O14—11 (C3-11-14-6) E:11-3-10-13

6. MC6 157 0127 (C7-15-12) 03—7 06—3 (C3-7-15-6) O11—3 O14—11 (C3-
11-14-6) O11—4 O4—7 (C3-11-4-7) 012—4 (C4-12-15-7) 03—4 (C3-7-12-4) 03—10

10



Clebsch graph Subgraph C} Subgraph Cs

Figure 5: The Clebsch graph and two of its minimal non-word-representable
subgraphs

010—7 (C3-10-7-4) O11—8 08—4 (C3-11-8-4) O6—11 (C3-6-11-4) 01113 O13—10
(C3-11-13-10) O14—13 (C11-14-13) S:14-6-11-13

7. MC2 15—14 012—14 (C12-15-14) B7—15 (Copy 8) O7—12 (C7-15-14-12)
07—16 01615 (C7-16-15-12) 016—13 013—14 (C13-16-15-14) 010—13 O7—10
(C7-16-13-10) 01610 (C7-15-16-10) O3—10 O7—3 (C3-10-16-7) 03—11 01113
(C3-11-13-10) O11—14 (C11-14-13) 06—14 03—6 (C3-11-14-6) 0156 (C3-7-15-6)
S:12-15-6-14

8. MC8 157 0127 (C7-15-12) 0124 04—7 (C4-12-15-7) B15—16 (Copy 9)
07—16 (C7-16-15-12) 04—8 O8—16 (C4-8-16-7) 09—16 O15—9 (C7-16-9-15) O8—9
(C8-16-15-9) 08—13 013—16 (C8-13-16-9) O4—11 O11—+13 (C4-11-13-8) O14—11
(C4-12-14-11) S:15-14-11-13-16

9. MC9 16—15 016—7 (C7-16-15) O16—10 010—7 (C7-15-16-10) O16—13
013—14 (C13-16-15-14) 010—13 (C7-16-13-10) 016—8 08—13 (C8-16-10-13) 048
(C4-8-16-7) S:12-4-8-13-14

4 The Clebsch graph

The Clebsch graph, also known as the Greenwood-Gleason graph [9, p. 284] and
shown in Figure 5, is a strongly regular quintic graph on 16 vertices and 40
edges that enjoys many interesting properties [11].

Figure 5 also gives two subgraphs C; and C5 of the Clebsch graph that
confirmed by software [2, 10] to be minimal non-word-representable. However,
going against intuition, our software [10] produces 48 (resp., 52) lines of proof
for C; (resp., C3), but only 33 lines of proof for the entire Clebsch graph, which
we provide next.

4.1 Proof of non-word-representability of the Clebsch graph
1. 12—14 B14—16 (Copy 2) O13—16 012—13 (C12-14-16-13) B10—12 (Copy 3)

11



07—13 0107 (C7-13-12-10) O1—16 O7—1 (C1-16-13-7) O11—1 010—11 (C1-11-
10-7) O11—14 (C1-16-14-11) 02—+16 010—2 (C1-16-2-10-7) 08—16 010—8 (C2-16-
8-10) B14—15 (Copy 4) 02—15 (C2-16-14-15) O7—15 (C2-15-7-10) O5—15 O11—5
(C5-15-14-11) O8—5 (C5-11-10-8) 09—15 08—9 (C5-15-9-8) 09—1 (C1-9-15-7) S:8-
9-1-16

2. MC4 15—14 0152 (C2-16-14-15) 0157 (C2-15-7-10) 09—1 0159 (C1-9-
15-7) 09—8 (C1-16-8-9) 015—5 O5—8 (C5-15-9-8) O5—11 (C5-11-10-8) S:15-5-11-14

3. MC3 1210 B11—14 (Copy 5) O1—16 O11—1 (C1-16-14-11) O11—10 (C10-
12-14-11) B7—10 (Copy 6) O7—1 (C1-11-10-7) O7—13 (C1-16-13-7) B14—15 (Copy
7) 05—15 O11—5 (C5-15-14-11) O7—15 0513 (C5-15-7-13) 03—13 0113 (C3-
13-5-11) 02—16 03—2 (C2-16-13-3) 010—2 (C2-10-11-3) 012—4 04—2 (C2-10-12-4)
04—1 (C1-16-2-4) 04—5 (C1-11-5-4) S:12-4-5-13

4. MCT7 15—14 02—16 O15—2 (C2-16-14-15) B7—15 (Copy 8) 010—2 (C2-15-
7-10) O11—3 03—2 (C2-10-11-3) 03—13 (C2-16-13-3) 0124 04—2 (C2-10-12-4)
04—1 (C1-16-2-4) 09—1 0129 (C1-9-12-4) 09—15 (C1-9-15-7) S:12-9-15-14

5. MC8 15—7 09—1 015—9 (C1-9-15-7) 08—16 09—8 (C1-16-8-9) 02—10
(C2-15-7-10) 08—10 (C2-16-8-10) O15—5 058 (C5-15-9-8) 0511 (C5-11-10-8)
S:15-5-11-14

6. MC6 10—7 O1—7 (C1-11-10-7) O13—7 (C1-16-13-7) B14—15 (Copy 9) 05—15
0115 (C5-15-14-11) 09—15 0129 (C9-15-14-12) B5—+13 (Copy 10) 03—13 0113
(C3-13-5-11) 0216 03—2 (C2-16-13-3) 0102 (C2-10-11-3) O12—4 042 (C2-10-
12-4) 04—1 (C1-16-2-4) 04—5 (C1-11-5-4) S:12-4-5-13

7. MCI0 13—5 0124 04—5 (C4-12-13-5) O4—1 (C1-11-5-4) 0216 04—2
(C1-16-2-4) 06—7 04—6 (C1-7-6-4) 09—1 (C1-9-12-4) 0157 (C1-9-15-7) S:13-5-
15-7

8. MC9 15—14 0216 015—2 (C2-16-14-15) O15—7 010—2 (C2-15-7-10) O11-3
03—2 (C2-10-11-3) 0313 (C2-16-13-3) 012—4 04—2 (C2-10-12-4) 04—1 (C1-16-
2-4) 06—7 04—6 (C1-7-6-4) 09—1 0129 (C1-9-12-4) 09—15 (C1-9-15-7) S:12-9-
15-14

9. MC5 14—11 010—11 (C10-12-14-11) B8—16 (Copy 11) B8—10 (Copy 12)
05—11 08—5 (C5-11-10-8) O13—5 (C5-13-16-8) 013—3 03—11 (C3-13-5-11) 0129
093 (C3-13-12-9) O1—11 09—1 (C1-11-3-9) 012—4 04— 1 (C1-9-12-4) 04—5 (C1-
11-5-4) 0116 (C1-16-14-11) 02—16 04—2 (C1-16-2-4) 09—8 (C1-16-8-9) S:12-9-
8-10

10. MC12 108 02—16 010—2 (C2-16-8-10) O12—4 04—2 (C2-10-12-4) O1-516
04—1 (C1-16-2-4) 09—1 0129 (C1-9-12-4) 09—8 (C1-16-8-9) O1—11 (C1-16-14-
11) 0511 04—5 (C1-11-5-4) 03—11 09—3 (C1-11-3-9) 03—2 (C2-10-11-3) 0152
0915 (C2-15-9-3) 03—13 (C2-16-13-3) S:12-9-3-13

11. MC11 16—8 O13—5 05—8 (C5-13-16-8) 012—4 04—5 (C4-12-13-5) 04—6
06—8 (C4-6-8-5) 014—6 (C4-12-14-6) O5—11 010—8 (C5-11-10-8) O1—11 04—1
(C1-11-5-4) 09—1 0129 (C1-9-12-4) 03—11 09—3 (C1-11-3-9) 016—1 09—8 (C1-
16-8-9) S:14-16-1-11

12. MC2 16—14 B13—16 (Copy 13) O13—12 (C12-14-16-13) B10—12 (Copy
14) 01114 010—11 (C10-12-14-11) B8—16 (Copy 15) O6—14 O8—6 (C6-14-16-8)
B8—10 (Copy 16) 0511 085 (C5-11-10-8) 013—5 (C5-13-16-8) 013—3 03—11
(C3-13-5-11) 03—6 (C3-11-14-6) O13—7 O7—6 (C3-13-7-6) 0515 O15—14 (C5-
15-14-11) 09—15 08—9 (C5-15-9-8) 03—9 (C3-9-8-6) 02—15 03—2 (C2-15-9-3)
010—2 (C2-10-11-3) 016—2 (C2-16-13-3) $:16-2-15-14

13. MCI6 10—8 0216 010—2 (C2-16-8-10) O15—14 02—15 (C2-16-14-15)
07—15 010—7 (C2-15-7-10) O7—6 (C6-8-10-7) 013—7 (C7-13-12-10) O13—3 03—6
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(C3-13-7-6) 02—3 (C2-16-13-3) 02—4 04—6 (C2-4-6-3) O11—3 (C2-10-11-3) S:11-
3-6-14

14. MC15 1658 013—5 058 (C5-13-16-8) 05—11 010—8 (C5-11-10-8) 0133
03—11 (C3-13-5-11) 06—14 03—6 (C3-11-14-6) O13—7 O7—6 (C3-13-7-6) O5—15
015—14 (C5-15-14-11) O7—15 (C5-15-7-13) 06—8 (C6-14-16-8) 03—9 09—8 (C3-
9-8-6) 012—9 (C3-13-12-9) S:10-12-9-8

15. MC14 12-510 013—7 O7—10 (C7-13-12-10) B7—15 (Copy 17) 0515 013—5
(C5-15-7-13) B14—15 (Copy 18) 016—2 02—15 (C2-16-14-15) 013—3 03—2 (C2-16-
13-3) 09—15 03—9 (C2-15-9-3) 02—10 (C2-15-7-10) 01110 03—11 (C2-10-11-3)
016—8 08—10 (C2-16-8-10) 0129 (C3-13-12-9) 0511 (C3-13-5-11) 058 (C5-
11-10-8) 09—8 (C5-15-9-8) S:12-9-8-10

16. MCI8 15—14 O11—14 O5—11 (C5-15-14-11) O13—3 O3—11 (C3-13-5-
11) 06—14 03—6 (C3-11-14-6) O7—6 (C3-13-7-6) O11—10 (C10-12-14-11) 02—10
03—2 (C2-10-11-3) 016—2 (C2-16-13-3) 02—15 (C2-15-7-10) S:16-2-15-14

17. MCI17 15—7 0152 02—10 (C2-15-7-10) 016—2 O15—14 (C2-16-14-15)
0133 032 (C2-16-13-3) 011—10 03—11 (C2-10-11-3) 016—8 08—10 (C2-16-
8-10) O13—5 0511 (C3-13-5-11) 058 (C5-11-10-8) 0155 (C5-15-7-13) O15—9
098 (C5-15-9-8) 03—9 (C2-15-9-3) 06—8 03—6 (C3-9-8-6) OT—6 (C3-13-7-6)
S:7-6-8-10

18. MCI3 16—13 01213 (C12-14-16-13) B10—12 (Copy 19) O7—13 010—7
(C7-13-12-10) O11—14 010—11 (C10-12-14-11) B1—16 (Copy 20) O1—7 (C1-16-
13-7) 0111 (C1-11-10-7) B14—15 (Copy 21) 016—2 02—15 (C2-16-14-15) O4—2
014 (C1-16-2-4) 0515 04—5 (C2-15-5-4) 01155 (C1-11-5-4) 010—2 04—12
(C2-10-12-4) 019 09—12 (C1-9-12-4) OT—15 (C2-15-7-10) 09—15 (C1-9-15-7) S:9-
12-14-15

19. MC21 15—14 B7—15 (Copy 22) O1—9 09—15 (C1-9-15-7) 02—15 010—2
(C2-15-7-10) 0216 (C2-16-14-15) 03—13 02—3 (C2-16-13-3) 09—3 (C2-15-9-3)
01153 (C1-11-3-9) 08—16 010—8 (C2-16-8-10) 08—9 (C1-16-8-9) 08—6 06—3
(C3-9-8-6) 06—7 (C3-13-7-6) S:10-8-6-7

20. MC22 15—7 0155 05—13 (C5-15-7-13) O11—5 (C5-15-14-11) O4—5 O1—4
(C1-11-5-4) 03—13 O11—3 (C3-13-5-11) 09—3 O1—9 (C1-11-3-9) 0159 (C1-9-15-
7) 0152 023 (C2-15-9-3) 010—2 (C2-10-11-3) 02—16 (C2-16-13-3) S:15-2-16-14

21. MC20 16—1 O7—1 (C1-16-13-7) O11—1 (C1-11-10-7) B14—15 (Copy 23)
0162 0215 (C2-16-14-15) 05—15 O11—5 (C5-15-14-11) 010—8 O8—5 (C5-11-
10-8) 016—8 010—2 (C2-16-8-10) O7—15 (C2-15-7-10) 09—15 08—9 (C5-15-9-8)
09—1 (C1-9-15-7) S:16-8-9-1

22. M(C23 15—314 B7—15 (Copy 24) 02—15 010—2 (C2-15-7-10) 02-316 (C2-
16-14-15) 02—4 O4—1 (C1-16-2-4) 03—13 02—3 (C2-16-13-3) O11—3 (C2-10-11-3)
0124 (C2-10-12-4) 09—1 0129 (C1-9-12-4) 09—15 (C1-9-15-7) S:12-9-15-14

23. MC24 157 09—1 015—9 (C1-9-15-7) 015—35 0513 (C5-15-7-13) O11—5
(C5-15-14-11) 03—13 0113 (C3-13-5-11) 09—3 (C1-11-3-9) 0152 023 (C2-
15-9-3) 010—2 (C2-10-11-3) 02—16 (C2-16-13-3) S:15-2-16-14

24. MC19 1210 B11—14 (Copy 25) O11—10 (C10-12-14-11) B8—16 (Copy 26)
0513 08—5 (C5-13-16-8) O11—5 08—10 (C5-11-10-8) 03—13 0113 (C3-13-5-
11) 06—14 O8—6 (C6-14-16-8) 06—3 (C3-11-14-6) O7—13 O6—7 (C3-13-7-6) 09—3
08—9 (C3-9-8-6) 09—12 (C3-13-12-9) S:8-9-12-10

25. MC26 16—8 B8—10 (Copy 27) 016—2 02—10 (C2-16-8-10) B5—11 (Copy
28) 058 (C5-11-10-8) 0513 (C5-13-16-8) O5—15 01514 (C5-15-14-11) 0152
(C2-16-14-15) O5—4 04—2 (C2-15-5-4) 04—12 (C2-10-12-4) S:5-4-12-13
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26. MC28 11—5 08—5 (C5-11-10-8) 013—5 (C5-13-16-8) 012—4 04—5 (C4-12-
13-5) 02—4 (C2-10-12-4) 016—1 O1—4 (C1-16-2-4) O1—11 (C1-11-5-4) S:16-1-11-14

27. MC27 108 O11—5 058 (C5-11-10-8) 0513 (C5-13-16-8) 03—13 0113
(C3-13-5-11) 0129 09—8 (C8-10-12-9) 03—9 (C3-13-12-9) O11—1 019 (C1-11-
3-9) 0116 (C1-16-8-9) S:11-1-16-14

28. MC25 14—511 O16—1 O1—11 (C1-16-14-11) 010—11 (C10-12-14-11) B7—10
(Copy 29) O7—1 (C1-11-10-7) O7—13 (C1-16-13-7) B14—15 (Copy 30) 016—2 02—15
(C2-16-14-15) O7—15 02—10 (C2-15-7-10) 03—11 023 (C2-10-11-3) 0133 (C2-
16-13-3) 016—8 08—10 (C2-16-8-10) O7—6 06—3 (C3-13-7-6) O6—14 (C3-11-14-6)
S:7-6-14-15

29. MC30 15—14 0155 O5—11 (C5-15-14-11) B7—15 (Copy 31) O13—5 (C5-
15-7-13) 013—3 03—11 (C3-13-5-11) 0162 02—3 (C2-16-13-3) 02—+10 (C2-10-11-
3) 0215 (C2-15-7-10) S:16-2-15-14

30. MC31 157 09—1 01559 (C1-9-15-7) 03—11 09—3 (C1-11-3-9) 0152
023 (C2-15-9-3) 02—510 (C2-10-11-3) 0162 (C2-16-14-15) 013—3 (C2-16-13-3)
016—8 08—10 (C2-16-8-10) 09—8 (C1-16-8-9) O7—6 O6—3 (C3-13-7-6) 06—8 (C3-
9-8-6) S:7-6-8-10

31.MC29 10—7 O1—7 (C1-11-10-7) 013—7 (C1-16-13-7) B14—15 (Copy 32)
0162 0215 (C2-16-14-15) 09—15 0129 (C9-15-14-12) B2—10 (Copy 33) 03— 11
023 (C2-10-11-3) 09—3 (C2-15-9-3) 09—1 (C1-11-3-9) 012—4 04—1 (C1-9-12-4)
04—2 (C1-16-2-4) $:12-4-2-10

32. MC33 10—2 0124 042 (C2-10-12-4) 04—1 (C1-16-2-4) O5—11 04—5
(C1-11-5-4) 067 04—6 (C1-7-6-4) 09—1 (C1-9-12-4) 0157 (C1-9-15-7) S:10-2-
15-7

33. MC32 1514 015—5 05—11 (C5-15-14-11) O15—7 O13—5 (C5-15-7-13)
013—3 03—11 (C3-13-5-11) 0162 02—3 (C2-16-13-3) 02—+10 (C2-10-11-3) 0215
(C2-15-7-10) S:16-2-15-14

5 Concluding remarks

In this paper, we introduce methods to generate automatically proofs of non-
word-representability of a graph that can be verified, in a robust way, by a
human. We do believe that our work and software [10] will have a dramatic
impact to the further development of the theory of word-representable graphs.
Indeed, now we can argue non-word-representability for many more (larger)
graphs without referring to software, which is a very welcoming news.

As for open problems, we see improving Algorithms 2 and 3 by modifying our
approach of selecting edges to branch: for example, we can look for branching
edges that increase the number/length of directed paths in the graph, which
should increase usability of Lemma 2. Another powerful approach to explore
is automatic detection of symmetries in graphs, which usually allows to make
assumptions on orientation of several edges, and thus reduces dramatically the
number of lines in a proof of non-word-representability.

Finally, understanding how to estimate, say, the average efficiency of our
algorithms, or relevant algorithms yet to be introduced, in terms of certain
parameters (number of cycles or alike) is a good theoretical question that seems
to be very challenging. The time complexity of our algorithms is also a very
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interesting and challenging direction of research that was completely ignored
by us because our focus was in producing short proofs. On the examples we
looked at, our algorithms demonstrated a good performance. For example,
while it is possible to argue that going exhaustively through all orientations
of the graph S; should take about 36 hours of computer time (which would
proof that the graph is not word-representable), Algorithm 2 returns a proof of
non-word-representability (that can also be verified by a human) within just 8.2
seconds!
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