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Occurrences of the �classical" pattern 1-3-2 in 13524:

1 3 5 2 4, 1 3 5 2 4, 1 3 5 2 4, 1 3 5 2 4

A generalized pattern is a pattern that allows the requirement
that two adjacent letters in the pattern must be adjacent in the
permutation.

Pattern Occurrences in 13542
1-3-2 1 3 5 4 2, 1 3 5 4 2, 1 3 5 4 2, 1 3 5 4 2, 1 3 5 4 2
1-32 1 3 5 4 2, 1 3 5 4 2, 1 3 5 4 2
[1-3-2 1 3 5 4 2, 1 3 5 4 2, 1 3 5 4 2, 1 3 5 4 2
132 1 3 5 4 2
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4 1 6 3 2 5
3 1

Numbers on stack
must increase
from top 2

1 4 2 3 5 6

Theorem. [Knuth] A permutation is stack-sortable if and only
if it avoids 2-3-1.
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Theorem. [Knuth] A permutation is stack-sortable if and only
if it avoids 2-3-1.

The number of such permutations is the n-th Catalan number:

Cn =
1

n + 1

(2n

n

)

They have the generating function

C(x) =
∞∑

n=0

Cnxn =
1−√1− 4x

2x
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1969 D. Knuth: The Art of computer programming, vol. I

1985 R. Simion, F. Schmidt: Restricted permutations, European
J. Combin. 6, no. 4, 383�406.
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1969 D. Knuth: The Art of computer programming, vol. I

1985 R. Simion, F. Schmidt: Restricted permutations, European
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1992 Present: Explosive growth (several hundreds papers appeared)

2002 H. Wilf: The patterns of permutations, DM 257, 575�583.

2003 S. Kitaev, T. Mansour: Survey of certain pattern problems

2004 M. Bóna: Combinatorics of Permutations, xiv+383 pp.
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2002 H. Wilf: The patterns of permutations, DM 257, 575�583.

2003 S. Kitaev, T. Mansour: Survey of certain pattern problems

2004 M. Bóna: Combinatorics of Permutations, xiv+383 pp.

2004 M. Atkinson: Permutation Patterns Home page
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Permutation Patterns:
Classical patterns: Knuth, 1969
Generalized patterns: Babson and Steingrímsson, 2000
Partially ordered patterns: Kitaev, 2001
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Permutation Patterns:
Classical patterns: Knuth, 1969
Generalized patterns: Babson and Steingrímsson, 2000
Partially ordered patterns: Kitaev, 2001

Word Patterns:
Classical word patterns: Burstein, 1998
Generalized word patterns: Burstein and Mansour, 2002
Partially ordered word patterns: Kitaev and Mansour, 2003

Patterns in matrices: Kitaev, Mansour and Vella, 2003
Patterns in n-dimensional objects: Kitaev and Robbins, 2004

Patterns in even (odd) permutations: Simion and Schmidt, 1985
Colored patterns in colored permutations: Mansour, 2001
Signed patterns in signed permutations: Mansour and West, 2002
Patterns with respect to parity: Kitaev and Remmel, 2005
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Let R be a set of patterns.

Let Sn(p) be the set of all permutations in Sn which avoid the
pattern p.

Then Sn(R) =
⋂

p∈R

Sn(p).

An extreme case is Sn(∅) = Sn for all n > 1.

Nn(R) is the number of elements of Sn(R).
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Questions about Sn(R):

1. Formula for Nn(R);

2. Generating function for Nn(R), that is, fR(x) =
∑

i

Ni(R)xi;

3. Relations to other combinatorial structures;

4. Is Sn(R) = Sn(R′) for all n?

In this case R and R′ are said to be from the same Wilf class.

5. P -recursiveness of Nn(R);

A function f : N → C is called P -recursive if there exist polyno-
mials P0, P1, . . . , Pk ∈ C[n], so that for all n ∈ N

Pk(n)f(n + k) + Pk−1(n)f(n + k − 1) + · · ·+ P0(n)f(n) = 0.
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Theorem. [Knuth] For all n > 1, and for all classical patterns
p ∈ S3, Nn(p) is given by the n-th Catalan number 1

n+1

(
2n
n

)
.
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Theorem. [Knuth] For all n > 1, and for all classical patterns
p ∈ S3, Nn(p) is given by the n-th Catalan number 1

n+1

(
2n
n

)
.

Dyck paths
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pattern p formula for Nn(p) P-recursive
1-2-3-4 (?) yes
4-3-2-1 Gessel Zeilberger
1-3-4-2
2-4-3-1 (??) yes
3-1-2-4 Bóna Bóna
4-2-1-3
1-3-2-4 open open
4-2-3-1

(?) = 2
n∑

k=0

(2k

k

)(n

k

)2 3k2 + 2k + 1− n− 2kn

(k + 1)2(k + 2)(n− k + 1)

(??) = 7n2−3n−2
2 ·(−1)n−1+3

n∑

i=2

2i+1·(2i− 4)!

i!(i− 2)!

(n− i + 2

2

)
(−1)n−i
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Theorem. [Regev] For all n, Nn(1-2-· · ·-k) asymptotically equals

λk
(k − 1)2n

n(k2−2k)/2
.

Here

λk = γk
2

∫

x1>

∫

x2>
· · ·

∫

>xk

[D(x1, x2, . . . , xk)·e−(k/2)x2
]2 dx1dx2 . . . dxk,

where D(x1, x2, . . . , xk) =
∏

i<j

(xi−xj) and γk = (1/
√

2π)k−1·kk2/2.
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Theorem. [Regev] For all n, Nn(1-2-· · ·-k) asymptotically equals

λk
(k − 1)2n

n(k2−2k)/2
.

Here

λk = γk
2

∫

x1>

∫

x2>
· · ·

∫

>xk

[D(x1, x2, . . . , xk)·e−(k/2)x2
]2 dx1dx2 . . . dxk,

where D(x1, x2, . . . , xk) =
∏

i<j

(xi−xj) and γk = (1/
√

2π)k−1·kk2/2.

Theorem. [Marcus and Tardos] For every permutation pattern p,
there is a constant c = c(p) < ∞ such that for all n Nn(p) < cn.
[This was the famous Stanley-Wilf Conjecture]
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Multi-avoidance of classical patterns

For avoiding a pair of classical 3-patterns, we have 3 Wilf classes
with Nn(p) given by 2n−1,

(
n
2

)
+ 1 and 0 (Simion and Schmidt).
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Multi-avoidance of classical patterns

For avoiding a pair of classical 3-patterns, we have 3 Wilf classes
with Nn(p) given by 2n−1,

(
n
2

)
+ 1 and 0 (Simion and Schmidt).

restrictions formula author
1-2-3,4-3-2-1 0 West
1-2-3,3-4-2-1

(
n
4

)
+ 2

(
n
3

)
+ n West

1-3-2,4-3-2-1
(
n
4

)
+

(
n+1
4

)
+

(
n
2

)
+ 1 West

1-2-3,4-2-3-1
(
n
5

)
+ 2

(
n
4

)
+

(
n
3

)
+

(
n
2

)
+ 1 West

1-2-3,3-2-4-1 3 · 2n−1 −
(
n+1
2

)
− 1 West

1-2-3,3-4-1-2 2n+1 −
(
n+1
3

)
− 2n− 1 Stanley

1-3-2,4-2-3-1 1 + (n− 1)2n−2 Guibert
1-3-2,3-4-2-1 1 + (n− 1)2n−2 West
1-3-2,3-2-1-4 GF: (1−x)3

1−4x+5x2−3x3 West
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The following were given by West:

restrictions restrictions formula
1-2-3,2-1-4-3 3-1-2,1-3-4-2
1-2-3,2-4-1-3 3-1-2,3-2-4-1
1-3-2,2-3-1-4 3-1-2,3-2-1-4
1-3-2,2-3-4-1 1-2-3,3-2-1-4 F2n
3-1-2,2-3-1-4 3-1-2,4-3-2-1 (Fibonacci number)
1-3-2,3-4-1-2 3-1-2,3-4-2-1
3-1-2,1-4-3-2 1-3-2,3-2-4-1

3-1-4-2,2-4-1-3 4-1-3-2,4-2-3-1 GF: 1−x−
√

1−6x+x2

2x
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The following were given by West:

restrictions restrictions formula
1-2-3,2-1-4-3 3-1-2,1-3-4-2
1-2-3,2-4-1-3 3-1-2,3-2-4-1
1-3-2,2-3-1-4 3-1-2,3-2-1-4
1-3-2,2-3-4-1 1-2-3,3-2-1-4 F2n
3-1-2,2-3-1-4 3-1-2,4-3-2-1 (Fibonacci number)
1-3-2,3-4-1-2 3-1-2,3-4-2-1
3-1-2,1-4-3-2 1-3-2,3-2-4-1

3-1-4-2,2-4-1-3 4-1-3-2,4-2-3-1 GF: 1−x−
√

1−6x+x2

2x

Theorem. [Simion and Schmidt] For every n > 1,

Nn(1-2-3,1-3-2,2-1-3) = Fn+1,

where Fn is the n-th Fibonacci number.
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Generalized patterns

The following were given by Claesson

Generalized patterns Related combinatorial objects
2-31 Dyck paths (Catalan numbers)
1-23 Partitions (Bell numbers)
1-23, 12-3 Non-overlapping partitions (Bessel numbers)
1-23, 1-32 Involutions
1-23, 13-2 Motzkin paths

Claesson and Mansour provided complete solution for the number
of permutations avoiding a pair of type x-yz or xy-z. Out of(
12
2

)
= 66 pairs there are 21 symmetry classes and 10 Wilf classes.
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The following were given by Kitaev:

Restrictions Formula
123, 321, 132, 213 2Ck, if n = 2k + 1

Ck + Ck−1, if n = 2k (Ck � Catalan number)
123, 132, 213

(
n

bn/2c
)

123, 132, 231 n

132, 213, 312 1 + 2n−2

123, 132, 312 Recursive Formula
123, 321, 231 (n− 1)!! + (n− 2)!!
123, 231, 312 EGF: 1 + x(sec(x) + tan(x)) (with Mansour)

132, 213 Recursive Formula (with Mansour)
123, 321 2En, where En is the n-th Euler number
132, 231 2n−1
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Theorem. [Elizalde and Noy, 2001] Let m and a be positive
integers with a 6 m, let σ = 12 · · · aτ(a + 1) ∈ Sm+2, where τ is
any permutation of {a + 2, a + 3, . . . , m + 2}, and let

P (u, z) =
∑
π

uσ(π)z
|π|

|π|!.

Then P (u, z) = 1/w(u, z), where w is the solution of

wa+1 + (1− u)
zm−a+1

(m− a + 1)!
w′ = 0

with w(0) = 1, w′(0) = −1 and w(k) = 0 for 2 6 k 6 a. In
particular, the distribution does not depend on τ .
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Using an inclusion-exclusion argument we get this:

Theorem. [Goulden and Jackson, 1983] Let

Ak(x) = A0 + A1x +
A2

2!
x2 + · · ·

be the EGF for the number of permutations avoiding the pattern
123 · · · k. Then

Ak(x) =
1

∑

i>0

xki

(ki)!
−

∑

i>0

xki+1

(ki + 1)!

.
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Theorem. [2002] Let k and a be positive integers with a < k,
let p = 12 · · · aτ(a+1) ∈ Sk+1, where τ is any permutation of the
elements {a +2, a +3, . . . , k +1}, and let Ak,a(x) be the EGF for
the number of permutations that avoid p. Let

Fk,a(x) =
∑

i>1

(−1)i+1xki+1

(ki + 1)!

i∏

j=2

(jk − a

k − a

)
.

Then
Ak,a(x) = 1/(1− x + Fk,a(x)).
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Theorem. [2002] Let k and a be positive integers with a < k,
let p = 12 · · · aτ(a+1) ∈ Sk+1, where τ is any permutation of the
elements {a +2, a +3, . . . , k +1}, and let Ak,a(x) be the EGF for
the number of permutations that avoid p. Let

Fk,a(x) =
∑

i>1

(−1)i+1xki+1

(ki + 1)!

i∏

j=2

(jk − a

k − a

)
.

Then
Ak,a(x) = 1/(1− x + Fk,a(x)).

Example. If k = 2 and a = 1 (p = 132), then

F2,1(x) =
∑

i>1

(−1)i+1xki+1

i!(k!)i(ki + 1)
= x−

∫ x

0
e−t2/2dt.
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Let p = σ-k, where σ is an arbitrary segmented pattern on the
elements 1,2, . . . , k−1. So the last letter of p is greater than any
other letter. Let A(x) (resp. B(x)) be the EGF for the number
of permutations that avoid σ (resp. p).

Theorem. [2002] We have B(x) = eF (x,A(y)), where

F (x, A(y)) =
∫ x

0
A(y) dy.
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Example. Let p = 1-2. Here σ = 1, whence A(x) = 1 since
An = 0 for all n > 1. So

B(x) = eF (x,1) = ex.
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Example. Let p = 1-2. Here σ = 1, whence A(x) = 1 since
An = 0 for all n > 1. So

B(x) = eF (x,1) = ex.

Example. Suppose p = 12-3. Here σ = 12, whence A(x) = ex,
since there is only one permutation that avoids σ. So

B(x) = eF (x,ey) = eex−1.

It is known [Claesson, 2001] that the number of n-permutations
that avoid p is the n-th Bell number whose EGF is B(x).
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A descent in a permutation π = a1a2 · · · an is an i such that
ai > ai+1. The number of descents is a well-known statistic for
a permutation π.

Two descents i and j overlap if j = i + 1.

We de�ne a new statistic, namely the maximum number of non-
overlapping descents in a permutation.

Permutation 4 3 1 2 2 1 4 3 4 3 2 1
Maximal number of non-over. descents one two two
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Theorem. [2002] Let p be a segmented pattern. Let A(x) be
the EGF for the number of permutations that avoid p. Let

D(x, y) =
∑
π

yN(π)x
|π|

|π|!
where N(π) is the maximum number of non-overlapping occur-
rences of p in π. Then

D(x, y) =
A(x)

1− y((x− 1)A(x) + 1)
.
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Example. For descents, A(x) = ex, hence the distribution of the
maximum number of non-overlapping descents is

D(x, y) =
ex

1− y(1 + (x− 1)ex)
.
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Example. For descents, A(x) = ex, hence the distribution of the
maximum number of non-overlapping descents is

D(x, y) =
ex

1− y(1 + (x− 1)ex)
.

Example. If we consider the maximum number of non-overlapping
occurrences of the pattern 132 then the distribution of these
numbers is

D(x, y) =
1

1− yx + (y − 1)
∫ x

0
e−t2/2 dt

.
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A partially ordered pattern (POP) is a generalized pattern where
some of the letters can be incomparable. (2002)
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A partially ordered pattern (POP) is a generalized pattern where
some of the letters can be incomparable. (2002)

1′ 1′′
2

The permutation 3142 has two occurrences of the POP 1′-2-1′′:
3 1 4 2
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A partially ordered pattern (POP) is a generalized pattern where
some of the letters can be incomparable. (2002)

1′ 1′′
2

The permutation 3142 has two occurrences of the POP 1′-2-1′′:
3 1 4 2

The number of permutations that avoid 1′-2-1′′ is 2n−1:

Write π = π11π2

Then π1 must be decreasing and π2 must be increasing.
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avoiding a POP = avoiding a set of generalized patterns
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avoiding a POP = avoiding a set of generalized patterns

The number of n-permutations avoiding 123, 132 and 213 is(
n

bn/2c
)
; a rather complicated argument was used to prove this.

Considering 11′2 gives a two-lines proof of the same result.
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avoiding a POP = avoiding a set of generalized patterns

The number of n-permutations avoiding 123, 132 and 213 is(
n

bn/2c
)
; a rather complicated argument was used to prove this.

Considering 11′2 gives a two-lines proof of the same result.
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There are so many things to discover about patterns ...
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There are so many things to discover about patterns ...

What are you doing tonight?
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Fourth annual conference on

Permutation patterns

Reykjavík University
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The End


