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Let A = {a1, a2, . . . , ak} be an alphabet of k letters.

A word in the alphabet A is a �nite sequence of letters of the alphabet.

Any i consecutive letters of a word X generate a factor of length i.

The set A∗ is the set of all the words on the alphabet A.
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Let Σ be an alphabet.

A map ϕ : Σ∗ → Σ∗ is called a morphism, if we have

ϕ(uv) = ϕ(u)ϕ(v)

for any u, v ∈ Σ∗.

A morphism ϕ can be de�ned by de�ning ϕ(i) for each i ∈ Σ.
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The Thue-Morse sequence is de�ned by the morphism µ:

µ(0) = 01,
µ(1) = 10.

0, 01, 0110, 01101001, ... .

This sequence does not contain a factor of the form XXx, where X is
itself a factor and x is the �rst letter in X.

Another way to de�ne this sequence is

µn(0) = µn−1(0)C(µn−1(0)),

where C is the complement (switching 0 and 1).
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u = u1u2 . . ., where ui's are letters over a �nite alphabet

u's complexity fu(n) is the number of distinct words of the form
uiui+1 . . . ui+n−1 and its arithmetical complexity au(n) is the number of
words of the form ukuk+d . . . uk+(n−1)d for any i, k and d.

For example, if u = 0110011 then fu(3) = 4 and au(3) = 6
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1975 � subword (factor) complexity (Ehrenfeucht, Lee, Rozenberg)

1976 � Lempel-Ziv complexity (Lempel, Ziv)

1987 � d-complexity (Iványi)

1995 � palindrome (palindromic) complexity (Hof, Knill, Simon)

2000 � arithmetical complexity (Avgustinovich, Fon-Der-Flaass, Frid)

2002 � pattern complexity (Restivo, Salemi)

2002 � maximal pattern complexity (Kamae, Zamboni)
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For arbitrary in�nite word one has

P (n) ≤ 16
n f

(
n + bn

4 c
)
, for all n ∈ N,

where P (n) is the palindrome complexity and f(n) is the factor
complexity of the word. (Allouche, Baake, Cassaigne, and Damanik,
2003)
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Sturmian words � binary words whose factor complexity is minimal
among all non-periodic words and is equal to n + 1 for all n (study of
Sturmian words dates back to J. Bernoulli III (1772), the �rst
comprehensive study of them was by G. A. Hedlund and M. Morse in
1940). The Fibonacci word is an example of such a sequence.

An in�nite word s is Sturmian if and only if for n even the number of
palindrome factors of s is 1 and for n odd it is 2. (Droubay and Pirillo,
1999)

Arithmetical complexity is O(n3) (known upper and lower bounds di�er
by appr. 10.58 times). This complexity itself depends on choice of the
Sturmian word. (Cassaigne and Frid, 2007)
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Complexity of an in�nite word generated by morphism has one of the
following orders of growth 1, n, n log log n or n2. (Pansiot, 1984)

The variety of rates of growth of arithmetical complexity is not less than
the variety of possible factor complexity rates of growth. (Frid, 2006)
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Patterns in words:

XX � squares, 1 02︸︷︷︸ 02︸︷︷︸ 010

XXX � cubes, 11 011︸︷︷︸ 011︸︷︷︸ 011︸︷︷︸ 0

XYXXY � 2 11︸︷︷︸ 323︸︷︷︸ 11︸︷︷︸ 11︸︷︷︸ 323︸︷︷︸3
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Permutation patterns:

The pattern 1-2 occurs in 34152 as 34, 35, 45, 15, and 12

The pattern 12, ascent or rise, occurs in 34152 as 34 and 15

The pattern 2-1, (inversion), occurs in 34152 as 31, 32, 41, 42, and 52

The pattern 21, descent, occurs in 34152 as 41 and 52

The pattern 1-23 occurs in 24135 as 235 and 135

Repetitions in patterns are allowed too while dealing with words!
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Parikh vectors

A = {a1 < a2 < a3}

w = a2a1a3a1a3

The Parikh vector of w is (|w|a1 , |w|a2 , |w|a3) = (2, 1, 2)

Introduced by R.J. Parikh in 1966
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Parikh matrices
Introduced by A. Mateescu, A. Salomaa, K. Salomaa and S. Yu in 2001
Ψ(aabbc) = Ψ(a)Ψ(a)Ψ(b)Ψ(b)Ψ(c) =0BBBBB@

1 1 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1CCCCCA
0BBBBB@

1 1 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1CCCCCA
0BBBBB@

1 0 0 0

0 1 1 0

0 0 1 0

0 0 0 1

1CCCCCA ·
0BBBBB@

1 0 0 0

0 1 1 0

0 0 1 0

0 0 0 1

1CCCCCA
0BBBBB@

1 0 0 0

0 1 0 0

0 0 1 1

0 0 0 1

1CCCCCA =

0BBBBB@
1 2 4 4

0 1 2 2

0 0 1 1

0 0 0 1

1CCCCCA
Parikh vector is the second diagonal, but we get much more!
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The (Harter-Heighway) Dragon Curve, 1967

The Dragon curve (paperfolding sequence) was discovered by physicist
John E. Heighway. (An example of a recursively generated fractal shape.)
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Any natural number n can be presented unambiguously as
n = 2t(4s + σ), where σ < 4, and t is the greatest natural number such
that 2t divides n.

If n runs through the natural numbers then σ runs through the sequence
that we will call the sequence of σ.

We let wσ denote that sequence. Obviously, wσ consists of 1s and 3s.

The initial letters of wσ are 11311331113313 . . ..
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An equivalent de�nition of the σ-sequence:

C1 = 1, D1 = 3

Ck+1 = Ck1Dk, Dk+1 = Ck3Dk

k = 1, 2, . . .

and wσ = lim
k→∞

Ck.
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Ω = {A,B, a, b}, and γ and h are the following morphisms.

γ : Ω∗ → Ω∗ h : Ω∗ → {1, 3}∗
A 7→ AaB A 7→ 1

B 7→ AbB B 7→ 3

a 7→ a a 7→ 1

b 7→ b b 7→ 3

Theorem. The σ-sequence wσ (the Dragon curve) is generated by the
tag-system (Ω, A, γ, h, {1, 3}), i.e., wσ = h(γω(A)).
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The sigma-sequence wσ can be obtained from traveling along the
Dragon curve:

Following the curve from beginning to end, each turn is either to the left
or to the right. Thus, each generation of the dragon corresponds to a
sequences of 1's (lefts) and 3's (rights). It turns out that we get exactly
wσ.

Application to the �Snake in the box� problem.
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Theorem. [SK, 2003] There does not exist a morphism whose iteration
de�nes the sequence of σ.

Theorem. [Allouche, 1997; Baake 1999] For the sequence of σ, the
palindromic complexity, P (n), is 0 for n ≥ 14.
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Samples of counting patterns in wσ results, [SK, 2003-2004]
Among the �rst 2n − 1 symbols of wσ:

1− 1− · · · − 1︸ ︷︷ ︸
k

occurs 2n−k
2n−1−k

(
2n−1−1

k

)
times

1-2 occurs 2 · 4n−2 + (n− 2) · 2n−2 times

221 occurs 3 · 2n−4 − 1 times

12-21 occurs 1
24n−2 − 3 · 2n−4 times

1-221 occurs 1
24n−2 + 27 · 2n−5 − n− 7 times
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The number cτ
n of occurrences of 2-1-221 among the �rst 2n − 1

symbols of wσ can be calculated using

0B@ cτ
n

dτ
n

1CA =

0B@ 1 1

1 1

1CA0B@ cτ
n−1

dτ
n−1

1CA+

0B@ 5
1024

8n + 25−3n
256

4n − 171
64

2n + 9

5
1024

8n + 21−3n
256

4n − 2n+1

1CA
with initial conditions cτ

5 = 70 and dτ
5 = 74.
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The Peano (Hilbert) Curve, 1890 (1891)

The Peano curve is an example of fractal space �lling curves.

�

� �

�

� �

��

�

�

X 1 2 3X X

A Peano word Pn is obtained by traveling along the Peano curve after
the n-th iteration.

Pn is over Σ = {u, ū, r, r̄} where u stands for up, ū stands for down, r

stands for right, and r̄ stands for left.

The Peano in�nite word P = limn→∞ P2n+1.
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Ω = {A,B, C,D, a, b, c, d}, and γ and h are the following morphisms.

γ : Ω∗ → Ω∗ h : Ω∗ → Σ∗

A 7→ BaAbAcD A 7→ urū

B 7→ AbBaBdC B 7→ rur̄

C 7→ DcCdCaB C 7→ ūr̄u

D 7→ CdDcDbA D 7→ r̄ūr

a 7→ a a 7→ u

b 7→ b b 7→ r

c 7→ c c 7→ ū

d 7→ d d 7→ r̄

Theorem. [SK, Mansour, Séébold, 2003] P is the in�nite word
generated by the tag-system (Ω, A, γ2, h, Σ), i.e., P = h((γ2)ω(A)).
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Theorem. [SK, Mansour, Séébold, 2003] The in�nite word P does not
contain any factor xyWxyWxy with x, y letters and W a word. In
particular, the only cubes in P are x3 with x a letter. Moreover, P is
4-power-free.

Corollary. [SK, Mansour, Séébold, 2003] The in�nite word P cannot
be generated by a D0L-system, and thus cannot be generated by a
morphism.
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Samples of counting patterns in Pn results, [SK, Mansour,
Séébold, 2003]

12(P2k+1) = 2
5 (4 · 16k + 1),

12(P2k+2) = 2
5 (16k+1 − 1),

21(P2k+1) = 8
5 (16k − 1),

21(P2k+2) = 2
5 (16k+1 − 1).

The number of occurrences of the pattern (1−)` in Pn is
(

4n−1 − 2n−1

`

)
+ 2

(
4n−1

`

)
+

(
4n−1 + 2n−1 − 1

`

)
.
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Counting ordered patterns in words generated by
morphisms [SK, Mansour, Séébold, 2008]

A = {a1 < a2 < · · · < ak}. Let f be a morphism and n ≥ 0. The
incidence matrix of fn is the k × k matrix

M(fn) = (mn,i,j)1≤i,j≤k

where mn,i,j is the number of occurrences of the letter ai in the word
fn(aj).

It is known that M(f)n = M(fn).
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The vector of non-inversions 1-2(fn) = (|fn(ai)|1−2)1≤i≤k.

The vector of inversions 2-1(fn) = (|fn(ai)|2−1)1≤i≤k.

The vector of p-repetitions with gaps of a letter
RpG(fn) = (|fn(ai)|(1−)p)1≤i≤k.

Using fn+1 = fn ◦ f = f ◦ fn, we get the following result.
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For each letter a` ∈ A, let p` and q` be such that f(a`) = a`1 . . . a`p`

and fn(a`) = a`′1 . . . a`′q`
. Then, for all n ∈ N,

|fn+1(a`)|1−2 =
X

1≤i<j≤p`

(

k−1X
r=1

(mn,r,`i ·
kX

s=r+1

mn,s,`j ))+

kX
t=1

|fn(at)|1−2·m1,t,`,

=
X

1≤i<j≤q`

(

k−1X
r=1

(m1,r,`′i ·
kX

s=r+1

m1,s,`′j ))+

kX
t=1

|f(at)|1−2 ·mn,t,` ,

|fn+1(a`)|2−1 =
X

1≤i<j≤p`

(

kX
r=2

(mn,r,`i ·
r−1X
s=1

mn,s,`j ))+

kX
t=1

|fn(at)|2−1 ·m1,t,` ,

=
X

1≤i<j≤q`

(

kX
r=2

(m1,r,`′i ·
r−1X
s=1

m1,s,`′j )) +

kX
t=1

|f(at)|2−1 ·mn,t,` .
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The following is obvious.

For each letter a` ∈ A and for all n ∈ N,

|fn(a`)|(1−)p =
k∑

t=1

(
mn,t,`

p

)
.
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The Thue-Morse morphism
µ(0) = 01,
µ(1) = 10.

M(µn) =


 2n−1 2n−1

2n−1 2n−1




For any integer n ≥ 2,

1-2(µn) = 2-1(µn) =
[

22n−3 22n−3
]
and

RpG(µn) =
[

2 · (2n−1

p

)
2 · (2n−1

p

) ]
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The Fibonacci morphism
φ(a1) = a1a2,
φ(a2) = a1.
It generates Fibonacci sequence ϕω(a1).

M(ϕn) =


 Fn Fn−1

Fn−1 Fn−2




For every integer n ≥ 0,

|ϕn+2(a1)|2-1 =
∑n

p=0 FpF
2
n−p ,

|ϕn+2(a1)|1-2 = |ϕn+2(a1)|2-1 + Fn +





1 if n is odd,
−1 if n is even.
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A particular family of morphisms

f involving at least 2 letters has the following properties:

1. ∃ a positive integer m such that |f(a1)|ai = m, 1 ≤ i ≤ k,

2. ∃ a positive integer d such that |f(a2 . . . ak)|ai = d, 1 ≤ i ≤ k,

3. ∀ i, j, 1 ≤ i, j ≤ k, |f(aiaj)|ext
1-2 = |f(ajai)|ext

1-2. [For example, for
Thue-Morse morphism, |µ(a1a2)|ext

1-2 = |a1a2a2a1|ext
1-2 = 1

= |a2a1a1a2|ext
1-2 = |µ(a2a1)|ext

1-2]
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For every positive integer n,

|fn+1(a1)|1-2 = m(d + m)n−1Pk
i=1 |f(ai)|1-2

+ [m(d+m)n−1−1]m(d+m)n−1

2

Pk
j=1 |f(ajaj)|ext

1-2
+ m2(d + m)2n−2P

1≤i<j≤k |f(aiaj)|ext
1-2

|fn+1(a2 . . . ak)|1-2 = d(d + m)n−1Pk
i=1 |f(ai)|1-2

+ [d(d+m)n−1−1]d(d+m)n−1

2

Pk
j=1 |f(ajaj)|ext

1-2
+ d2(d + m)2n−2P

1≤i<j≤k |f(aiaj)|ext
1-2
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The Istrail morphism, 1977

The morphism h on A = {a1 < a2 < a3}:

h(a1) = a1a2a3, h(a2) = a1a3, h(a3) = a2

h generates a square-free in�nite word, hω(a1), but is not a square-free
morphism: h(a1a2a1) = a1a2a3a1a3a1a2a3 contains a3a1a3a1.
The word hω(a1) is closely related to the Thue-Morse word T. If

δ : a1 7→ a1

a2 7→ a1a2

a3 7→ a1a2a2

then T = δ(hω(a1)) (Lothaire, 1983).
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The Istrail morphism, 1977

For n ≥ 1,

|hn+1(a1)|1-2 = |hn+1(a2a3)|1-2 = 3 · 22n−1 + 2n.

For n ≥ 1,

|hn+1(a1)|2-1 = |hn+1(a2a3)|2-1 = 3 · 22n−1 − 2n.
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The Prouhet morphisms, 1851
(A generalization of Thue-Morse morphism)
Let k ≥ 2 and A = {a1 < · · · < ak}. The Prouhet morphism πk is

πk(ai) = aiai+1 . . . aka1 . . . ai−1, 1 ≤ i ≤ k.

Let k = 6. The morphism π6 is given by

a1 7→ a1a2a3a4a5a6

a2 7→ a2a3a4a5a6a1

a3 7→ a3a4a5a6a1a2

a4 7→ a4a5a6a1a2a3

a5 7→ a5a6a1a2a3a4

a6 7→ a6a1a2a3a4a5
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The Prouhet morphisms, 1851

For every i, 1 ≤ i ≤ k, and for every positive integer n,

|πn+1
k (ai)|1-2 =

(k − 1)kn

12
(
3kn+1 + k − 2

)
,

|πn+1
k (ai)|2-1 =

(k − 1)kn

12
(
3kn+1 − k + 2

)
.

For example,

|πn+1
6 (ai)|1-2 = 5·6n

12

(
3 · 6n+1 + 6− 2

)

= 6n−1 · (45 · 6n + 10),

|πn+1
6 (ai)|2-1 = 6n−1 · (45 · 6n − 10).
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The Arshon morphisms, βn
k , 1937

A = {1, 2, . . . , k}.
Let w1 = 1. For n ≥ 1, wn+1 is obtained by replacing the letters of wn:

in odd positions in even positions
1 → 123 . . . (k − 1)k 1 → k(k − 1) . . . 321

2 → 234 . . . (k − 1)k1 2 → 1k(k − 1) . . . 432

... ...
k → k12 . . . (k − 2)(k − 1) k → (k − 1)(k − 2) . . . 21k

Then w2 = 123 . . . (k − 1)k and each wi is the initial subword of wi+1,
so w = lim

i→∞
wi is well de�ned.

When k = 3, w is called the Arshon sequence.
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A = {1, 2, 3, 4}.
Let w1 = 1. For n ≥ 1, wn+1 is obtained by replacing the letters of wn:

in odd positions in even positions
1 → 1234 1 → 4321

2 → 2341 2 → 1432

3 → 3412 3 → 2143

4 → 4123 4 → 3214

Then w2 = 1234, w3 = 1234143234123214, ... .
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Theorem. [Berstel 1979, SK, 2003] There does not exist a morphism,
whose iteration de�nes the Arshon sequence.

Theorem. [Currie, 2002] No Arshon sequence of odd order can be
generated by an iterated morphism.
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The Arshon morphisms, βn
k , 1937

Let k be any even positive integer. For every i, 1 ≤ i ≤ k, and for every
positive integer n,

|βn+1
k (ai)|1-2 =

kn−1

4
[
kn+2 · (k − 1) + 2k

]
,

|βn+1
k (ai)|2-1 =

kn−1

4
[
kn+2 · (k − 1)− 2k

]
.

For example,

|βn+1
6 (ai)|1-2 = 6n−1

4 · (6n+2 · 5 + 2 · 6)

= 6n−1 · (45 · 6n + 3),

|βn+1
6 (ai)|2-1 = 6n−1 · (45 · 6n − 3).
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More examples of morphisms satisfying the three
conditions, but not linked with Thue-Morse sequence:

f : a1 7→ a1a3a2a4

a2 7→ ε

a3 7→ a1a4

a4 7→ a2a3

|fn+1(a1)|1-2 = |fn+1(a3a4)|1-2 = 3 · 2n−1 · (2n+1 + 1),

|fn+1(a1)|2-1 = |fn+1(a3a4)|2-1 = 3 · 2n−1 · (2n+1 − 1),

|fn+1(a2)|1-2 = |fn+1(a2)|2-1 = 0.
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More examples of morphisms satisfying the three
conditions, but not linked with Thue-Morse sequence:

h : a 7→ aba cab cac bab cba cbc

b 7→ aba cab cac bca bcb abc

c 7→ aba cab cba cbc acb abc

This morphism is square-free (Brandenburg, 1983)

For every x ∈ A = {a < b < c} and for every positive integer n,

|hn+1(x)|1-2 = 6 · 18n−1 · (9 · 18n+1 + 40),

|hn+1(x)|2-1 = 6 · 18n−1 · (9 · 18n+1 − 40).
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Consecutive patterns and morphisms

The vector of rises of fn is

R(fn) = (|fn(ai)|12)1≤i≤k.

The vector of descents of fn is

D(fn) = (|fn(ai)|21)1≤i≤k.

The vector of squares of one letter of fn is

R2(fn) = (|fn(ai)|11)1≤i≤k.
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We de�ne two sequences of k vectors, (F (fn))n∈N and (L(fn))n∈N,
where F (fn)[i] is the �rst letter of fn(ai) and L(fn)[i] is the last letter
of fn(ai) if fn(ai) 6= ε, and F (fn)[i] = L(fn)[i] = 0 if fn(ai) = ε.

These two sequences take their values in a �nite set: they are ultimately
periodic. Thus they can be computed a priori from f.
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We de�ne

C12
n (i, j) =





1, if L(fn)[i] < F (fn)[j]

0, if L(fn)[i] ≥ F (fn)[j].

C21
n (i, j) =





1, if L(fn)[i] > F (fn)[j]

0, if L(fn)[i] ≤ F (fn)[j],

C11
n (i, j) =





1, if L(fn)[i] = F (fn)[j]

0, if L(fn)[i] 6= F (fn)[j].
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For any morphism f on A, there exists the least integer Mf such that,
for every a ∈ A, if fn(a) = ε for some n then fMf (a) = ε. By
convention, if f is a nonerasing morphism then Mf = 0. The integer Mf

is the mortality exponent of f .
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For each letter a` ∈ A, f(a`) = a`1 . . . a`p`
, and for all n ≥ Mf , let

`′1 . . . `′p′` be the subsequence of `1 . . . `p`
such that

fn+1(a`) = fn(a`′1 . . . a`′
p′

`

) and fn(a`′i) 6= ε, 1 ≤ i ≤ p′`. Then

|fn+1(a`)|12 =
k∑

t=1

|fn(at)|12 ·m1,t,` +
p′`−1∑

i=1

C12
n (`′i, `

′
i+1),

|fn+1(a`)|21 =
k∑

t=1

|fn(at)|21 ·m1,t,` +
p′`−1∑

i=1

C21
n (`′i, `

′
i+1),

|fn+1(a`)|11 =
k∑

t=1

|fn(at)|11 ·m1,t,` +
p′`−1∑

i=1

C11
n (`′i, `

′
i+1).
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The Thue-Morse morphism
For any integer n ≥ 0,

R(µ2n) =
[

4n−1
3

4n−1
3

]
= D(µ2n) = R2(µ2n)

R(µ2n+1) =
[

2(4n−1)
3 + 1 2(4n−1)

3

]

D(µ2n+1) =
[

2(4n−1)
3

2(4n−1)
3 + 1

]

R2(µ2n+1) =
[

2(4n−1)
3

2(4n−1)
3

]
.
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The Fibonacci morphism
For any integer n ≥ 1,

R(ϕn) =
[

Fn−1 Fn−2

]

D(ϕ2n) =
[

F2n−1 F2n−2 − 1
]

= R2(ϕ2n+1)

R2(ϕ2n) =
[

F2n−2 − 1 F2n−3

]
= D(ϕ2n−1).
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Erasing morphisms

f(a1) = a1a3a2a4

f(a2) = ε

f(a3) = a1a4

f(a4) = a2a3

One has Mf = 1.

For any integer n ≥ 1, R2(fn) =
[

0 0 0 0
]
and
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if n is even





R(fn) =
[

2n 0 2n+1+1
3

2n−1
3

]

D(fn) =
[

2n − 1 0 2n+1−2
3

2n−4
3

]
,

if n is odd





R(fn) =
[

2n 0 2n+1−1
3

2n+1
3

]

D(fn) =
[

2n − 1 0 2n+1−4
3

2n−2
3

]
.
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Erasing morphisms

g(a1) = a1a2a4a3

g(a2) = a3

g(a3) = ε

g(a4) = a1a2a4

Here we have Mg = 2

R(g) =
[

2 0 0 2
]
, D(g) =

[
1 0 0 0

]
,

R2(g) =
[

0 0 0 0
]
, and, for any integer n ≥ 2,
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R(gn) =
[

2n 0 0 2n
]

D(gn) =
[

2n−1 + 2n−2 − 1 0 0 2n−1 + 2n−2 − 1
]

R2(gn) =
[

2n−2 0 0 2n−2
]
.
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Thank you for your attention!
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