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A generalized pattern is a pattern that allows the requirement
that two adjacent letters in the pattern must be adjacent in the

permutation.

Pattern | Occurrences in 13542

1-3-2 13542, 13542, 13542, 13542, 13542
1-32 13542, 13542, 13542
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Theorem. [Knuth] A permutation is stack-sortable if and only
if it avoids 2-3-1.

1 4 2 3 5 6
31

Numbers on stack
Must increase
from top 2
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Theorem. [Knuth] A permutation is stack-sortable if and only
if it avoids 2-3-1.

The number of such permutations is the n-th Catalan number:

1 2n
Cn:n—l—l(n)
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Theorem. [Knuth] A permutation is stack-sortable if and only
if it avoids 2-3-1.

The number of such permutations is the n-th Catalan number:

1 2n
Cn:n—l—l(n)

They have the generating function

1 —+1—-4x
2x

C(z) = ) Cha" =

n=0
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1969 D. Knuth: The Art of computer programming, vol. 1

1985 R. Simion, F. Schmidt: Restricted permutations, European
J. Combin. 6, no. 4, 383—406.
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1969 D. Knuth: The Art of computer programming, vol. 1

1985 R. Simion, F. Schmidt: Restricted permutations, European
J. Combin. 6, no. 4, 383—406.

1992 Present: Explosive growth (several hundreds papers appeared)

2002 H. Wilf: The patterns of permutations, DM 257, 575—583.

2003 S. Kitaev, T. Mansour: Survey of certain pattern problems

2004 M. Bo6na: Combinatorics of Permutations, xiv+383 pp.

27



Permutation Patterns:

Classical patterns: Knuth, 1969
Generalized patterns: Babson and Steingrimsson, 2000
Partially ordered patterns: SK, 2001

Word Patterns:

Classical word patterns: Burstein, 1998
Generalized word patterns: Burstein and Mansour, 2002
Partially ordered word patterns: SK and Mansour, 2003

Patterns in matrices: SK, Mansour and Vella, 2003

Patterns in n-dimensional objects: SK and Robbins, 2004

Patterns in even (odd) permutations: Simion and Schmidt, 1985

Colored patterns in colored permutations: Mansour, 2001

Signed patterns in signed permutations: Mansour and West, 2002

Patterns with respect to parity: SK and Remmel, 2005
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Patterns Related combinatorial objects Authors

2-31 Dyck paths (Catalan numbers) Claesson

1-23 Set partitions (Bell numbers) Claesson

1-23, 12-3 Non-overlapping partitions Claesson
(Bessel numbers)

1-23, 1-32 Involutions Claesson

1-23, 13-2 Motzkin paths Claesson

132, [21 Increasing rooted trimmed trees SK

213, 4123 Matchings in the coronas of the SK

3124, 2134 complete graphs Pyatkin

1-3-2, 21-34, “Horse paths’: paths with steps Mansour

12-34, 13-24, (0,1), (1,2), (1,1), (2,1) starting Hou

14-23 at the origin

Uabcd, a<c, b>d | First quadrand lattice walks starting | SK

(6 patterns) at the origin with N, S, E, W steps

Ulo, o is a perm. | Permutations with cycles of length SK

on {2,...,k+1} | at most &
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Let > be an alphabet.
A map ¢ 3>* — 3% is called a morphism, if we have
p(uv) = p(u)p(v)

for any u,v € >*,

A morphism ¢ can be defined by defining p(7) for each i € X.
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The Thue-Morse sequence is defined by the morphism u:

n(0) = 01,
n(1l) = 10.

o, 01, 0110, 01101001, ... .
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Patterns in combinatorics on words:

XX — squares, 1Q/2/Q/2/010

XXX — cubes, 110110110110
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Parikh vectors:

A= {a1 < ap < az}

w = a2a1a3a10a3

The Parikh vector of w is (|wlay, |W|as, |wlas) = (2,1,2)

Introduced by R.J. Parikh in 1966
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Parikh matrices

Introduced by A. Mateescu, A. Salomaa, K. Salomaa and S. Yu
in 2001

W (aabbe) = W(a)WV(a) V(D)W (D)W (c) =

1100 1100 1000
0100 0100 0110
0010 0010 0010
0 001 0001 0001
1 000 1000 1 2 4 4
0110 o100 [01 22
0010 0011 o011
0 001 0001 0001
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The (Harter-Heighway) Dragon Curve (paperfolding sequence)
was discovered by physicist John E. Heighway in 1967. (An ex-
ample of a recursively generated fractal shape.)

O] O]
b
[] | 1M
EEI I_I : O O 'L
[ O HEEE
dﬁ b P %gzg
T, i .
] 1 1 1
a0 O
b G |
T e T L
I ] I 1 1
II::I ]
L1 [ | LI [ |
O I::I O E:I
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Q ={A,B,a,b}, and v and h are the following morphisms.

v F — QF h:Q* — {1,3}*
A — AaB A — 1
B — AbB B — 3
a — a a — 1
b — b b — 3

Theorem. The Dragon curve wy iS generated by the tag-system
(€2, Ay, h,{1,3}), i.e., we = h(v¥(A)).

Theorem. [SK, 2003] There does not exist a morphism whose
iteration defines the Dragon curve wg.
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Samples of counting patterns in w, results, [SK, 2003-2004]

Among the first 2™ — 1 symbols of wy:

l—-—1—...—1 occurs
k

2n_k 2n—1_1 .
—Qn_l_k( e )tlmes

1-2 occurs 2-4"2 4 (n —2) - 2" 2 times
221 occurs 3-2" % _ 1 times
12-21 occurs %4”_2 —3.2"% times

1-221 occurs 54772 4 27.2"75 —n — 7 times
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The number ¢/, of occurrences of 2-1-221 among the first 2" —1
symbols of ws can be calculated using

5 on 4 21-3nan  ~ndl
n—1 10249 T 556 4 — 2

v\ (L)1) 4 10228" + Z35674" — 642" +9
T ) T
dr 11

with initial conditions cg = 70 and dg =74,
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The Peano (Hilbert) curve (1890—1891) is an example of fractal
space filling curves.

A Peano word P, is obtained by traveling along the Peano curve
after the n-th iteration. P, is over = {u,u,r,7} where u stands
for up, u stands for down, r for right, and r stands for left.

The Peano infinite word P = limp—oo Pojpy41-
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Q = {A B,C,D,a,b,c,d}, and v and h are the following mor-
phisms.

v F — QF h:Q* — X%
A — BaAbAcD A — uru
B — AbBaBdC B — rur
C — DcCdCaB C — uru
D — (CdDcDbA D — rur
a — a a +— u
b — b b — r
cC — cC cC — U
d — d d — 1

Theorem. [SK, Mansour, Séébold, 2003] P is the infinite word
generated by the tag-system (2, A,~2, h,X), i.e., P = h((72)¥(A)).

Theorem. [SK, Mansour, Séébold, 2003] P cannot be generated
by a DOL-system, and thus cannot be generated by a morphism.
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Samples of counting patterns in P, results, [SK, Mansour,
Séébold, 2003]

12(Pyjq1) = 2(4-16F 4+ 1),
12(Pyyy0) = (1651 — 1),
21(Ppp41) = 2(16%F — 1),

21<P2k—|—2> m— %(16k+1 — 1)
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Counting ordered patterns in words generated by morphisms
[SK, Mansour, Séébold, 2008]

A={a1 <ar < ---<ai}t. Let f be a morphism and n> 0. The
incidence matrix of f™ is the k x k matrix

M) = (mpsi)1<i i<k

where my, ; ; IS the number of occurrences of the letter a; in the
word f"(a;).

Remark. “#" in the paper has the same meaning as “-" here.
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The vector of non-inversions 1-2(f") = (|f™(a;)|1-2)1<i<k-

The vector of inversions 2-1(f") = (|f"(a;)|2-1)1<i<k-

The vector of p-repetitions with gaps of a letter Ry,G(f") =
(/" Cai)|(1-yr)1<i<k-
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For each letter ay € A, let py and g, be such that f(ay) = ay, - .. ag,,
and f"(ay) = ag ...ap . Then, for all n € N,
14

k-1
e = Y O (Mg - Z mnse))-l-Z\f (a)|1i—2-mate,

1<i<j<p r=1 s=r+1
k—1
= Z (Z(ml,r,ﬁ" Z mlsﬁ))"’Zlf(at)'l 2 Mpte,
1<i<y<q r=1 s=r—+1

P = ) (Z(mnre Zmnse))-l-Z\f (at)[2-1-mage,

1<i<y<p, r=2

= ) (Z(mlre Zmlsz))+2|f(at)|2 L M t0 -

1<i<yj<q, r=2

a7



The following is obvious.

For each letter ay € A and for all n € N,

k
P CHIEEYEDYS (m;’t’e).

t=1
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The Thue-Morse morphism

n(0) = 01,
pn(l) = 10.

2n—1 2n—1
M(Nn) = [ 2n—1 2n—1 ]

For any integer n > 2,

1-2(p") = 2-1(p") = [ 22n—3 52n—3 } and

RGG = [2- (7)) 2 (%)) |

p D
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The Fibonacci morphism

¢(a1) = ajao,

¢(az) = ay.
It generates Fibonacci sequence p“(a1).

F. F
M ny — n n—1
(SO ) [ Fn—l Fn—2 ]

For every integer n > 0,
" T2 (a1)lo1 = XlogFpF7,,
n—+2 n—+2 1 if nis odd,
|90 (a1)|1—2 |90 (a1)|2—1 + Fn + { —1 if nis even.
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A particular family of morphisms

f involving at least 2 letters has the following properties:
1. 3 a positive integer m such that |f(a1)|e;, =m, 1 <i <k,
2. 3 a positive integer d such that |f(as...ap)|e;, =d, 1 <i <k,

3.V 4,5, 1 <4,5 <k, |f(a;a))|§ = |f(aja)|{%. [For example,

for Thue-Morse morphism, |u(a1a2)|iait2 = |a1a2a2a1|6fit2 =1
ext

175

= lagayaiaz|§™y = |u(azay)
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For every positive integer n,

T a1 = m(d+m)" L yE If(az')|1 2
m m)" 1 —1]m m)" ex
+ [m(d+m) 21] (d+m) zéﬂ ) |f(aja])| t

+ 2(d+m)2n 221<z<]<k | f (a; ])lea:t

T an. . ap)|10 = d(d+m)n Ltk |f(a7,)|1 2
+ [d(d—|—m)"_ —l]d(d—l—m)” Zk 1|f<ajaj)‘ewt
j=

1-2
dQ(d + m)Qn 2 Zl<z<y<k |f(aza]) e:vt
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The Istrail morphism, 1977

The morphism h on A= {a1 < ap < az}:

h(a1) = ajanas, h(az) = ajaz, h(az) = ao

The word h%(aq) is closely related to the Thue-Morse word T. If

. a1 — ai
a>» — ai1an
a3 — a1a2ao

then T = §(h¥(ay)) (Lothaire, 1983).
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The Istrail morphism, 1977

Forn > 1,

W T1(a1)]1.0 = |h"T1(anaz)|{.0 = 3-227"1 4 2n,

W T1(a1)o.1 = |h" T (anaz)|o1 = 3- 22771 —2n,
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The Prouhet morphisms, 1851
(A generalization of Thue-Morse morphism)

Let k> 2 and A= {a1 <--- <a}. The Prouhet morphism . is

Wk(ai) — Q441 -.-QA7 ...0Q5_1, 1 <1< k.

Let Kk = 6. The morphism mg is given by

a1 +— a1a2a3040506
ao> — a2a304050601
a3 F— a3a405a060102
a4 +— a405060102073
asr +— a5a601020304
ag H— 0102030405
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The Prouhet morphisms, 13851

For every 7, 1 <1 < k, and for every positive integer n,

1 (k—1)k"
|7TZ+ (a;)|1-0 = > (3k”+1 4+ k— 2) ,
1 (k—1)kK"
iy T (ad)ly = o (3K — R+ 2).
For example,
met el = 55 (3-6"1 +6-2)

6n—1.(45.6" + 10),
72T (a)|o.; = 671 (45-6" — 10).
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The Arshon morphisms, 1937
A={1,2,...,k}.

Let wy =1. Forn > 1, w,41 is obtained by replacing the letters
of wn:

in odd positions in even positions
1 —123...(k— 1)k 1—k(k—1)...321
2 —234...(k—1)k1 2 — 1k(k—1)...432

ko k12 (k—2)(k—1) |k — (k—1)(k—2)...21k

Then wo = 123...(k — 1)k and each w; is the initial subword of

W;4-1, SO w = ergowz is well defined.
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Theorem. [Berstel 1979, SK, 2003] There does not exist a
morphism, whose iteration defines the Arshon sequence for k = 3.

This is obvious that the Arshon sequences of even order are
generated by a morphism.

Theorem. [Currie, 2002] No Arshon sequence of odd order can
be generated by an iterated morphism.
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The Arshon sequences, §;’, 1937

Let £ be any even positive integer. For every 2, 1 <1 < k, and
for every positive integer n,

. kn—l .

|5k+1(ai)|1_2 = [k 2 (k-1 + 2]@] ,
n+1 gt n—+2

6 @)y =~ [F"T2 - (k= 1) — 2k].

For example,

BEt a0 = 6" 1. (45-6" + 3),
Be T (ai)]o1 6"~ 1.(45-6" — 3).
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More examples of morphisms satisfying the three condi-
tions, but not linked with Thue-Morse sequence:

f a1 — ajazanag
a» = &
a3z = ai1a4
a4 > anas

"1 (azaq)|1-0 3.2n- L. (2ntl 4 1),
T 1(azaq)|o-q 3.2n-1.(ontl 1),
f"tl(a)lo.y = O.

T (a1)|1-0
T (a1)|oo1
T (a2)|1-o
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More examples of morphisms satisfying the three condi-
tions, but not linked with Thue-Morse sequence:

h :

a +— aba cab cac bab cba cbe
b — aba cab cac bca beb abe
¢ +— aba cab cba cbe acb abe

This morphism is square-free (Brandenburg, 1983)

For every x € A = {a < b < ¢} and for every positive integer n,

W tl(z)]1o =6-18""1.(9.18"T1 4 40),

W tl(z)|51 =6-18"71. (918" T1 — 40).
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Consecutive patterns and morphisms

The vector of rises of f™ is

R(f"™) = (|f"(ai)]12) 1<i<k-

The vector of descents of f" is

D(f") = (|f"(ai)]21) 1<i<k-

The vector of squares of one letter of f" is

Ro(f™) = (| f"(as)|11)1<i<k-
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Foray € A, f(ag) = ay, ... ay,, and for all n = My (where My is the
mortality exponent), let ¢} .. .E;, be the subsequence of ¢;...¢p,
14

such that f*t1(a)) = f*(ag, -.ap ) and fay) #e, 1< i< p).
p 1

Then
py—1
|fn+1(ae)|12—tzllf (at)|12 - mq g0+ 21012(5 1),
py—1
|f"+1(ae)|21—tzllf (ar)|21 - my ¢+ Z Crt (4,64 1),
1
|f“+1(a£)|11—tzllf (at)l11-my e+ Z: Cat (4,6 41).
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The Thue-Morse morphism

For any integer n > O,

R(p2")
R(p*"+1)
D (MQn—I— 1 )

Ro(pu?n 1)

[ 2(4"—-1 2(4"—1
2047-1) 4 g 2(47-1)

(2(4"-1) 2(4"-1) 4 q |

_ 4" -1 41 } — D(ILLQn) — RQ(,UQn)

3 3

3

3 3

 2(47—1) 2(4"—1)
3 3 '
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The Fibonacci morphism

For any integer n > 1,

R(¢™)
D(¢°")

Ro(p%™)

i Fn—l Fn—2

fop-1 Fop2— 1|

| fop2—1 F2p-3 |

= Ro(p?"11)

= D(p*" ).
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Erasing morphisms

fla1) = ajazagay
flag) = ¢

flaz) = ajas
flas) = apa3

One has Mf = 1.

For any integer n > 1, Ro(f") = [ O O 0O 0| and
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R(f") = |2n o 2741 20|

if n is even Dl — . 32n+1_23 i 4
(f7) = |[2n—1 0 2% =4 |,
R(f") — n on+l_1  onypq

if n is odd () [2 0 31 3 TJ
D(f") = |2n—1 o 27 =4 22|
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Erasing morphisms

g(a1) = ajanzazas
g(az) = a3
g(az) = e

g(ag) = ajapag

Here we have Mg = 2

R(g):[z 00 2],D(g)=[1 0 0 o},RQ(g):[o 0 0 o],
and, for any integer n > 2,

R(g") = :2’” 0 0 zn}

D(gn) :2n—1_|_2n—2_1 0O 0 2n—1_|_2n—2_1}

R>(g™) [ on—=2 g o 2n—2 }
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1975

1976

1987

1995

2000

2002

2002

subword (factor) complexity (Ehrenfeucht, Lee, Rozenberg)

Lempel-Ziv complexity (Lempel, Ziv)

d-complexity (Ivanyi)

palindrome (palindromic) complexity (Hof, Knill, Simon)

arithmetical complexity (Avgustinovich, Fon-Der-Flaass, Frid)

pattern complexity (Restivo, Salemi)

maximal pattern complexity (Kamae, Zamboni)
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T hank you for your attention!



