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Occurrences of the �classical" pattern 132 in 13524:

1 3 5 2 4, 1 3 5 2 4, 1 3 5 2 4, 1 3 5 2 4
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Occurrences of the �classical" pattern 132 in 13524:

1 3 5 2 4, 1 3 5 2 4, 1 3 5 2 4, 1 3 5 2 4

A generalized pattern is a pattern that allows the requirement
that two adjacent letters in the pattern must be adjacent in the
permutation.

Pattern Occurrences in 13542
1-3-2 1 3 5 4 2, 1 3 5 4 2, 1 3 5 4 2, 1 3 5 4 2, 1 3 5 4 2
1-32 1 3 5 4 2, 1 3 5 4 2, 1 3 5 4 2
[1-3-2 1 3 5 4 2, 1 3 5 4 2, 1 3 5 4 2, 1 3 5 4 2
132 1 3 5 4 2
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segmental patterns = segmented patterns = subword patterns
= patterns without internal dashes = patterns with no dashes =
patterns without hyphens = patterns without gaps
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segmental patterns = segmented patterns = subword patterns
= patterns without internal dashes = patterns with no dashes =
patterns without hyphens = patterns without gaps

There is a number of results on the distribution of several classes
of segmented patterns. In particular we know the exponential
generating functions (EGF) for the number of permutations that
avoid these classes (Elizalde and Noy).
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Theorem [Elizalde and Noy, 2001] Let m and a be positive inte-
gers with a 6 m, let σ = 12 · · · aτ(a + 1) ∈ Sm+2, where τ is any
permutation of {a + 2, a + 3, . . . , m + 2}, and let

P (u, z) =
∑
π

uσ(π)z
|π|

|π|!.

Then P (u, z) = 1/w(u, z), where w is the solution of

wa+1 + (1− u)
zm−a+1

(m− a + 1)!
w′ = 0

with w(0) = 1, w′(0) = −1 and w(k) = 0 for 2 6 k 6 a. In
particular, the distribution does not depend on τ .
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Using an inclusion-exclusion argument we get this:

Theorem [Goulden and Jackson, 1983] Let

Ak(x) = A0 + A1x +
A2

2!
x2 + · · ·

be the EGF for the number of permutations avoiding the pattern
123 · · · k. Then

Ak(x) =
1

∑

i>0

xki

(ki)!
−

∑

i>0

xki+1

(ki + 1)!

.
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Theorem [2002] Let k and a be positive integers with a < k, let
p = 12 · · · aτ(a + 1) ∈ Sk+1, where τ is any permutation of the
elements {a +2, a +3, . . . , k +1}, and let Ak,a(x) be the EGF for
the number of permutations that avoid p. Let

Fk,a(x) =
∑

i>1

(−1)i+1xki+1

(ki + 1)!

i∏

j=2

(jk − a

k − a

)
.

Then
Ak,a(x) = 1/(1− x + Fk,a(x)).

9



Theorem [2002] Let k and a be positive integers with a < k, let
p = 12 · · · aτ(a + 1) ∈ Sk+1, where τ is any permutation of the
elements {a +2, a +3, . . . , k +1}, and let Ak,a(x) be the EGF for
the number of permutations that avoid p. Let

Fk,a(x) =
∑

i>1

(−1)i+1xki+1

(ki + 1)!

i∏

j=2

(jk − a

k − a

)
.

Then
Ak,a(x) = 1/(1− x + Fk,a(x)).

Example If k = 2 and a = 1 (p = 132), then

F2,1(x) =
∑

i>1

(−1)i+1xki+1

i!(k!)i(ki + 1)
= x−

∫ x

0
e−t2/2dt.
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Let p = σ-k, where σ is an arbitrary segmented pattern on the
elements 1,2, . . . , k−1. So the last letter of p is greater than any
other letter. Let A(x) (resp. B(x)) be the EGF for the number
of permutations that avoid σ (resp. p).

Theorem [2002] We have B(x) = eF (x,A(y)), where

F (x, A(y)) =
∫ x

0
A(y) dy.

11



Example Let p = 1-2. Here σ = 1, whence A(x) = 1 since
An = 0 for all n > 1. So

B(x) = eF (x,1) = ex.
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Example Let p = 1-2. Here σ = 1, whence A(x) = 1 since
An = 0 for all n > 1. So

B(x) = eF (x,1) = ex.

Example Suppose p = 12-3. Here σ = 12, whence A(x) = ex,
since there is only one permutation that avoids σ. So

B(x) = eF (x,ey) = eex−1.

It is known [Claesson, 2001] that the number of n-permutations
that avoid p is the n-th Bell number whose EGF is B(x).
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A partially ordered pattern (POP) is a generalized pattern where
some of the letters can be incomparable. (2002)

Example The permutation 3142 has two occurrences of the pat-
tern 1′-2-1′′:

3 1 4 2

14



A partially ordered pattern (POP) is a generalized pattern where
some of the letters can be incomparable. (2002)

Example The permutation 3142 has two occurrences of the pat-
tern 1′-2-1′′:

3 1 4 2

The number of permutations that avoid 1′-2-1′′ is 2n−1:

Write π = π11π2

Then π1 must be decreasing and π2 must be increasing.
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1' 1�

a

3

2

A pattern σ =3-a21�-1'

Occurrences of σ: 8 7 1 4 2 3 5 6
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1' 1�

a

3

2

A pattern σ =3-a21�-1'

Occurrences of σ: 8 7 1 4 2 3 5 6

avoiding a POP = avoiding a set of generalized patterns
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1' 1�

a

3

2

A pattern σ =3-a21�-1'

Occurrences of σ: 8 7 1 4 2 3 5 6

avoiding a POP = avoiding a set of generalized patterns

The number of n-permutations avoiding 123, 132 and 213 is(
n

bn/2c
)
; a rather complicated argument was used to prove this.

Considering 11′2 gives a two-lines proof of the same result.
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A pattern σ is co-unimodal if σ = σ1 > σ2 > · · · > σj < · · · < σk

for some 2 6 j 6 k.
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A pattern σ is co-unimodal if σ = σ1 > σ2 > · · · > σj < · · · < σk

for some 2 6 j 6 k.

Corresponding poset:
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A pattern σ is co-unimodal if σ = σ1 > σ2 > · · · > σj < · · · < σk

for some 2 6 j 6 k.

The inversion index, inv(π), of a permutation π is the number of
ordered pairs (i, j) such that i < j and πi > πj.

Example inv(41352)=3+1+1=5
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A pattern σ is co-unimodal if σ = σ1 > σ2 > · · · > σj < · · · < σk

for some 2 6 j 6 k.

The inversion index, inv(π), of a permutation π is the number of
ordered pairs (i, j) such that i < j and πi > πj.

The major index, maj(π), is the sum of all i such that πi > πi+1.

Example maj(43152)=1+2+4=7
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A pattern σ is co-unimodal if σ = σ1 > σ2 > · · · > σj < · · · < σk

for some 2 6 j 6 k.

The inversion index, inv(π), of a permutation π is the number of
ordered pairs (i, j) such that i < j and πi > πj.

The major index, maj(π), is the sum of all i such that πi > πi+1.

Suppose σ is a segmental POP and

placeσ(π) = {i | π has an occurrence of σ starting at πi}.
Let majσ(π) be the sum of the elements of placeσ(π).
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A pattern σ is co-unimodal if σ = σ1 > σ2 > · · · > σj < · · · < σk

for some 2 6 j 6 k.

The inversion index, inv(π), of a permutation π is the number of
ordered pairs (i, j) such that i < j and πi > πj.

The major index, maj(π), is the sum of all i such that πi > πi+1.

Suppose σ is a segmental POP and

placeσ(π) = {i | π has an occurrence of σ starting at πi}.
Let majσ(π) be the sum of the elements of placeσ(π).

Theorem [Björner and Wachs, 1991] We have
∑

π∈Sn

tmajσ(π−1)qmaj(π) =
∑

π∈Sn

tmajσ(π−1)qinv(π).
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De�nition Suppose {σ0, σ1, . . . , σk} is a set of generalized pat-
terns with no dashes and p = σ1-σ2-· · ·-σk where each letter of
σi is incomparable with any letter of σj whenever i 6= j. We call
such POPs multi-patterns.
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De�nition Suppose {σ0, σ1, . . . , σk} is a set of generalized pat-
terns with no dashes and p = σ1-σ2-· · ·-σk where each letter of
σi is incomparable with any letter of σj whenever i 6= j. We call
such POPs multi-patterns.

Corresponding poset:

Example The permutation 53142 has two occurrences of the
pattern 21-2′1′:

5 3 1 4 2
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Theorem [2002] There are (n − 2)2n−1 + 2 permutations in Sn

that avoid the pattern p = 12-1′2′.

Theorem [2002] The EGF for the number of permutations that
avoid the pattern p = 122′1′ is

1

2
+

1

4
tanx(1 + e2x + 2ex sinx) +

1

2
ex cosx.
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The following theorem is the basis for calculating the number of
permutations that avoid a multi-pattern.

Theorem [2002] Let p = σ1-σ2-· · ·-σk be a multi-pattern and let
Ai(x) be the number of permutations that avoid σi. Then the
EGF B(x) for the number of permutations that avoid p is

B(x) =
k∑

i=1

Ai(x)
i−1∏

j=1

((x− 1)Aj(x) + 1).
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Corollary Let p = σ1-σ2-· · ·-σk be a multi-pattern, where |σi| = 2

for all i. That is, σi is either 12 or 21. Then the EGF for the
number of permutations that avoid p is given by

B(x) =
1− (1 + (x− 1)ex)k

1− x
.
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A descent in a permutation π = a1a2 · · · an is an i such that
ai > ai+1. The number of descents is a well-known statistic for
a permutation π.

Two descents i and j overlap if j = i + 1.

We de�ne a new statistic, namely the maximum number of non-
overlapping descents in a permutation.

Permutation 4 3 1 2 2 1 4 3 4 3 2 1
Maximal number of non-over. descents one two two

We �nd the distribution of this new statistic by using the results
for multi-patterns.
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Theorem [2002] Let p be a segmented pattern. Let A(x) be the
EGF for the number of permutations that avoid p. Let

D(x, y) =
∑
π

yN(π)x
|π|

|π|!
where N(π) is the maximum number of non-overlapping occur-
rences of p in π. Then

D(x, y) =
A(x)

1− y((x− 1)A(x) + 1)
.

31



Example For descents, A(x) = ex, hence the distribution of the
maximum number of non-overlapping descents is

D(x, y) =
ex

1− y(1 + (x− 1)ex)
.
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Example For descents, A(x) = ex, hence the distribution of the
maximum number of non-overlapping descents is

D(x, y) =
ex

1− y(1 + (x− 1)ex)
.

Example If we consider the maximum number of non-overlapping
occurrences of the pattern 132 then the distribution of these
numbers is

D(x, y) =
1

1− yx + (y − 1)
∫ x

0
e−t2/2 dt

.
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The result of the previous theorem, as well as the results on the
multi-patterns, were extended to the case of words.

Theorem [Kitaev and Mansour, 2003] Let τ be a segmented
pattern and Aτ(x; k) =

∑
n>0 aτ(n; k)xn is the generating function

for the numbers aτ(n; k) of words in [k]n avoiding the pattern τ .
Then for all k > 1,

∑

n>0

∑

σ∈[k]n
yNτ(σ)xn =

Aτ(x; k)

1− y((kx− 1)Aτ(x; k) + 1)
,

where Nτ(σ) is the maximum number of non-overlapping occur-
rences of τ in σ.

34



Example For descents A12(x; k) = (1 − x)−k, hence the distrib-
ution of the maximum number of non-overlapping descents is

∑

n>0

∑

σ∈[k]n
yN12(σ)xn =

1

(1− x)k + y(1− kx− (1− x)k)
.
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Example For descents A12(x; k) = (1 − x)−k, hence the distrib-
ution of the maximum number of non-overlapping descents is

∑

n>0

∑

σ∈[k]n
yN12(σ)xn =

1

(1− x)k + y(1− kx− (1− x)k)
.

Example The distribution of the maximum number of non-overlapping
occurrences of the pattern 122 is given by the formula:
∑

n>0

∑

σ∈[k]n
yN122(σ)xn =

x

(1− x2)k + x− 1 + y(1− kx2 − (1− x2)k)
,

since
A122(x; k) =

x

(1− x2)k − (1− x)
.
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q-analogues of n and n! are

[n]q = 1−qn

1−q = q0 + · · ·+ qn−1 and [n]q! = [n]q · · · [1]q

inv(π) � number of inversions in a permutations π = π1 · · ·πn.
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q-analogues of n and n! are

[n]q = 1−qn

1−q = q0 + · · ·+ qn−1 and [n]q! = [n]q · · · [1]q

inv(π) � number of inversions in a permutations π = π1 · · ·πn.

The following theorem is a q-analogue of a theorem above.

Theorem [Mendes, 2004] Let p be a segmented pattern. Then
∑
π

yN(π)qinv(π) x|π|

[|π|]q!
=

Aq(x)

1− y((x− 1)Aq(x) + 1)

where N(π) is the maximum number of non-overlapping occur-
rences of p, and

Aq(x) =
∑

π avoids p

qinv(π) x|π|

[|π|]q!
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Patterns built on the letters a, a1, . . . , ak with the only relations
a < ai for all i.

Corresponding poset:
a

a1 a2 · · · ak
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Corresponding poset:
a

a1 a2 · · · ak

[Distribution of a1 · · · akaak+1 · · · ak+`] Let

P := P (x, y) =
∑

n>0

∑

π∈n

ye(π)xn/n!

be the BGF for permutations where e(π) is the number of occur-
rences of the segmental POP a1 · · · akaak+1 · · · ak+` in π. Then
P is the solution to
∂P

∂x
= y

(
P − 1− xk

1− x

) (
P − 1− x`

1− x

)
+

2− xk − x`

1− x
P−1− xk − x` + xk+`

(1− x)2

with the initial condition P (0, y) = 1.
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Peaks in a permutation: 63427519

Corollary [2005] The BGF for the peaks distribution in permu-
tations is

1− 1

y
+

1

y

√
y − 1 · tan

(
x

√
y − 1 + arctan

(
1√

y − 1

))
.
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Peaks in a permutation: 63427519

Corollary [2005] The BGF for the peaks distribution in permu-
tations is

1− 1

y
+

1

y

√
y − 1 · tan

(
x

√
y − 1 + arctan

(
1√

y − 1

))
.

Proposition [Claesson, 2001] The involutions in Sn are in one-to-
one correspondence with permutations in Sn avoiding 1-23 and
1-32 (that is, avoiding a-a1a2 in the notation above).

Generalization [2005] The permutations in Sn having cycles of
length at most k are in one-to-one correspondence with permuta-
tions in Sn that avoid a-a1 · · · ak. Thus, the EGF for the number
of permutations avoiding a-a1 · · · ak is given by exp(

∑k
i=1 xi/i).

42



Pk =
∑k−1

n=0
1

n+1

(
2n
n

)
xn. So Pk is the k initial terms in the expan-

sion of the generating function 1−√1−4x
2x for the Catalan numbers.

[Distribution of a1 · · · akaak+1 · · · ak+` on Sn(2-1-3)] Let

P := P (x, y) =
∑

n>0

∑

π∈Sn(2-1-3)

ye(π)xn

be the BGF for 2-1-3-avoiding permutations where e(π) is the
number of occurrences of a1 · · · akaak+1 · · · ak+` in π. Then

P =
1− x(1− y)(Pk + P`)−

√
(x(1− y)(Pk + P`)− 1)2 − 4xy(x(y − 1)PkP` + 1)

2xy
.
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Pk =
∑k−1

n=0
1

n+1

(
2n
n

)
xn. So Pk is the k initial terms in the expan-

sion of the generating function 1−√1−4x
2x for the Catalan numbers.

[Distribution of a1 · · · akaak+1 · · · ak+` on Sn(2-1-3)] Let

P := P (x, y) =
∑

n>0

∑

π∈Sn(2-1-3)

ye(π)xn

be the BGF for 2-1-3-avoiding permutations where e(π) is the
number of occurrences of a1 · · · akaak+1 · · · ak+` in π. Then

P =
1− x(1− y)(Pk + P`)−

√
(x(1− y)(Pk + P`)− 1)2 − 4xy(x(y − 1)PkP` + 1)

2xy
.

For certain choices of k, `, and y in the theorem above one
gets Catalan numbers, Pell numbers, and the triangle of Narayna
numbers.
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Patterns Related objects
no restrictions Increasing binary trees
1-2-3 Dyck paths
1-23 Partitions
1-23, 12-3 Non-overlapping partitions
1-23, 1-32 Involutions
1-23, 13-2 Motzkin paths
132, [21 Increasing rooted trimmed trees
aa1 · · · ak Permutations with cycles of length at most k
12'21' Lattice walks in N, S, E, W
11'22', 22'11' Certain walks on the x-axis
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The End! ;-)


