Uniquely k-determined permutations

Sergey Kitaev Reykjavík University

Joint work with

Sergey Avgustinovich Sobolev Institute of Mathematics

Uniquely k-determined permutations

Sergey Vladimirsson (Kitaev) Reykjavík University

Joint work with

Sergey Vladimirsson (Avgustinovich) Sobolev Institute of Mathematics

Permutation 253641 contains two occurrences of the consecutive pattern 132: 253164 and 253641

Permutation 253641 contains two occurrences of the consecutive pattern 132: 253164 and 253641

Basic question: How many of *n*-permutations contain k occurrences of a given consecutive pattern? In particular, how many permutations avoid a given pattern.

Permutation 253641 contains two occurrences of the consecutive pattern 132: 253164 and 253641

Basic question: How many of *n*-permutations contain k occurrences of a given consecutive pattern? In particular, how many permutations avoid a given pattern.

More general question: Find joint distribution of patterns from a given set of consecutive patterns.

Approaches to study consecutive patterns:

- 1. Direct combinatorial arguments;
- 2. Method of inclusion-exclusion;

· · ·

- 3. Tree representations of permutations;
- 4. Spectral theory of integral operators on $L^2([0,1]^k)$;

 $n.$ Considering the graph of patterns overlaps.

- 1. Direct combinatorial argument: $A_n(123, 321, 132) = (n-1)!! + (n-2)!!$ (SK)
- 2. Method of inclusion-exclusion: Generating function for $A_n(12543)$ is $\frac{1}{2}$ $1 - x +$ $\overline{}$ $i\geqslant 1$ $(-1)^{i+1}x^{4i+1}$ $(4i + 1)!$ $\frac{i}{\sqrt{2}}$ $j=2$ $(4j - 2)$ 2 ´ Y
、 \mathcal{L} −1 (SK)
- 3. Tree representations of permutations: Bivariate GF for distribution of 132 is $\left(1 \int_0^z \exp((u-1)t^2/2) dt\right)^{-1}$ (Elizalde, Noy) $\frac{1}{2}$ $\int_0^\infty \exp((u-1)t^2/2)dt\Big)^{-1}$ (Elizalde, Noy)
- 4. Spectral theory of integral operators on $L^2([0,1]^k)$:

$$
\frac{A_n(213)}{n!} = \lambda_0^{n+1} \exp\left(\frac{1}{2\lambda_0^2}\right) + \mathcal{O}\left(\left(\frac{1}{\sqrt{2}}\right)^n\right)
$$

where $\lambda_0 = 0.7839769312...$ (Ehrenborg, SK, Perry)

The de Bruijn graphs for the alphabet $A = \{0, 1\}$ and $n = 2, 3$:

The de Bruijn graphs for the alphabet $A = \{0, 1\}$ and $n = 2, 3$:

Graph of patterns overlaps: permutations instead of binary words.

For example, $2314 \rightarrow 2134$ is an arc in a graph of patterns overlaps, since 314 is order isomorphic to 213.

 P_k denotes the graph of pattern overlaps built on k-permutations.

For example, $2314 \rightarrow 2134$ is an arc in a graph of patterns overlaps, since 314 is order isomorphic to 213.

 P_k denotes the graph of pattern overlaps built on k-permutations.

Observation: For any *n*-permutation, there is a (unique) path in \mathcal{P}_k of length $n - k + 1$ corresponding to it (assuming $n \geq k$).

Example: $k = 3$; to 13542 there corresponds the path 123 \rightarrow $132 \rightarrow 321$ in \mathcal{P}_3 .

For example, $2314 \rightarrow 2134$ is an arc in a graph of patterns overlaps, since 314 is order isomorphic to 213.

 P_k denotes the graph of pattern overlaps built on k-permutations.

Observation: For any *n*-permutation, there is a (unique) path in \mathcal{P}_k of length $n - k + 1$ corresponding to it (assuming $n \geq k$).

Example: $k = 3$; to 13542 there corresponds the path 123 \rightarrow $132 \rightarrow 321$ in P_3 .

Here a verbal description of our approach comes ...

A complication with the approach: a permutation don't need to be reconstructible uniquely from the path corresponding to it.

Example: 13542 has the same path in P_3 corresponding to it as 23541 and 12543.

A complication with the approach: a permutation doesn't need to be reconstructible uniquely from the path corresponding to it.

Example: 13542 has the same path in P_3 corresponding to it as 23541 and 12543.

Uniquely k -determined permutations are those that can be reconstructed uniquely from the path corresponding to them.

Example: 12... *n* is uniquely *k*-determined for any $k \ge 2$; no *n*permutation, $n \geqslant 2$, is uniquely 1-determined; each *n*-permutation is uniquely n -determined.

A few questions to ask:

- 1. Given a permutation, is it uniquely k -determined?
- 2. How many uniquely k -determined permutations are there? Is the generating function for the number of these permutations rational?
- 3. Suppose k is fixed; does there exist a finite set of prohibitions describing the uniquely k -determined permutations?
- 4. What is the structure of the uniquely k -determined permutations?

First criterion on unique k -determinability

Suppose $\pi = \pi_1 \pi_2 \dots \pi_n$ is a permutation and $i < j$. The distance $d_{\pi}(\pi_i, \pi_j) = d_{\pi}(\pi_j, \pi_i)$ between π_i and π_j is $j - i$. For example, $d_{253164}(3,6) = d_{253164}(6,3) = 2.$

First criterion on unique k -determinability

Suppose $\pi = \pi_1 \pi_2 \dots \pi_n$ is a permutation and $i < j$. The distance $d_{\pi}(\pi_i, \pi_j) = d_{\pi}(\pi_j, \pi_i)$ between π_i and π_j is $j - i$. For example, $d_{253164}(3,6) = d_{253164}(6,3) = 2.$

Theorem. An *n*-permutation π is uniquely *k*-determined if and only if for each $1 \leqslant x < n$, the distance $d_{\pi}(x, x + 1) \leqslant k - 1$.

First criterion on unique k -determinability

Suppose $\pi = \pi_1 \pi_2 \dots \pi_n$ is a permutation and $i < j$. The distance $d_{\pi}(\pi_i, \pi_j) = d_{\pi}(\pi_j, \pi_i)$ between π_i and π_j is $j - i$. For example, $d_{253164}(3,6) = d_{253164}(6,3) = 2.$

Theorem. An *n*-permutation π is uniquely *k*-determined if and only if for each $1 \leqslant x < n$, the distance $d_{\pi}(x, x + 1) \leqslant k - 1$.

Coming back to 13542 we see why it isn't uniquely 3-determined: $d_{13542}(2,3) = 3 = k.$

Second criterion on unique k -determinability

 $V = \{1, 2, ..., n\}$ and M is a subset of V. A path-scheme $P(n, M)$ is a graph $G = (V, E)$, where the edge set E is $\{(x, y) \mid |x-y| \in M\}$. For example, $P(6, {2, 4})$ is

Second criterion on unique k -determinability

 $V = \{1, 2, \ldots, n\}$ and M is a subset of V. A path-scheme $P(n, M)$ is a graph $G = (V, E)$, where the edge set E is $\{(x, y) \mid |x-y| \in M\}$. For example, $P(6, {2, 4})$ is

Let $\mathcal{G}_{k,n} = P(n, \{1, 2, \ldots, k-1\})$, where $k \leq n$. Clearly, $\mathcal{G}_{k,n}$ is a subgraph of $\mathcal{G}_{n,n}$.

Second criterion on unique k -determinability

 $V = \{1, 2, ..., n\}$ and M is a subset of V. A path-scheme $P(n, M)$ is a graph $G = (V, E)$, where the edge set E is $\{(x, y) \mid |x-y| \in M\}$. For example, $P(6, {2, 4})$ is

Let $\mathcal{G}_{k,n} = P(n, \{1, 2, \ldots, k-1\})$, where $k \leq n$. Clearly, $\mathcal{G}_{k,n}$ is a subgraph of $\mathcal{G}_{n,n}$.

Theorem. Let Φ be a map that sends a uniquely k-determined n-permutation π to the directed hamiltonian path in $\mathcal{G}_{n,n}$ corresponding to π^{-1} . Φ is a bijection between the set of all uniquely k -determined *n*-permutations and the set of all directed hamiltonian paths in $\mathcal{G}_{k,n}$.

A quick checking of whether an *n*-permutation π is uniquely kdetermined or not: consider the $n - 1$ differences of the adjacent elements in π^{-1} to see whether at least one of those differences exceeds $k - 1$ or not.

The number of uniquely k-determined *n*-permutations, $n \geq 1$:

The sequence corresponding to the case $k = 3$ appears in Sloane, where we learn that the inverses to the uniquely 3-determined permutations are called key permutations.

Theorem. We have, for the number $A_{k,n}$ of uniquely k-determined n-permutations,

$$
2((k-1)!)^{\lfloor n/k\rfloor}
$$

Prohibitions giving uniquely k-determined permutations

Let $|X|$ be the number of elements in X.

The set of uniquely k-determined n-permutations can be described by prohibiting patterns $xX(x + 1)$ and $(x + 1)Xx$, where *X* is a permutation on {1, 2, ..., $|X| + 2$ } − { $x, x + 1$ }, $|X| \ge k - 1$, and $1 \leqslant x < n$.

We collect all such patterns in $\mathcal{L}_{k,n}$; also, let $\mathcal{L}_k = \cup_{n \geq 0} \mathcal{L}_{k,n}$.

Prohibitions giving uniquely k-determined permutations

A prohibited pattern $X = aYb$ from \mathcal{L}_k , where a and b are some consecutive elements, is called irreducible if the patterns of Yb and aY are not prohibited, that is, the patterns of Yb and aY are uniquely k -determined permutations.

Let \mathcal{L}_k consists only of irreducible prohibited patterns.

Prohibitions giving uniquely k-determined permutations

Theorem. Suppose k is fixed. The number of (irreducible) prohibitions in \mathcal{L}_k is finite. Moreover, the longest prohibited patterns in \mathcal{L}_k are of length $2k-1$.

Here it comes a verbal description of how we use the theorem above and the graph of patterns overlaps \mathcal{P}_{2k-1} to apply the transfer matrix method ...

Theorem. The generating function $A_k(x) = \sum_{n\geqslant 0} A_{k,n} x^n$ for the number of uniquely k-determined permutations is rational.

An *n*-permutation is crucial if it is uniquely k -determined, but adjoining any letter to the right of it, and thus creating an $(n+1)$ permutation, leads to a non-uniquely k -determined permutation.

An *n*-permutation is crucial if it is uniquely k -determined, but adjoining any letter to the right of it, and thus creating an $(n+1)$ permutation, leads to a non-uniquely k -determined permutation.

Theorem. There are no crucial permutations.

The case $k = 3$

Suppose w' denotes the complement to an n-permutation w . All uniquely 3-determined 4-permutations:

$$
A_3(x) = \sum_{n \geqslant 0} A_{3,n} x^n = \frac{1 - 2x + 2x^2 + x^3 - x^5 + x^6}{(1 - x - x^3)(1 - x)^2}.
$$

Any *n*-permutation is uniquely *n*-determined, whereas for $n \ge 2$ no n -permutation is uniquely 1-determined. Moreover, for any $n \geqslant 2$ there are exactly two uniquely 2-determined permutations, namely the monotone permutations.

Index $IR(\pi)$ of reconstructibility is the minimal integer k such that the permutation π is uniquely k-determined.

Problem 1. Describe the distribution of $IR(\pi)$ among all npermutations.

Problem 2. Study the set of uniquely k -determined permutations in the case when a set of nodes is removed from \mathcal{P}_k , that is, when some of patterns of length k are prohibited.

An *n*-permutation π is $m-k$ -determined, $m, k \geq 1$, if there are exactly m (different) n-permutations having the same path in P_k as π has. In particular, the uniquely k-determined permutations correspond to the case $m = 1$.

Problem 3. Find the number of $m-k$ -determined *n*-permutations.

An *n*-permutation π is $m-k$ -determined, $m, k \geq 1$, if there are exactly m (different) n-permutations having the same path in P_k as π has.

Problem 3. Find the number of $m-k$ -determined *n*-permutations.

Problem 3 is directly related to finding the number of linear extensions of a poset. Indeed, to any path w in \mathcal{P}_k there naturally corresponds a poset W . In particular, any factor of length k in w consists of comparable to each other elements in W. If $k = 3$ and $w = 134265$ (7-3-determined) then W is the following poset:

Recall that \mathcal{L}_k is a set of irreducible prohibited patterns giving all uniquely k-determined permutations.

Problem 4. Describe the structure of \mathcal{L}_k . Is there a nice way to generate \mathcal{L}_k ? How many elements does \mathcal{L}_k have?

Thank you for your attention!

Questions?