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Permutation 253641 contains two occurrences of the consecutive

pattern 132: 253164 and 253641
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Permutation 253641 contains two occurrences of the consecutive

pattern 132: 253164 and 253641

Basic question: How many of n-permutations contain k occur-

rences of a given consecutive pattern? In particular, how many

permutations avoid a given pattern.
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Permutation 253641 contains two occurrences of the consecutive

pattern 132: 253164 and 253641

Basic question: How many of n-permutations contain k occur-

rences of a given consecutive pattern? In particular, how many

permutations avoid a given pattern.

More general question: Find joint distribution of patterns from a

given set of consecutive patterns.
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Approaches to study consecutive patterns:

1. Direct combinatorial arguments;

2. Method of inclusion-exclusion;

3. Tree representations of permutations;

4. Spectral theory of integral operators on L2([0,1]k);

· · ·

n. Considering the graph of patterns overlaps.
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1. Direct combinatorial argument:
An(123,321,132) = (n− 1)!! + (n− 2)!! (SK)

2. Method of inclusion-exclusion: Generating function for An(12543)

is


1− x +

∑

i>1

(−1)i+1x4i+1

(4i + 1)!

i∏

j=2

(4j − 2

2

)


−1

(SK)

3. Tree representations of permutations: Bivariate GF for distri-
bution of 132 is

(
1− ∫ z

0 exp((u− 1)t2/2)dt
)−1

(Elizalde, Noy)

4. Spectral theory of integral operators on L2([0,1]k):

An(213)

n!
= λn+1

0 exp

(
1

2λ2
0

)
+O

((
1√
2

)n)

where λ0 = 0.7839769312 . . .. (Ehrenborg, SK, Perry)
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The de Bruijn graphs for the alphabet A = {0,1} and n = 2,3:

(000)

(001)

(11)

(01)

(00)

(101)

(111)

(110)

(100)
(010)

(011)

(10)
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The de Bruijn graphs for the alphabet A = {0,1} and n = 2,3:
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Graph of patterns overlaps: permutations instead of binary words.
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For example, 2314 → 2134 is an arc in a graph of patterns over-

laps, since 314 is order isomorphic to 213.

Pk denotes the graph of pattern overlaps built on k-permutations.
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For example, 2314 → 2134 is an arc in a graph of patterns over-

laps, since 314 is order isomorphic to 213.

Pk denotes the graph of pattern overlaps built on k-permutations.

Observation: For any n-permutation, there is a (unique) path in

Pk of length n− k + 1 corresponding to it (assuming n > k).

Example: k = 3; to 13542 there corresponds the path 123 →
132 → 321 in P3.
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For example, 2314 → 2134 is an arc in a graph of patterns over-

laps, since 314 is order isomorphic to 213.

Pk denotes the graph of pattern overlaps built on k-permutations.

Observation: For any n-permutation, there is a (unique) path in

Pk of length n− k + 1 corresponding to it (assuming n > k).

Example: k = 3; to 13542 there corresponds the path 123 →
132 → 321 in P3.

Here a verbal description of our approach comes ...
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A complication with the approach: a permutation don’t need to

be reconstructible uniquely from the path corresponding to it.

Example: 13542 has the same path in P3 corresponding to it as

23541 and 12543.
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A complication with the approach: a permutation doesn’t need

to be reconstructible uniquely from the path corresponding to it.

Example: 13542 has the same path in P3 corresponding to it as

23541 and 12543.

Uniquely k-determined permutations are those that can be re-

constructed uniquely from the path corresponding to them.

Example: 12 . . . n is uniquely k-determined for any k > 2; no n-

permutation, n > 2, is uniquely 1-determined; each n-permutation

is uniquely n-determined.
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A few questions to ask:

1. Given a permutation, is it uniquely k-determined?

2. How many uniquely k-determined permutations are there? Is

the generating function for the number of these permutations

rational?

3. Suppose k is fixed; does there exist a finite set of prohibitions

describing the uniquely k-determined permutations?

4. What is the structure of the uniquely k-determined permuta-

tions?
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First criterion on unique k-determinability

Suppose π = π1π2 . . . πn is a permutation and i < j. The distance

dπ(πi, πj) = dπ(πj, πi) between πi and πj is j − i. For example,

d253164(3,6) = d253164(6,3) = 2.
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First criterion on unique k-determinability

Suppose π = π1π2 . . . πn is a permutation and i < j. The distance

dπ(πi, πj) = dπ(πj, πi) between πi and πj is j − i. For example,

d253164(3,6) = d253164(6,3) = 2.

Theorem. An n-permutation π is uniquely k-determined if and

only if for each 1 6 x < n, the distance dπ(x, x + 1) 6 k − 1.
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First criterion on unique k-determinability

Suppose π = π1π2 . . . πn is a permutation and i < j. The distance

dπ(πi, πj) = dπ(πj, πi) between πi and πj is j − i. For example,

d253164(3,6) = d253164(6,3) = 2.

Theorem. An n-permutation π is uniquely k-determined if and

only if for each 1 6 x < n, the distance dπ(x, x + 1) 6 k − 1.

Coming back to 13542 we see why it isn’t uniquely 3-determined:

d13542(2,3) = 3 = k.
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Second criterion on unique k-determinability

V = {1,2, . . . , n} and M is a subset of V . A path-scheme P (n, M)

is a graph G = (V, E), where the edge set E is {(x, y) | |x−y| ∈ M}.
For example, P (6, {2,4}) is

1 2 3 4 5 6
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Second criterion on unique k-determinability

V = {1,2, . . . , n} and M is a subset of V . A path-scheme P (n, M)

is a graph G = (V, E), where the edge set E is {(x, y) | |x−y| ∈ M}.
For example, P (6, {2,4}) is

1 2 3 4 5 6

Let Gk,n = P (n, {1,2, . . . , k − 1}), where k 6 n. Clearly, Gk,n is a

subgraph of Gn,n.
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Second criterion on unique k-determinability

V = {1,2, . . . , n} and M is a subset of V . A path-scheme P (n, M)
is a graph G = (V, E), where the edge set E is {(x, y) | |x−y| ∈ M}.
For example, P (6, {2,4}) is

1 2 3 4 5 6

Let Gk,n = P (n, {1,2, . . . , k − 1}), where k 6 n. Clearly, Gk,n is a
subgraph of Gn,n.

Theorem. Let Φ be a map that sends a uniquely k-determined
n-permutation π to the directed hamiltonian path in Gn,n corre-
sponding to π−1. Φ is a bijection between the set of all uniquely
k-determined n-permutations and the set of all directed hamil-
tonian paths in Gk,n.
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A quick checking of whether an n-permutation π is uniquely k-
determined or not: consider the n−1 differences of the adjacent
elements in π−1 to see whether at least one of those differences
exceeds k − 1 or not.

The number of uniquely k-determined n-permutations, n > 1:

k = 2 1, 2, 2, 2, 2, 2, 2, 2, 2, . . .
k = 3 1, 2, 6, 12, 20, 34, 56, 88, 136, . . .
k = 4 1, 2, 6, 24, 72, 180, 428, 1042, 2512, . . .
k = 5 1, 2, 6, 24, 120, 480, 1632, 5124, 15860, . . .
k = 6 1, 2, 6, 24, 120, 720, 3600, 15600, 61872, . . .
k = 7 1, 2, 6, 24, 120, 720, 5040, 30240, 159840, . . .
k = 8 1, 2, 6, 24, 120, 720, 5040, 40320, 282240, . . .

The sequence corresponding to the case k = 3 appears in Sloane,
where we learn that the inverses to the uniquely 3-determined
permutations are called key permutations.
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Theorem. We have, for the number Ak,n of uniquely k-determined

n-permutations,

2((k − 1)!)bn/kc < Ak,n < 2(2(k − 1))n.
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Prohibitions giving uniquely k-determined permutations

Let |X| be the number of elements in X.

The set of uniquely k-determined n-permutations can be de-

scribed by prohibiting patterns xX(x + 1) and (x + 1)Xx, where

X is a permutation on {1,2, . . . , |X|+2}− {x, x +1}, |X| > k− 1,

and 1 6 x < n.

We collect all such patterns in Lk,n; also, let Lk = ∪n>0Lk,n.
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Prohibitions giving uniquely k-determined permutations

A prohibited pattern X = aY b from Lk, where a and b are some

consecutive elements, is called irreducible if the patterns of Y b

and aY are not prohibited, that is, the patterns of Y b and aY are

uniquely k-determined permutations.

Let Lk consists only of irreducible prohibited patterns.
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Prohibitions giving uniquely k-determined permutations

Theorem. Suppose k is fixed. The number of (irreducible) pro-

hibitions in Lk is finite. Moreover, the longest prohibited patterns

in Lk are of length 2k − 1.

Here it comes a verbal description of how we use the theorem

above and the graph of patterns overlaps P2k−1 to apply the

transfer matrix method ...

Theorem. The generating function Ak(x) =
∑

n>0 Ak,nxn for the

number of uniquely k-determined permutations is rational.
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An n-permutation is crucial if it is uniquely k-determined, but

adjoining any letter to the right of it, and thus creating an (n+1)-

permutation, leads to a non-uniquely k-determined permutation.
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An n-permutation is crucial if it is uniquely k-determined, but

adjoining any letter to the right of it, and thus creating an (n+1)-

permutation, leads to a non-uniquely k-determined permutation.

Theorem. There are no crucial permutations.
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The case k = 3

Suppose w′ denotes the complement to an n-permutation w. All

uniquely 3-determined 4-permutations:

a = 1234 a′ = 4321
b = 1324 b′ = 4231
c = 1243 c′ = 4312
d = 3421 d′ = 2134
e = 1423 e′ = 4132
f = 3241 f ′ = 2314
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The case k = 3

a

b

d′ c

f ′

f

d c′
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b′

e
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I

ª

ª

A3(x) =
∑

n>0

A3,nxn =
1− 2x + 2x2 + x3 − x5 + x6

(1− x− x3)(1− x)2
.
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Open problems

Any n-permutation is uniquely n-determined, whereas for n > 2

no n-permutation is uniquely 1-determined. Moreover, for any

n > 2 there are exactly two uniquely 2-determined permutations,

namely the monotone permutations.

Index IR(π) of reconstructibility is the minimal integer k such

that the permutation π is uniquely k-determined.

Problem 1. Describe the distribution of IR(π) among all n-

permutations.
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Open problems

Problem 2. Study the set of uniquely k-determined permutations

in the case when a set of nodes is removed from Pk, that is, when

some of patterns of length k are prohibited.
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Open problems

An n-permutation π is m-k-determined, m, k > 1, if there are

exactly m (different) n-permutations having the same path in Pk

as π has. In particular, the uniquely k-determined permutations

correspond to the case m = 1.

Problem 3. Find the number of m-k-determined n-permutations.
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Open problems

An n-permutation π is m-k-determined, m, k > 1, if there are
exactly m (different) n-permutations having the same path in Pk

as π has.

Problem 3. Find the number of m-k-determined n-permutations.

Problem 3 is directly related to finding the number of linear ex-
tensions of a poset. Indeed, to any path w in Pk there naturally
corresponds a poset W. In particular, any factor of length k in
w consists of comparable to each other elements in W. If k = 3
and w = 134265 (7-3-determined) then W is the following poset:

1 2
3
4
6

5
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Open problems

Recall that Lk is a set of irreducible prohibited patterns giving all

uniquely k-determined permutations.

Problem 4. Describe the structure of Lk. Is there a nice way to

generate Lk? How many elements does Lk have?
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Thank you for your attention!

Questions?
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