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Let A = {aq,...,an} be an alphabet of n letters.

A word in the alphabet A is a finite sequence of letters of the
alphabet.

Any 1 consecutive letters of a word X generate a factor of length 2.

The set A* is the set of all the words on the alphabet A.



Let > be an alphabet.
A map ¢ 2" — >* is called a morphism, if we have
e(uv) = p(u)p(v)

for any u,v € X%,

A morphism ¢ can be defined by defining p(7) for each i € X.



Fix a set S C A* and call it a set of prohibited words.

A word that does not contain any word from S as its factor is
called free from S.

The set of all words that are free from S is denoted by S.



If S has finitely many words in A*, then the set of prohibitions S
IS called an unavoidable set.

A ={1,2};
S={111,21,22} is an unavoidable set since

S =1{1,11,12,112,2}.



A word X € S is called a crucial word (with respect to S), if the
word Xa; contains a prohibited factor for any letter a; € A.

A crucial word of minimal (maximal) length, if it exists, is called
a minimal (maximal) crucial word.



A word X € S is called a crucial word (with respect to S), if the
word Xa; contains a prohibited factor for any letter a; € A.

A crucial word of minimal (maximal) length, if it exists, is called
a minimal (maximal) crucial word.

S={111,21,22} is an unavoidable set of prohibitions;

S =1{1,11,12,112,2}.



A word X € S is called a crucial word (with respect to S), if the
word Xa; contains a prohibited factor for any letter a; € A.

A crucial word of minimal (maximal) length, if it exists, is called
a minimal (maximal) crucial word.

S={111,21,22} is an unavoidable set since
S =1{1,11,12,112,2}.

Let Lmin(S) (Lmax(S)) denote the length of a minimal (maximal)
crucial word with respect to S.



T ={XX | X € {a1,...,an}™}, that is, we prohibit the repetition
of two equal consecutive factors. We prohibit squares.

anasaiasaiaias € SY;

414504010203 € Sllt.



T ={XX | X € {a1,...,an}™}, that is, we prohibit the repetition
of two equal consecutive factors. We prohibit squares.
anasaiasaiaias & S7;
ajan»a4qa1a2a3 € gllt

Theorem. [Fraenkel, Simpson (1998); Ilie (2005)] A word of
length n has at most 2n distinct squares.

Question. [Fraenkel, Simpson (1998)] Is the number of distinct
squares in a word of length n at most n?
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A semigroup is a set S of elements a,b,c,... in which an associa-
tive operation - is defined.

The element 2z is a zero element if z:a=a-z2z= 2z for all a in S.

Let S be a semigroup generated by three elements, such that the
square of every element in S is zero (thus a-a = z for all a in S).

Does S have an infinite number of elements?

Thue (1906) Arshon (1937) Morse (1938)
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Theorem. [SK, 1996] We have Ly (S}) =2" — 1.
We define a crucial word X by induction:

X1 =a1, X;=X;10;X;_1, X = Xn.
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Theorem. [SK, 1996] We have Ly (S}) =2" — 1.
We define a crucial word X by induction:

X1=a1, X;=X;-10;X; 1, X = Xp.

There is a generalization of the theorem:

Theorem. [R. Travkin, 2005] If S = {X* | X € {aq,...,an}*} then
Lmin(S) = k™ — 1.

We define a crucial word X by induction:
Xy =ah X = (Xii1a)F 11, X = X,
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The (X)) = (v1(X),...,vn(X)) is the content vector of X, if
v;(X) is the number of occurrences of the letter a; in X.

v(ajazaiaianazal) = (4,1,2);
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The (X)) = (v1(X),...,vn(X)) is the content vector of X, if
v;(X) is the number of occurrences of the letter q; in X.

v(aiazaiaiasazar) = (4,1,2);

5 ={XY | v(X) =v(Y)}. That is, we prohibit the repetition of
two consecutive factors of the same content. We prohibit abelian
squares.

In each word from §”, no two adjacent factors are permutations
of each other.

131232123 ¢ S3:

1232413 € S3.
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In 1961, Erdds asked whether S3 is unavoidable.
S3° — Evdokimov (1968)
SZ — Evdokimov (1971)

S3 — Pleasants (1970)

16



In 1961, Erdds asked whether S3 is unavoidable.
S3° — Evdokimov (1968)

SZ — Evdokimov (1971)

S3 — Pleasants (1970)

This was answered in the affirmative in 1992 by Keranen.
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[fla)] = [fO)] = |f(c)] = |f(d)| =85

f(a) = abcacdcbedcadedbdabacabadbabebdbebacbedcacbabdabacadeb -
cdcacdbcbacbedcacdcbdcedadbdcbea

f(b) = bedbdadcdadbadacabebdbebacbedcacdebdedadbdebeabebdbade -
dadbdacdcbdcdadbdadcadabacadcdb

f(c) = edacabadabacbabdbedcacdcbdedadbdadcadabacadedbedcacbad -
abacabdadcadabacabadbabcbdbadac

f(d) = dabdbcbabcbdebeacdadbdadcadabacabadbabebdbadacdadbdceba -
becbdbcabadbabebdbebacbedcacbabd
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A natural approach to a construction of a crucial word is:

We add to a crucial word of an n-letter alphabet a minimum
number of letters to obtain a crucial word of an (n + 1)-letter
alphabet.

n—+1
This gives a crucial word of length (3 — (n mod 2))2LTJ — 3.
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A natural approach to a construction of a crucial word is:

We add to a crucial word of an n-letter alphabet a minimum
number of letters to obtain a crucial word of an (n + 1)-letter
alphabet.

n—+1
This gives a crucial word of length (3 — (n mod 2))2LTJ — 3.
Theorem. [SK, 1996] For any n > 2 we have Lyin(S5) = 4n—7.

Construction of a minimal crucial word:

Ap—20p—10p—-3dp—2 ...A1042
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A natural approach to a construction of a crucial word is:

We add to a crucial word of an n-letter alphabet a minimum
number of letters to obtain a crucial word of an (n + 1)-letter
alphabet.

n—+1
This gives a crucial word of length (3 — (n mod 2))2LTJ — 3.
Theorem. [SK, 1996] For any n > 2 we have Lyin(S5) = 4n—7.

Construction of a minimal crucial word:

Ay 20y 10y —30p—2 ... A102AN07_20pn_3 .. .A201AD . .. Ap_ 30y _20n
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The construction might be helpful in the following problems:

e Find the length of a minimal crucial word in the case of
abelian k-th power-free words.
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The construction might be helpful in the following problems:

e Find the length of a minimal crucial word in the case of
abelian k-th power-free words.

e Suppose £min(n) is the length of the minimal two-sided crucial
word over an n-letter alphabet. Improve the following bounds:

[M. Korn (2003)] 4n — 7 < £min(n) < 6n — 10 for n > 6
[E. Bullock (2004)] 6n — 29 < {min(n) < 6n — 12 for n > 8

Of course, the second bounds are better than the first ones.
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STRL-kn — (X | 1(X)=0 (mod k), k; €N, i =1,...,n}, that
IS, we prohibit words in which the number of letters a; is congru-
ent to zero modulo k; for each ¢t =1,... n.

2123312331 ¢ S3%%7;

12122111 € S57>%.
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n
Theorem. [SK, 1998] We have Ly, (S22 )y = 3" k; — 1.
i=1
An optimal construction:

ap—14n ... 0n0p_20p—1.--0p_1...0102...020] ...0]

7 \& 7

Vv

kn—1 ky_1—1 ko—1 ki1
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n
Theorem. [SK, 1998] We have Ly, (S22 )y = 3" k; — 1.
i=1
An optimal constructions:

ap—14n ... 0n0p_20p—1.--0p_1...0102...020] ...0]

7 \& 7

Vv

kntl ky_1—1 k2V—1 klv—l

n
Theorem. [SK, 1998] We have Limaz(S2™ ") = T k; — 1.
=1
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Let d(X,Y) be the number of letters in which the words X and
Y differ (Hamming metric).

d(10212,21213) = 3:
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Let d(X,Y) be the number of letters in which the words X and
Y differ (Hamming metric).

d(10212,21213) = 3:

Sy —{XY | d(X,Y) <Kk, |X|=|Y|>k+ 1,k € N}, where |X]| is
the length of the word X. That is we prohibit any two consecu-
tive subwords X, Y of length greater then k such that d(X,Y) <k

313221223 ¢ S7%;
101121231 € S;°.
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Theorem. [SK, 1998] We have L,,in(S2") = 2k + 1.

Theorem. [SK, 1998] We have Ly (S3") = 3k + 3.
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Theorem. [SK, 1998] The set of prohibitions SZ’I‘C for n > 3 is
avoidable.

A =1{1,2,3}; B={a,b,c};
L is built by iteration of morphisms:
a — abc, b— ac, ¢ — b;
a, abc, abcacb, abcacbabcbac, ... .
We define the mapping f as follows:

a—1l...1, b—2...2, c—3...3.

k+1 k+1 k+1

Then f(L) is free from SZ’k.
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The Basic Problem:

Given: A set of prohibitions S.

The question: Is S unavoidable?
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Other Questions about S:
If S is unavoidable then:

Find or estimate L(§) = max | X|;
XES

Construct a word of length L(S) that is free from S:;
S| =7

If S is avoidable then:

Find a sequence that is free from S;

Describe all such sequences;

Find the cardinality of the set of these sequences.
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A ={0,1};
S; = {000,001,1011,0101,1111}
S, = {000,001,1010,0101,1111}

S, is unavoidable; L(S;) =8; 01110100.
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A ={0,1};

S; = {000,001,1011,0101,1111}

S, = {000,001,1010,0101,1111}

S, is unavoidable; L(S;) =8; 01110100.
So is avoidable since

011011... is free from So;

01110111... is free from So;

0110111 and 0111011 are free from Ss.

So taking any sequence in the alphabet A and substituting all
Os with 011 and all 1s with 0111 we get a sequence that is free
from So whence the cardinality of S, is the continuum!
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In general it is important to know criteria of unavoidability for
different classes of sets of prohibited words. An example of such
a class can be the following:

{S:SC A"}

that is, we are interested in words of length n. It is interesting to
know numerical characteristics that describe the bound between
unavoidable and avoidable sets of prohibitions. For instance, let

M(n)=min|S| and L(n)= max L(S),

where the extremum is taken with respect to all unavoidable

S C A" and L(S) = max | X]|.
XES
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Theorem. [Evdokimov, 1983] We have

L(n) =|A" 14+ n-2.

Theorem. [Evdokimov, 1983] We have

M(n) = =3 o(n/d)|Al%,

n d|n

where ¢(n) is the number of integers among 1,2,...n — 1 that
are relatively prime to n (Euler's p-function).
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Since any set of prohibitions S for |S| < M(n) is avoidable, it is
helpful to have a table for M(n). If |A] =2 and 1 <n < 10 then
we have

In particular, any set of binary words of length 10 that has less
than 108 words is avoidable.

M(n) ~ |A|"/n, when n — oo.
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The definitions of unavoidability and the function L(n) immedi-
ately lead to the following.

Proposition. A set of prohibitions S C A" is complete iff any
word of length L(n) 4+ 1 is not free from S.

So in order to decide if a given set of prohibitions S is complete or
not, we can consider all words of length L(n)4+1 = |A|" 1 4+n—1
and check if there is a word that is free from S.
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The definitions of unavoidability and the function L(n) immedi-
ately lead to the following.

Proposition. A set of prohibitions S C A" is complete iff any
word of length L(n) 4+ 1 is not free from S.

So in order to decide if a given set of prohibitions S is complete or
not, we can consider all words of length L(n)4+1 = |A|" 1 4+n—1
and check if there is a word that is free from S.

Theorem. [Evdokimov, 1984] The complexity of deciding whether
or not an arbitrary set S C A™ is complete is O(|S| - n).
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Problem A:

Given: An arbitrary set of words S and a natural number /2.

The question: Does there exist a word of length at least ¢ that
is free from S7

Problem B that is equivalent to the Basic Problem:

Given: An arbitrary set of words S.

The question: Does there exist £ € N such that |X| < ¢ for any
word X that is free from S7
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A ={a1,...,an} is an alphabet;

Ay is the set of all the words of the alphabet A whose length is
at most £. We assume that the empty word belongs to Ay.

S1 C A\ Ay,
So={zXzx |z €A, XA, 1}

So S, contains all possible words of length at most n + 1 whose
first letter coincides with their last letter.

Suppose S = Sq U S».
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Problem A’:

Given: An arbitrary set S of the type described above and a
natural number ¢ < n.

The question: Does there exist a word of length at least ¢ that
is free from S7?

Problem “path’:

Given: Directed graph G(V, E) and a natural number ¢ < |V| = n.

The question: Does there exist a simple directed path of length
at least ¢7
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Correspondence between problem A’ and problem “path’:

We compare vertices vy, ..., v, from V(G) to the letters aq, ..., an
in the alphabet A.

We compare each arc vv; from E(G) to the word a;a;.

We form the set S; from all such words of A, that correspond
to the arc of the complement of G with respect to the complete
directed graph.

Viis- -+ 505, 1S @ sSimple directed path iff a;, ...q;, is free from S.

14 14
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Problem “path” is NP-complete =

Problem A’ is NP-complete =

Problem A is NP-completel

[Evdokimov and SK, 2004]
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