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Let A = {a1, . . . , an} be an alphabet of n letters.

A word in the alphabet A is a �nite sequence of letters of the
alphabet.

Any i consecutive letters of a word X generate a factor of length i.

The set A∗ is the set of all the words on the alphabet A.
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Let Σ be an alphabet.

A map ϕ : Σ∗ → Σ∗ is called a morphism, if we have

ϕ(uv) = ϕ(u)ϕ(v)

for any u, v ∈ Σ∗.

A morphism ϕ can be de�ned by de�ning ϕ(i) for each i ∈ Σ.
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Fix a set S ⊆ A∗ and call it a set of prohibited words.

A word that does not contain any word from S as its factor is
called free from S.

The set of all words that are free from S is denoted by Ŝ.
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If Ŝ has �nitely many words in A∗, then the set of prohibitions S

is called an unavoidable set.

A = {1,2};

S = {111,21,22} is an unavoidable set since

Ŝ = {1,11,12,112,2}.
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A word X ∈ Ŝ is called a crucial word (with respect to S), if the
word Xai contains a prohibited factor for any letter ai ∈ A.

A crucial word of minimal (maximal) length, if it exists, is called
a minimal (maximal) crucial word.
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A word X ∈ Ŝ is called a crucial word (with respect to S), if the
word Xai contains a prohibited factor for any letter ai ∈ A.

A crucial word of minimal (maximal) length, if it exists, is called
a minimal (maximal) crucial word.

S = {111,21,22} is an unavoidable set of prohibitions;

Ŝ = {1,11,12,112,2}.
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A word X ∈ Ŝ is called a crucial word (with respect to S), if the
word Xai contains a prohibited factor for any letter ai ∈ A.

A crucial word of minimal (maximal) length, if it exists, is called
a minimal (maximal) crucial word.

S = {111,21,22} is an unavoidable set since

Ŝ = {1,11,12,112,2}.

Let Lmin(S) (Lmax(S)) denote the length of a minimal (maximal)
crucial word with respect to S.
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Sn
1 = {XX | X ∈ {a1, ..., an}∗}, that is, we prohibit the repetition

of two equal consecutive factors. We prohibit squares.

a2a2a1a2a1a1a2 6∈ Ŝ2
1;

a1a2a4a1a2a3 ∈ Ŝ4
1.
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Sn
1 = {XX | X ∈ {a1, ..., an}∗}, that is, we prohibit the repetition

of two equal consecutive factors. We prohibit squares.

a2a2a1a2a1a1a2 6∈ Ŝ2
1;

a1a2a4a1a2a3 ∈ Ŝ4
1.

Theorem. [Fraenkel, Simpson (1998); Ilie (2005)] A word of
length n has at most 2n distinct squares.

Question. [Fraenkel, Simpson (1998)] Is the number of distinct
squares in a word of length n at most n?
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A semigroup is a set S of elements a, b, c, ... in which an associa-
tive operation · is de�ned.

The element z is a zero element if z · a = a · z = z for all a in S.

Let S be a semigroup generated by three elements, such that the
square of every element in S is zero (thus a · a = z for all a in S).

Does S have an in�nite number of elements?

Thue (1906) Arshon (1937) Morse (1938)
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Theorem. [SK, 1996] We have Lmin(S
n
1) = 2n − 1.

We de�ne a crucial word X by induction:

X1 = a1, Xi = Xi−1aiXi−1, X = Xn.
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Theorem. [SK, 1996] We have Lmin(S
n
1) = 2n − 1.

We de�ne a crucial word X by induction:

X1 = a1, Xi = Xi−1aiXi−1, X = Xn.

There is a generalization of the theorem:

Theorem. [R. Travkin, 2005] If S = {Xk | X ∈ {a1, ..., an}∗} then
Lmin(S) = kn − 1.

We de�ne a crucial word X by induction:

X1 = ak−1
1 , Xi = (Xi−1ai)

k−1Xi−1, X = Xn.
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The ν(X) = (ν1(X), . . . , νn(X)) is the content vector of X, if
νi(X) is the number of occurrences of the letter ai in X.

ν(a1a3a1a1a2a3a1) = (4,1,2);
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The ν(X) = (ν1(X), . . . , νn(X)) is the content vector of X, if
νi(X) is the number of occurrences of the letter ai in X.

ν(a1a3a1a1a2a3a1) = (4,1,2);

Sn
2 = {XY | ν(X) = ν(Y )}. That is, we prohibit the repetition of

two consecutive factors of the same content. We prohibit abelian
squares.

In each word from Ŝn
2, no two adjacent factors are permutations

of each other.

131232123 6∈ Ŝ3
2;

1232413 ∈ Ŝ4
2.
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In 1961, Erdös asked whether S4
2 is unavoidable.

S25
2 � Evdokimov (1968)

S7
2 � Evdokimov (1971)

S5
2 � Pleasants (1970)
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In 1961, Erdös asked whether S4
2 is unavoidable.

S25
2 � Evdokimov (1968)

S7
2 � Evdokimov (1971)

S5
2 � Pleasants (1970)

This was answered in the a�rmative in 1992 by Keränen.
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|f(a)| = |f(b)| = |f(c)| = |f(d)| = 85

f(a) = abcacdcbcdcadcdbdabacabadbabcbdbcbacbcdcacbabdabacadcb -
cdcacdbcbacbcdcacdcbdcdadbdcbca

f(b) = bcdbdadcdadbadacabcbdbcbacbcdcacdcbdcdadbdcbcabcbdbadc -
dadbdacdcbdcdadbdadcadabacadcdb

f(c) = cdacabadabacbabdbcdcacdcbdcdadbdadcadabacadcdbcdcacbad -
abacabdadcadabacabadbabcbdbadac

f(d) = dabdbcbabcbdcbcacdadbdadcadabacabadbabcbdbadacdadbdcba -
bcbdbcabadbabcbdbcbacbcdcacbabd
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A natural approach to a construction of a crucial word is:

We add to a crucial word of an n-letter alphabet a minimum
number of letters to obtain a crucial word of an (n + 1)-letter
alphabet.

This gives a crucial word of length (3− (n mod 2))2b
n+1
2 c − 3.
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A natural approach to a construction of a crucial word is:

We add to a crucial word of an n-letter alphabet a minimum
number of letters to obtain a crucial word of an (n + 1)-letter
alphabet.

This gives a crucial word of length (3− (n mod 2))2b
n+1
2 c − 3.

Theorem. [SK, 1996] For any n > 2 we have Lmin(S
n
2) = 4n−7.

Construction of a minimal crucial word:

an−2an−1an−3an−2 . . . a1a2
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A natural approach to a construction of a crucial word is:

We add to a crucial word of an n-letter alphabet a minimum
number of letters to obtain a crucial word of an (n + 1)-letter
alphabet.

This gives a crucial word of length (3− (n mod 2))2b
n+1
2 c − 3.

Theorem. [SK, 1996] For any n > 2 we have Lmin(S
n
2) = 4n−7.

Construction of a minimal crucial word:

an−2an−1an−3an−2 . . . a1a2anan−2an−3 . . . a2a1a2 . . . an−3an−2an
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The construction might be helpful in the following problems:

• Find the length of a minimal crucial word in the case of
abelian k-th power-free words.
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The construction might be helpful in the following problems:

• Find the length of a minimal crucial word in the case of
abelian k-th power-free words.

• Suppose `min(n) is the length of the minimal two-sided crucial
word over an n-letter alphabet. Improve the following bounds:

[M. Korn (2003)] 4n− 7 6 `min(n) 6 6n− 10 for n > 6

[E. Bullock (2004)] 6n− 29 6 `min(n) 6 6n− 12 for n > 8

Of course, the second bounds are better than the �rst ones.
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Sn,k1,...,kn
3 = {X | νi(X) ≡ 0 (mod ki), ki ∈ N, i = 1, . . . , n}, that

is, we prohibit words in which the number of letters ai is congru-
ent to zero modulo ki for each i = 1, . . . , n.

2123312331 6∈ Ŝ3,2,3,2
3 ;

12122111 ∈ Ŝ2,3,4
3 .
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Theorem. [SK, 1998] We have Lmin(S
n,k1,...,kn
3 ) =

n∑

i=1

ki − 1.

An optimal construction:

an−1 an . . . an︸ ︷︷ ︸
kn−1

an−2 an−1 . . . an−1︸ ︷︷ ︸
kn−1−1

. . . a1 a2 . . . a2︸ ︷︷ ︸
k2−1

a1 . . . a1︸ ︷︷ ︸
k1−1
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Theorem. [SK, 1998] We have Lmin(S
n,k1,...,kn
3 ) =

n∑

i=1

ki − 1.

An optimal constructions:

an−1 an . . . an︸ ︷︷ ︸
kn−1

an−2 an−1 . . . an−1︸ ︷︷ ︸
kn−1−1

. . . a1 a2 . . . a2︸ ︷︷ ︸
k2−1

a1 . . . a1︸ ︷︷ ︸
k1−1

Theorem. [SK, 1998] We have Lmax(S
n,k1,...,kn
3 ) =

n∏

i=1

ki − 1.
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Let d(X, Y ) be the number of letters in which the words X and
Y di�er (Hamming metric).

d(10212,21213) = 3;
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Let d(X, Y ) be the number of letters in which the words X and
Y di�er (Hamming metric).

d(10212,21213) = 3;

Sn,k
4 = {XY | d(X, Y ) 6 k, |X| = |Y | > k + 1, k ∈ N}, where |X| is

the length of the word X. That is we prohibit any two consecu-
tive subwords X, Y of length greater then k such that d(X, Y ) 6 k.

313221223 6∈ Ŝ3,2
4 ;

101121231 ∈ Ŝ3,3
4 .
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Theorem. [SK, 1998] We have Lmin(S
n,k
4 ) = 2k + 1.

Theorem. [SK, 1998] We have Lmax(S
2,k
4 ) = 3k + 3.
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Theorem. [SK, 1998] The set of prohibitions Sn,k
4 for n > 3 is

avoidable.

A = {1,2,3}; B = {a, b, c};

L is built by iteration of morphisms:

a → abc, b → ac, c → b;

a, abc, abcacb, abcacbabcbac, ... .

We de�ne the mapping f as follows:
a → 1 . . .1︸ ︷︷ ︸

k+1

, b → 2 . . .2︸ ︷︷ ︸
k+1

, c → 3 . . .3︸ ︷︷ ︸
k+1

.

Then f(L) is free from Sn,k
4 .
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The Basic Problem:

Given: A set of prohibitions S.
The question: Is S unavoidable?

31



Other Questions about Ŝ:

If S is unavoidable then:

Find or estimate L(Ŝ) = max
X∈Ŝ

|X|;

Construct a word of length L(Ŝ) that is free from S;

|Ŝ| =?

If S is avoidable then:

Find a sequence that is free from S;

Describe all such sequences;

Find the cardinality of the set of these sequences.
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A = {0,1};

S1 = {000,001,1011,0101,1111}

S2 = {000,001,1010,0101,1111}

S1 is unavoidable; L(Ŝ1) = 8; 01110100.
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A = {0,1};

S1 = {000,001,1011,0101,1111}

S2 = {000,001,1010,0101,1111}

S1 is unavoidable; L(Ŝ1) = 8; 01110100.

S2 is avoidable since

011︸ ︷︷ ︸ 011︸ ︷︷ ︸ . . . is free from S2;

0111︸ ︷︷ ︸ 0111︸ ︷︷ ︸ . . . is free from S2;

011︸ ︷︷ ︸ 0111︸ ︷︷ ︸ and 0111︸ ︷︷ ︸ 011︸ ︷︷ ︸ are free from S2.

So taking any sequence in the alphabet A and substituting all
0s with 011 and all 1s with 0111 we get a sequence that is free
from S2 whence the cardinality of Ŝ2 is the continuum!
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In general it is important to know criteria of unavoidability for
di�erent classes of sets of prohibited words. An example of such
a class can be the following:

{S : S ⊆ An};
that is, we are interested in words of length n. It is interesting to
know numerical characteristics that describe the bound between
unavoidable and avoidable sets of prohibitions. For instance, let

M(n) = min |S| and L(n) = maxL(Ŝ),

where the extremum is taken with respect to all unavoidable
S ⊆ An and L(Ŝ) = max

X∈Ŝ
|X|.
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Theorem. [Evdokimov, 1983] We have

L(n) = |A|n−1 + n− 2.

Theorem. [Evdokimov, 1983] We have

M(n) =
1

n

∑

d|n
ϕ(n/d)|A|d,

where ϕ(n) is the number of integers among 1,2, . . . n − 1 that
are relatively prime to n (Euler's ϕ-function).
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Since any set of prohibitions S for |S| 6 M(n) is avoidable, it is
helpful to have a table for M(n). If |A| = 2 and 1 < n 6 10 then
we have

n 2 3 4 5 6 7 8 9 10
M(n) 3 4 6 8 14 20 36 60 108

In particular, any set of binary words of length 10 that has less
than 108 words is avoidable.

M(n) ∼ |A|n/n, when n →∞.
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The de�nitions of unavoidability and the function L(n) immedi-
ately lead to the following.

Proposition. A set of prohibitions S ⊆ An is complete i� any
word of length L(n) + 1 is not free from S.

So in order to decide if a given set of prohibitions S is complete or
not, we can consider all words of length L(n)+1 = |A|n−1+n−1

and check if there is a word that is free from S.
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The de�nitions of unavoidability and the function L(n) immedi-
ately lead to the following.

Proposition. A set of prohibitions S ⊆ An is complete i� any
word of length L(n) + 1 is not free from S.

So in order to decide if a given set of prohibitions S is complete or
not, we can consider all words of length L(n)+1 = |A|n−1+n−1

and check if there is a word that is free from S.

Theorem. [Evdokimov, 1984] The complexity of deciding whether
or not an arbitrary set S ⊆ An is complete is O(|S| · n).
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Problem A:

Given: An arbitrary set of words S and a natural number `.

The question: Does there exist a word of length at least ` that
is free from S?

Problem B that is equivalent to the Basic Problem:

Given: An arbitrary set of words S.

The question: Does there exist ` ∈ N such that |X| 6 ` for any
word X that is free from S?
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A = {a1, . . . , an} is an alphabet;

A` is the set of all the words of the alphabet A whose length is
at most `. We assume that the empty word belongs to A`.

S1 ⊆ A2 \A1;
S2 = {xXx | x ∈ A, X ∈ An−1}.

So S2 contains all possible words of length at most n + 1 whose
�rst letter coincides with their last letter.

Suppose S = S1 ∪ S2.
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Problem A′:

Given: An arbitrary set S of the type described above and a
natural number ` 6 n.

The question: Does there exist a word of length at least ` that
is free from S?

Problem �path�:

Given: Directed graph ~G(V, E) and a natural number ` 6 |V | = n.

The question: Does there exist a simple directed path of length
at least `?
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Correspondence between problem A′ and problem �path�:

We compare vertices v1, . . . , vn from V ( ~G) to the letters a1, . . . , an

in the alphabet A.

We compare each arc vivj from E( ~G) to the word aiaj.

We form the set S1 from all such words of A2 that correspond
to the arc of the complement of ~G with respect to the complete
directed graph.

vi1, . . . , vi` is a simple directed path i� ai1 . . . ai` is free from S.
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Problem �path� is NP-complete ⇒

Problem A′ is NP-complete ⇒

Problem A is NP-complete!

[Evdokimov and SK, 2004]
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